GROUNDWATER MONITORING PROGRAM CSD TITLE 22, SECTION 310.050.S First Semiannual 2025

Groundwater Monitoring Results Inglewood Oil Field

Sentinel Peak Resources California LLC 5640 South Fairfax Avenue Los Angeles, CA 90056

Project No. 01218001.00 | May 2025

3900 Kilroy Airport Way, Suite 300 Long Beach, CA 90806 562-426-9544 This report titled "Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Semiannual 2025 Groundwater Monitoring Results, Inglewood Oil Field", dated May 2025, was prepared and reviewed by the following:

Jay Sturim Associate Professional

Thomas Birren, Ph.D., G.I.T. Senior Project Geologist

Tina Quo Schmlesing, R.E.P.A

Tina Quo Schmlesing, R.E.P./ Project Director

Jeffrey T. Sieg, P.G.

Technical Reviewer

ONA No. 9523 Exp: 8/2026 OF CAL

Table of Contents

Sect	ion	Page
1	INTRODUCTION	1
	General Background	1
	Geology	
	Topography and Drainage	2
	Site Hydrogeology	2
2	GROUNDWATER FIELD PROGRAM	
	Monitoring Well Network	3
	Groundwater Monitoring and Sampling	4
	Water Level Monitoring	4
	Well Purging	
	Groundwater Sample Collection and Analysis	5
3	GROUNDWATER RESULTS	6
	Groundwater Elevations	6
	Groundwater Field and Analytical Results	6
4	CONCLUSIONS	7
5	REFERENCES AND BIBLIOGRAPHY	8

Figures

Figure 1	Site Location Map
Figure 2	Monitoring Well Locations and Groundwater Elevations

Tables

- Table 1Monitoring Parameters
- Table 2Groundwater Elevation Data
- Table 3Stabilized Groundwater Quality Sampling Parameters
- Table 4
 Groundwater Analytical Results TPH, VOCs, and TRPH
- Table 5Groundwater Analytical Results Metals, Nitrate, Nitrite, BOD, TDS, and pH

Appendices

- Appendix A Groundwater Monitoring Sampling Records
- Appendix B Groundwater Laboratory Analytical Report and Chain-of-Custody Documentation
- Appendix C Historical Summary Table and Time Series Graphs

OPERATORS STATEMENT

Sentinel Peak Resources California LLC is the proud operator of the Inglewood Oil Field, located in the Baldwin Hills area of Los Angeles County. The preservation of the environment and the health and safety of our employees and our neighbors are our highest priorities. We are focused on acquiring, developing, and exploring oil and gas assets in the most environmentally conscientious way possible. We include the environment in our operational and financial decision-making processes which we believe leads to better decisions. Through innovation, thoughtful safeguards, and responsible operations, we minimize our environmental impact.

Sentinel Peak Resources California LLC's focus on environmentally sound operational practices is at the heart of who we are. At the Inglewood Oil Field that includes helping to protect the groundwater and surface water resources that surround the field. Links to information to help interested parties stay fully informed on water issues in their area and provide the basis for making good decisions about protecting their local water resources, are in the reference section at the end of this report.

1 INTRODUCTION

SCS Engineers (SCS) was retained by Sentinel Peak Resources California LLC (SPR) to perform groundwater sampling and reporting for the first semiannual 2025 period at the Inglewood Oil Field (the "Site") located in the Baldwin Hills area of Los Angeles County. A map showing the general location of the Site is provided as Figure 1.

GENERAL BACKGROUND

In October 2008, the Los Angeles County Board of Supervisors (County) approved the Baldwin Hills Community Standards District (CSD) to establish regulations, safeguards, and controls for SPR's proposed drilling and oil production in addition to other regulations that pertain to California oil production. The geology of the area is such that the formations beneath the Baldwin Hills are not considered suitable for water supply; nonetheless, the Baldwin Hills CSD and the Los Angeles Regional Water Quality Control Board (LARWQCB) requested a groundwater-monitoring network to evaluate potential impacts associated with the Site. Specifically, the LARWQCB requested that the network focus on preferred pathways in native canyon areas and suggested targeting existing catch basins as locations for the monitoring wells to assess the potential for impacts of oil field operations on groundwater quality.

Starting in second half 2021, monitoring and sampling activities changed from quarterly to semiannual and used a reduced set of monitoring parameters that are performed in accordance with the *Groundwater Monitoring Program and Workplan, Inglewood Oil Field* (SPR, October 2021[Rev 1]), which was approved by CSD on October 29, 2021. From 2010 through mid-2021 monitoring and reporting were conducted in accordance with *Groundwater Monitoring Program and Workplan, Inglewood Oil Field* (ENTRIX, August 6, 2009). This October 2021 revised monitoring plan also provides a list of approved parameters (Table 1) and indicates that first semiannual sampling will be conducted in first quarter of each year and second semiannual sampling will be conducted in fourth quarter of each year. The monitoring well network, for the CSD-required monitoring, includes wells MW-3, MW-4a, MW-4b, MW-4c, MW- 5, MW-6, and MW-7. The monitoring well locations are presented on Figure 2.

With the exception of groundwater at MW-6 and MW-7, historically during the majority of monitoring events, the wells have been dry and groundwater samples could not be collected. With respect to MW-6 and MW-7, groundwater well data has not identified significant concentrations of constituents of concern (COCs).

GEOLOGY

Numerous studies of the Baldwin Hills have concluded that the tectonic uplift has disconnected the water-bearing sediments in the Baldwin Hills from groundwater-bearing strata in the Los Angeles Basin (California Department of Water Resources [DWR], 1961; LARWQCB, 2001; United States Geological Survey [USGS], 2003; Los Angeles County, 2008). Further, these studies conclude that the folded and faulted formations of the Baldwin Hills have limited groundwater potential and are not appropriate for drinking water supply. The prominent aquifer systems in the subsurface of the Los Angeles Basin are exposed at the surface in the Baldwin Hills, as is the Pico Formation, which is typically considered as the base of the fresh-water supply aquifers (DWR, 1961; USGS, 2003). In groundwater models of fresh-water flow in the Los Angeles Basin aquifer systems (USGS, 2003), the Baldwin Hills are modeled as a "no flow" zone; that is, sediments beneath the Baldwin Hills are disconnected from the regional aquifers and groundwater flow is discontinuous across the Baldwin

Hills. The following information summarizes the topographic and hydrogeologic data that lead to these findings.

TOPOGRAPHY AND DRAINAGE

The Site is in the Baldwin Hills, which form part of a chain of low hills along the Newport-Inglewood Fault Zone. The Baldwin Hills are the highest hills along this fault zone, reaching a height of 511 feet (153 meters) above mean sea level. Sediments of the Baldwin Hills have been considerably deformed and faulted. The northern flank of the Baldwin Hills is deeply incised by erosion, whereas the southern flank slopes gently to the Torrance Plain and Rosecrans Hills.

No perennial or intermittent streams, as defined by the U.S. Geological Survey, are present within the oil field boundaries (Los Angeles County, 2008).

The Baldwin Hills area, including the Inglewood Oil Field, lies entirely within the Ballona Creek Watershed, which covers approximately 130 square miles in the coastal plain of the Los Angeles Basin. The watershed is highly developed, with the predominant land uses being residential (59 percent), vacant/open space (17 percent), and commercial (14 percent). Overall, 49 percent of the watershed is covered by roads, rooftops, and other impervious surfaces (City of Los Angeles Stormwater Program).

Stormwater runoff occurs primarily as sheet flow across drilling pads, structure pads, and slopes eventually flowing into ephemeral gullies and drainage ditches. Five stormwater catch basins are located along these drainages within the CSD boundary to regulate discharge from the Site and retain oil on the Site in the event of a spill. The catch basins are depicted on Figure 2 and are identified as follows:

- LAI Basin
- Stocker Basin
- Vickers I Basin
- Lower Vickers II Basin
- Upper Vickers II Basin

The operator takes measures to retain as much stormwater runoff on site as possible. On occasions when runoff from these basins does occur, flow is filtered to meet limits as stated in the National Pollutant Discharge Elimination System (NPDES) discharge permit, then discharged to the public storm drain system and ultimately to Ballona Creek. Two of the basins, LAI and Stocker, discharge through the storm drain system into Centinela Creek, which then ultimately discharges to Ballona Creek. Centinela Creek is located approximately 1.2 miles southwest of the active oil field boundary. The other three basins, Lower Vickers II, Upper Vickers II, and Vickers I, discharge to the storm drain system, ultimately reaching Ballona Creek, which is located approximately 0.2 miles west of the active oil field boundary at its closest point.

Stormwater runoff is addressed in a site-specific water quality permit that is monitored and enforced by the LARWQCB to ensure that surface water beneficial uses are not impaired.

SITE HYDROGEOLOGY

The Baldwin Hills are generally comprised of non-water bearing strata that straddle the West Coast, Central, and Santa Monica groundwater basins. Groundwater within the Baldwin Hills, where present, is limited to perched zones located within canyon alluvium and weathered bedrock (DWR

1961; LARWQCB 2001). There are no domestic or industrial water supply wells located within the active oil field boundary, or within one mile of the Baldwin Hills.

The Baldwin Hills are underlain by a faulted, northwest-trending anticline made up of Tertiary and Pleistocene age sediments. Two principal northwesterly trending, nearly parallel faults offset the central portion of the hills, developing a down-dropped block or graben across the crest of the anticline. The more easterly of the two structures is the Newport-Inglewood fault; the other fault is unnamed. Both faults are offset by secondary cross faults that trend northeast. The block east of the Newport-Inglewood fault, composed of Pliocene age and older sediments, is cut by several small unnamed faults (USGS, 1976). One such fault extends along the northeast border of the Baldwin Hills and may be related to the prominent escarpment in that area. The Slauson Avenue fault extends northeast beyond the Baldwin Hills and offsets aquifers of the San Pedro Formation. The Baldwin Hills form a complete barrier to groundwater movement where the essentially non-water-bearing Pico Formation out crops. The Pico Formation is typically taken as the base of the fresh-water zone across the Los Angeles Basin.

Potable groundwater aquifers of the Los Angeles Basin lie adjacent to the Baldwin Hills. Based on a hydrogeologic cross-section completed along Ballona Creek (USGS, 2003), the base of fresh water is highly variable as a result of faulting along the Newport-Inglewood Fault Zone. Along the northnorthwest boundary of the Baldwin Hills, west of the Newport-Inglewood Fault Zone, groundwater is present in the Silverado Aquifer to a depth of 200 to 300 feet below ground surface (bgs). Further west from the fault zone, the Silverado Aquifer thickens, and groundwater is present to a depth of approximately 450 feet bgs. Silverado Formation is underlain by the Pico Formation (DWR 1961). The base of fresh water is much deeper to the east of the Newport-Inglewood Fault Zone and the Baldwin Hills, and numerous aquifers are present. Golden State Water Company Sentney Well #8 (State well No. 2S/14W/Sec 5/D08 or County well No. 2626P), located east of the fault zone, along Ballona Creek and approximately 1.2 miles north of the active oil field boundary, produces water from five separate stratigraphic intervals within aquifers at depths ranging from 70 to 370 feet bgs. These depths would include the Exposition, Gage, Lynwood, and Silverado Aquifers. Similar to west of the fault zone, the non-water-bearing Pico Formation lies below the Silverado Aquifer (DWR, 1961).

Within the Site, localized, perched groundwater has been measured at depths ranging from approximately 25 to over 200 feet bgs. Existing information indicates that the largely non-waterbearing formations under the Site contain thin localized perched groundwater zones that are not continuous across the Baldwin Hills and are not connected to the regional aquifer systems in the Los Angeles Basin. Because of the limited occurrence of these thin localized perched groundwater zones, the geological formations beneath the Baldwin Hills are not considered suitable for water supply (DWR, 1961; USGS, 2003; County of Los Angeles, 2008).

2 GROUNDWATER FIELD PROGRAM

The monitoring activities were performed in accordance with the *Groundwater Monitoring Program and Workplan* (SPR, October 2021, Rev. 1). The field activities and sampling methods used during this groundwater monitoring event are described below.

MONITORING WELL NETWORK

The objective of the groundwater monitoring program is to evaluate and monitor groundwater resources that may be affected by oil field operations. Monitoring wells are located downgradient of

the catch basins on the Site. The catch basins and associated monitoring well locations are presented on Figure 2 and as follows:

- LAI Basin (MW-3)
- Stocker Basin (MW-4a, MW-4b, MW-4c)
- Vickers I Basin (MW-5)
- Lower Vickers II Basin (MW-6)
- Upper Vickers II Basin (MW-7)

GROUNDWATER MONITORING AND SAMPLING

The groundwater monitoring activities were conducted in general accordance with the U.S. Environmental Protection Agency's (EPA) Standard Operating Procedures for the Standard/Well-Volume Method for Collecting Ground-Water Samples (EPA, 2002). These activities included the measurement of depth to water and the collection of groundwater samples for chemical analysis, if sufficient groundwater is present.

WATER LEVEL MONITORING

Prior to purging and sampling, an electronic water level meter was used to measure depth to water of each well. Measurements of the depth to water were taken from a surveyed reference point at the top of each well casing. Water level measurements were recorded to the nearest 0.01 foot and recorded on field data sheets, provided in Appendix A. The monitoring equipment lowered into the well casing was thoroughly washed with tap water containing decontaminating detergent (Liquinox) and double rinsed with purified deionized water prior to and after use.

On March 24, 2025, at the time of water level monitoring, it was observed that wells MW-3, MW-4a, MW-4b, MW-4c, and MW-5 were dry. Therefore, groundwater samples could not be collected from these wells.

WELL PURGING

On March 24, 2025, wells MW-6 and MW-7 contained sufficient water for purging and sample collection.

To reduce agitation of formation water in the well casing, the monitoring well was purged and sampled using a low flow method, which included using a clean portable QED bladder pump and dedicated hose.

During purging, field parameters were routinely monitored using a Horiba U-52 multi-parameter water quality meter to measure pH, specific conductivity (also referred to as electrical conductivity or EC), temperature and turbidity to ensure stabilization of aquifer conditions. Stability is typically considered to be achieved when the following conditions are met prior to filling sample containers:

- At least one volume of water equivalent to the volume of the portable pump and hose system was removed.
- Last two readings of field pH are within 0.1 pH units.
- Last two readings of field EC are within 3 percent.
- Last two readings of field turbidity are below 10 nephelometric turbidity units (NTU) or within 10 percent of each other.

As shown on field sampling records (Appendix A) from March 2025, water quality stabilization conditions were met prior to filling laboratory supplied containers. The final values of field monitoring results, collected prior to sample collection, from this and previous sampling events are provided in Table 3.

GROUNDWATER SAMPLE COLLECTION AND ANALYSIS

During sampling activities, a new pair of nitrile powder-free gloves was worn for sample collection at each well. Immediately following purging, groundwater samples were collected directly into laboratory supplied sample containers through the discharge hose of the portable QED bladder pump hose system. Where appropriate, the groundwater samples were chemically preserved through use of preservative-containing laboratory supplied bottles or vials. Samples collected for volatile organic compounds (VOC) analyses were handled with extra care to minimize any turbulence or aeration when filling the vials. The vials and caps were filled to form a convex meniscus and after tightening of the cap, the sample vial was inverted to check for the presence of air bubbles in the sample container. If an air bubble was present, the sample vial was opened, and the procedure repeated, or a new set of vials were filled.

Sample containers were labeled with the sampler's initials, location ID, date, time, analyses to be performed, and the preservation method used. Samples were placed in individual Ziploc®-type bags, sealed, and stored in coolers on ice prior to and during transfer to the analytical laboratory. Ice was sealed in plastic bags. Chain-of-custody documentation was completed onsite and accompanied the samples to the laboratory. The samples were transferred to the laboratory by courier within 24 hours of sampling.

Pace Analytical Environmental Sciences (Pace), a state-certified laboratory (CA ELAP #1186) located in Bakersfield, California, conducted the sample analyses. Chain-of-custody tracking procedures were maintained from sample collection through processing and analysis at the laboratory.

Under the current monitoring program (SPR, October 2021, Rev. 1), samples were analyzed for pH, total dissolved solids (TDS), total petroleum hydrocarbons - diesel range organics (TPH-DRO), oil and grease (formerly referred to as total recoverable petroleum hydrocarbons [TRPH]), and VOCs (specifically benzene, toluene, ethylbenzene, and xylenes [together referred to as BTEX], as well as methyl tert-butyl ether [MTBE]) using various Standard and EPA Methods as listed in Table 1. Note, as of November 2021 following the revisions to the monitoring program, groundwater samples are no longer required to be analyzed for biochemical oxygen demand (BOD), nitrate, nitrite, or dissolved metals (arsenic, barium, cobalt, chromium, copper, lead, and zinc).

Due to a procedural modification by Pace, as of November 2024, groundwater sample analysis for TPH carbon range breakdown from C8 to C44 is no longer available. TPH-DRO is reported to include carbon ranges C10-C28. To continue to evaluate the presence of TPH carbon ranges lower and higher than those provided with the TPH-DRO analysis, CSD groundwater samples were also analyzed for TPH gasoline range organics (TPH-GRO, Method 8015B), Total Purgeable Petroleum Hydrocarbons (Method 8260B), and TPH oil range organics (TPH-ORO, Method 8015B). These results are included in the laboratory report in Appendix B of each semiannual groundwater monitoring report. For the purposes of water quality monitoring, the TPH-DRO concentrations reported using the current Pace protocols satisfy the required CSD indicator parameter requirements.

With respect to TPH-DRO and TPH-ORO analysis, groundwater samples were analyzed with and without the silica gel filtering method (by the laboratory). Silica gel filtering removes hydrocarbons with a non-petroleum origin, such as natural alcohols and other short chain organic molecules.

Note that for the purposes of this report the term "reporting limit" is equivalent to Pace's term Practical Quantitation Limit (PQL) and are considered interchangeable. Estimated concentrations below the reporting limit and above the method detection limit are flagged in the report text and data summary tables with a "J."

3 GROUNDWATER RESULTS

Groundwater sampling was conducted on March 24, 2025 at wells MW-6 and MW-7. Monitoring wells MW-3, MW-4a, MW-4b, MW-4c, and MW-5 were dry at the time of monitoring and could not be sampled.

GROUNDWATER ELEVATIONS

The groundwater elevation data are presented in Table 2. As shown, groundwater was present in wells MW-6 and MW-7 at elevations of 37.40 and 142.93 feet above mean sea level, respectively. Dry conditions in the well casings of MW-3, MW-4a, MW-4b, MW-4c, and MW-5 are consistent with results of the prior groundwater sampling events as well as other studies of the Site, which determined that the water-bearing zones in the Baldwin Hills are discontinuous. Monitoring well locations and March 2025 groundwater elevations are shown on Figure 2.

GROUNDWATER FIELD AND ANALYTICAL RESULTS

Table 3 provides a summary of the final field monitoring parameters (as discussed above) for the current (March 2025) and previous (post November 2017) monitoring events. Field sampling record forms are included in Appendix A.

Tables 4 and 5 include a summary of laboratory results for the current (March 24, 2025) and historic (post November 2017) monitoring events for wells MW-3, MW-6, and MW-7. A copy of the laboratory report and chain-of-custody documentation is included in Appendix B.

A summary table with the laboratory results for historical monitoring events, from April 2010 to March 2025, for wells MW-3, MW-4a, MW-4b, MW-4c, MW-5, MW-6, and MW-7 is provided in Appendix C. Appendix C also includes time series graphs for TPH-DRO (Silica Gel Filtering) data from April 2010 to the current event.

The March 2025 analytical data for wells MW-6 and MW-7 are summarized below:

- **MW-6:** BTEX/MTBE and TPH-DRO (with and without silica gel filtering) were not detected. Oil and grease was detected at 0.80 milligrams per liter (mg/l; between the laboratory method detection limit and reporting limit), TDS was detected at 1,700 mg/l, and pH at 7.20.
- **MW-7:** BTEX/MTBE and TPH-DRO (with and without silica gel filtering) were not detected. Oil and grease was detected at 0.90 mg/l (between the laboratory method detection limit and reporting limit), TDS was detected at 2,400 mg/l, and pH at 6.99.

These March 2025 groundwater monitoring results are similar to results from recent and historic monitoring events. As shown in Tables 4 and 5, results for the parameters analyzed were below any applicable California Primary Maximum Contaminant Levels (MCLs, State Water Board dated September 14, 2021) or State Actions Levels.

4 CONCLUSIONS

In March 2025, groundwater wells MW-6 and MW-7 were sampled. The results of the March 2025 monitoring event are consistent with past monitoring events, with no significant change in conditions or the water chemistry in the wells sampled during this event.

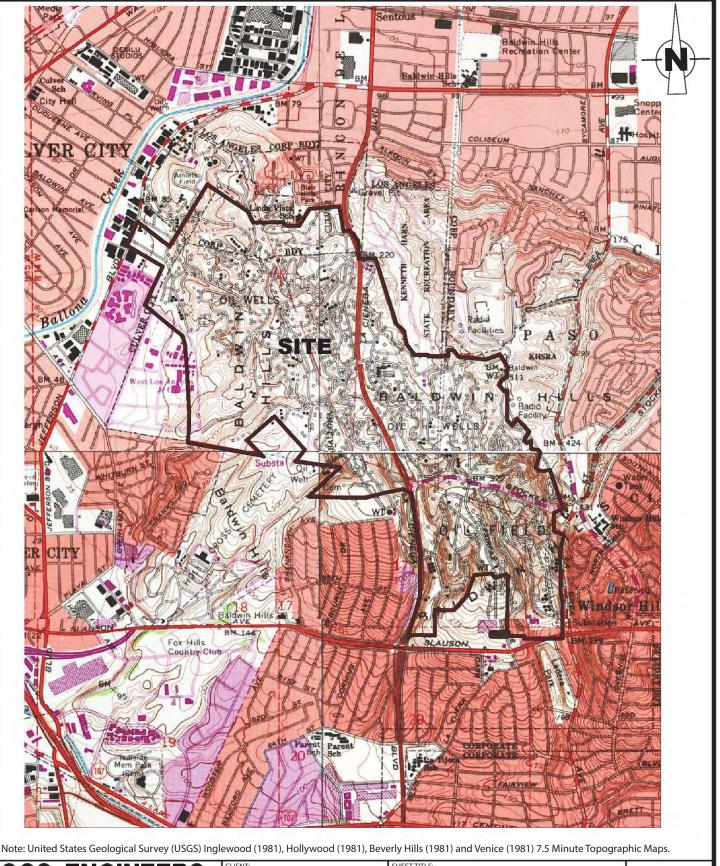
Groundwater wells have been sampled for over 12 years and groundwater well data show no significant concentrations of COCs.

5 REFERENCES AND BIBLIOGRAPHY

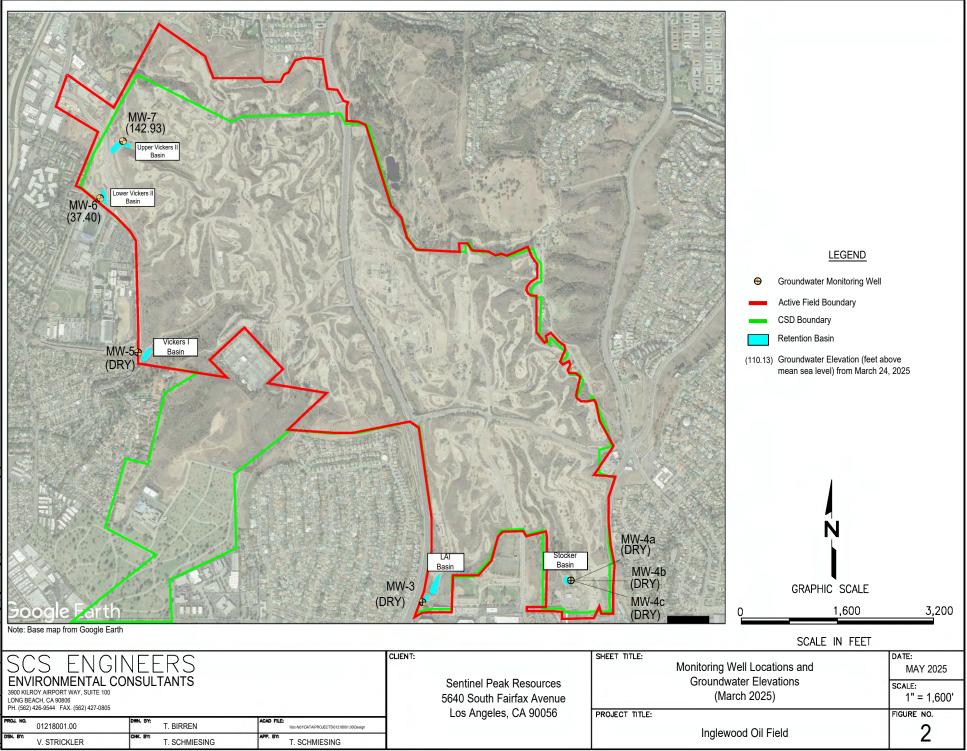
- California American Water, Baldwin Hills Water Quality Report <u>https://amwater.com/caaw/water-quality/water-quality/reports/baldwin-hills</u>
- California Code of Regulations, May 2006. Chapter 15. Domestic Water Quality and Monitoring Regulations. Article 16 Secondary Water Standards.
- California Department of Public Health, November 2008. Maximum Contamination Levels and Regulatory Dates Drinking Water, EPA vs. California. November 2008.
- California Department of Water Resources (DWR), 1961. Bulletin No. 104, Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County, Appendix A, Ground Water Geology.
- Catalyst Environmental Solutions, January 3, 2018. Groundwater Monitoring Program CSD Section E.19, Fourth Quarter 2017 Groundwater Monitoring Results, Inglewood Oil Field.
- Central Basin Municipal Water District. https://www.centralbasin.org
- ENTRIX, Inc., August 2009. Groundwater Monitoring Program and Workplan, Inglewood Oil Field, CSD Condition Number 19.
- Freeport-McMoRan Oil & Gas (FM O&G), June 2013. Stormwater Pollution Prevention Plan for Industrial Activities at the Inglewood Oil Field, June.
- G. Chernoff, W. Bosan, D. Oudiz, 2008. Determination of a Southern California Regional Background Arsenic Concentration in Soil. Department of Toxic Substances Control, Sacramento, California.
- Golden State Water Company, Culver City Water Quality Report. http://www.gswater.com/culvercityccr/#ccr-come-from
- Gronberg, J.M, 2011. Map of Arsenic in Groundwater of the United States. Sacramento, CA. Website accessed July 3, 2013: http://water.usgs.gov/GIS/metadata/usgswrd/XML/arsenic_map.xml#stdorder
- Los Angeles City Stormwater Program, Ballona Creek Watershed. http://www.lastormwater.org/about-us/about-watersheds/ballona-creek/
- Los Angeles City Stormwater Program, Discover Your Watershed Moment. http://www.lastormwater.org/blog/2016/10/discover-your-watershed-moment/

Los Angeles Department of Water and Power Water Quality Report.

https://www.ladwp.com/ladwp/faces/ladwp/aboutus/a-water/a-wwqreport;jsessionid=JQyhZdhV29cXFknBwjVKZ2VFZ1THQlQJNnmDQjHsv2hJqMbhM5VC!-1162054663?_afrLoop=471405028549418&_afrWindowMode=0&_afrWindowId=null#%4 0%3F_afrWindowId%3Dnull%26_afrLoop%3D471405028549418%26_afrWindowMode%3D 0%26_adf.ctrl-state%3Ddz1xpu7ki_4


- Los Angeles County, 2008. Final Environmental Impact Report, Baldwin Hills Community Standards District (FEIR) dated October 2008, Los Angeles County.
- Los Angeles Regional Water Quality Control Board (LARWQCB), April 26, 2001. Order No. 01-054, Waste Discharge Requirements for Stocker Resources, Inc. (Inglewood Oil Field Land Treatment Unit).
- Los Angeles Regional Water Quality Control Board (LARWQCB), February 7, 2013. Order No. R4-2013-23, Waste Discharge Requirements for Plains Exploration & Production Company. (Oil Field and Land Treatment Unit Operations), File No. 00-117.

Santa Monica Basin Groundwater Sustainability Agency. <u>https://santamonicacityca.iqm2.com/Citizens/Detail_LegiFile.aspx?Frame=&MeetingID=</u> <u>1093& MediaPosition=&ID=2296&CssClass=</u>


- Sentinel Peak Resources. October 2021 (Rev 1). Groundwater Monitoring Program and Workplan, Inglewood Oil Field, Baldwin Hills CSD Title 22, Sections 310.050.S and 310.120.M
- SCS Engineers, April 2018. Groundwater Monitoring Program, CSD Section E.19, First Quarter 2018, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, July 2018 (Revised August 14, 2018). Groundwater Monitoring Program, CSD Section E.19, Second Quarter 2018, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, October 2018. Groundwater Monitoring Program, CSD Section E.19, Third Quarter 2018, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, January 2019. Groundwater Monitoring Program, CSD Section E.19, Fourth Quarter 2018, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, April 2019. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Quarter 2019, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, July 2019. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Quarter 2019, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, October 2019. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Third Quarter 2019, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, January 2020. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Fourth Quarter 2019, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, April 2020. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Quarter 2020, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, July 2020. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Quarter 2020, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, October 2020. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Third Quarter 2020, Groundwater Monitoring Results, Inglewood Oil Field.

- SCS Engineers, January 2021. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Fourth Quarter 2020, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, April 2021. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Quarter 2021, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, July 2021. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Quarter 2021, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, February 2022. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Semiannual 2021, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, May 2022. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Semiannual 2022, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, February 2023. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Semiannual 2022, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, April 2023. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Semiannual 2023, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, February 2024. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Semiannual 2023, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, May 2024. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, First Semiannual 2024, Groundwater Monitoring Results, Inglewood Oil Field.
- SCS Engineers, February 2025. Groundwater Monitoring Program, CSD Title 22, Section 310.050.S, Second Semiannual 2024, Groundwater Monitoring Results, Inglewood Oil Field.
- U.S. Environmental Protection Agency (EPA), Protect Sources of Drinking Water. https://www.epa.gov/sourcewaterprotection
- U.S. Environmental Protection Agency (EPA), May 2002. Example Standard Operating Procedure: Standard Operating Procedure for the Standard/Well-Volume Method for Collecting a Ground-Water Sample. ATTACHMENT 4 in Groundwater Sampling Guidelines for Superfund and RCRA Project Managers, pgs. 39-53.
- U.S. Environmental Protection Agency (EPA), 2012. Basic Information about the Arsenic Rule. Washington, D.C. Website accessed July 3, 2012:
- U.S. Geological Survey (USGS), 1976. Recent Surface Movements in the Baldwin Hills, Los Angeles County, California.
- U.S. Geological Survey (USGS), 2003. Geohydrology, Geochemistry, and Ground-Water Simulation- Optimization of the Central and West Coast Basins, Los Angeles, County, California. US Geological Survey, Water Resources Investigations Report 03-4065.

West Basin Municipal Water District. http://www.westbasin.org/water-supplies-groundwater/westcoast-groundwater-basin Figures

SCS ENGI ENVIRONMENTAL CO 3000 KILKY ANPORT WAY, SUITE 100 LONG BECKI, CA 90806	NEERS	CLIENT: Sentinel Peak Resources 5640 South Fairfax Avenue	SHEET TITLE: SITE LOCATION MAP	SCALE: NOT TO SCALE
PH. (562) 426-9544 FAX. (562) 427-0805 PROJ. NO.: 01218001.00	DWN. BY: T. NGUYEN APP. BY: K. GREEN	Los Angeles, CA 90056	PROJECT TITLE: INGLEWOOD OIL FIELD	FIGURE NO.: FIGURE 1

Tables

Monitoring Parameters Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

Parameter	Analytical Method
Parameters Starting November 2021 ***; ***	*
pH	SM-4500HB
Total Dissolved Solids	SM-2540C
TPH-Diesel Range Organics (C10-28)	EPA-8015B
TPH-Diesel Range Organics (C10-28) (Silica Gel Treated)	EPA-8015B
TPH-Oil Range Organics (C28-C40)	EPA-8015B
TPH-Oil Range Organics (C28-C40) (Silica Gel Treated)	EPA-8015B
Total Purgeable Petroleum Hydrocarbons (Gasoline Range Organics)	EPA 8260/Luft-GC/MS
Oil and Grease *	EPA-1664A HEM
Volatile Organic Compounds **	EPA-8260B
Field pH	
Field Specific Conductivity	Calibrated Field Instrument
Field Turbidity	
Field Temperature	

Notes

SM = Standard Method

EPA = Environmental Protection Agency

TPH = Total Petroleum Hydrocarbons

* = Formerly used Method 418.1 for Total Recoverable Petroleum Hydrocarbons is no longer offered by most analytical laboratories in California.

** = Benzene, Toluene, Ethylbenzene, Xylenes, and Methyl tert-butyl ether only.

*** = Sentinel Peak Resources California LLC, October 2021 (Rev 1), Groundwater Monitoring Program and Workplan, Inglewood Oil Field, Baldwin Hills CSD Title 22, Sections 310.050.S and 310.120.M

**** = Starting fourth quarter 2024/November 2024, project laboratory Pace terminated TPH carbon chain breakdown (C8 to C44+) analysis and started reporting total petroleum hydrocarbon (TPH) diesel range as C10-C28 rather than C12-C24. Starting November 2024, to continue to see the majority TPH carbon range, CSD samples are analyzed for TPH gasoline and TPH oil range (C28-C40). Through February 2024, TPH carbon range and TPH diesel were reported.

Groundwater Elevation Data Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

Los Angeles, California									
Well ID	Date	Well Pipe Diameter	Wellhead Elevation	Depth-to-Water	Groundwater Elevation				
	Dute	inches	feet msl	feet btoc	feet msl				
	11/20/2017			Dry					
	2/6/2018			Dry 73.87	123.64				
	5/15/2018 7/25/2018			73.87 Dry					
	12/10/2018			Dry	-				
	2/19/2019			Dry	-				
	5/22/2019			64.49	133.02				
	8/28/2019			74.90	122.61				
	11/13/2019		F	Dry					
	2/5/2020 5/5/2020			Dry					
MW-3	8/25/2020	2	197.51	Dry Dry	-				
10100-5	11/17/2020	2	157.51	Dry					
	3/17/2021			Dry					
	6/22/2021			Dry					
	11/2/2021			Dry					
	3/22/2022			Dry					
	12/6/2022 2/21/2023			Dry Dry					
	11/28/2023			Dry					
	2/22/2024			62.90	134.61				
	11/12/2024			Dry					
	3/24/2025			Dry					
	11/20/2017			Dry					
	2/6/2018			120.15	110.13				
	5/15/2018			119.97	110.31				
	7/25/2018			119.99	110.29				
	12/10/2018			Dry					
	2/19/2019 5/22/2019			Dry Dry					
	8/28/2019			Dry					
	11/13/2019			Dry					
	2/5/2020			Dry					
	5/5/2020			Dry					
MW-4a	8/25/2020	2	230.28	Dry					
	11/17/2020			Dry					
	3/17/2021			Dry					
	6/22/2021			Dry					
	11/2/2021			Dry					
	3/22/2022 12/6/2022			Dry Dry					
	2/21/2023			Dry					
	11/28/2023			Dry					
	2/22/2024			Dry					
	11/12/2024			Dry					
	3/24/2025			Dry					
	11/20/2017			Dry					
	2/6/2018			166.50	63.80				
	5/15/2018			166.55	63.75				
	7/25/2018 12/10/2018			166.57	63.73				
	2/19/2019			Dry Dry					
	5/22/2019			Dry					
	8/28/2019			Dry					
	11/13/2019			Dry					
	2/5/2020			Dry					
	5/5/2020			Dry					
MW-4b	8/25/2020	2	230.30	Dry					
	11/17/2020 3/17/2021			Dry Dry					
	6/22/2021			Dry					
	11/2/2021			Dry					
	3/22/2022			Dry					
	12/6/2022			Dry					
	2/21/2023			Dry					
	11/28/2023 2/22/2024			Dry Dry					
	11/12/2024			Dry Dry					
	3/24/2025			Dry					
	11/20/2017			Dry					
	2/6/2018			139.73	90.90				
	5/15/2018			139.75	90.88				
	7/25/2018			139.76	90.87				
	12/10/2018			Dry					
	2/19/2019			Dry					
	5/22/2019			Dry					
	8/28/2019			139.72	90.91				
	11/13/2019 2/5/2020			Dry					
	5/5/2020			Dry Dry					
MW-4c	8/25/2020	2	230.63	Dry					
10100-40	11/17/2020	-		Dry					
	3/17/2021			Dry					
	6/22/2021			Dry					
	11/2/2021			Dry					
	3/22/2022			Dry					
	12/6/2022			Dry					
	2/21/2023			Dry					
	11/28/2023			Dry					
	2/22/2024 11/12/2024			Dry Dry					
1	3/24/2025			Dry					

Groundwater Elevation Data Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

		Well Pipe	Wellhead		
Well ID	Date	Diameter	Elevation	Depth-to-Water	Groundwater Elevation
		inches	feet msl	feet btoc	feet msl
	11/20/2017 2/6/2018			Dry Dry	-
	5/15/2018			Dry	-
	7/25/2018			Dry	
	12/10/2018			Dry	-
	2/19/2019			Dry	
	5/22/2019 8/28/2019			Dry Dry	
	11/13/2019			Dry	
	2/5/2020			Dry	
	5/5/2020		[Dry	
MW-5	8/25/2020	2	172.82	Dry	
	11/17/2020 3/17/2021			Dry Dry	
	6/22/2021			Dry	-
	11/2/2021			Dry	-
	3/22/2022			Dry	-
	12/6/2022			Dry	-
	2/21/2023 11/28/2023			Dry Dry	
	2/22/2024			Dry	
	11/12/2024			Dry	
	3/24/2025			Dry	
	11/20/2017			62.71	34.91
	2/6/2018		[63.61	34.01
	5/15/2018			63.71	33.91
	7/25/2018 12/10/2018			63.96 64.76	33.66 32.86
	2/19/2019			64.87	32.75
	5/22/2019			61.87	35.75
	8/28/2019			62.11	35.51
	11/13/2019			62.47	35.15
	2/5/2020 5/5/2020			61.22 60.99	36.40 36.63
MW-6	8/25/2020	2	97.62	61.36	36.26
	11/17/2020			61.88	35.74
	3/17/2021			61.98	35.64
	6/22/2021			61.90	35.72
	11/2/2021 3/22/2022			62.70 62.74	34.92 34.88
	12/6/2022			63.35	34.27
	2/21/2023			62.80	34.82
	11/28/2023			60.51	37.11
	2/22/2024			60.18	37.44
	11/12/2024 3/24/2025			60.22 60.22	37.40 37.40
	11/20/2017			46.20	139.98
	2/6/2018			46.20	139.98
	5/15/2018			45.55	140.63
	7/25/2018			46.87	139.31
	12/10/2018		[40.73	145.45
	2/19/2019		405.40	39.41	146.77
	5/22/2019 8/28/2019		186.18	44.70 45.91	141.48 140.27
	11/13/2019			45.31	139.91
	2/5/2020			42.58	143.60
	5/5/2020			43.70	142.48
MW-7	8/25/2020	2		46.12	140.06
	12/29/2020 * 3/17/2021 *		├	46.97 46.10	139.21 141.26
	6/22/2021			47.25	141.26
	11/2/2021			49.10	138.26
	3/22/2022			46.18	141.18
	12/6/2022		187.36	49.92	137.44
	2/21/2023 11/28/2023			45.23 44.87	142.13 142.49
	2/22/2024			40.82	142.49
	-,,,,,				
	11/12/2024			44.83	142.53

NOTES: btoc = below top of casing

msl = mean sea level

NM = not measured

NM = not measured -- = not applicable * Groundwater elevation is estimated. For 12-29-2020, total depth was measured at 54.20 feet below top of casing. The change in total depth is due to the top of the PVC pipe being buried by heavy equipment which likely caused sediment to enter the PVC pipe opening and to deform the upper portions of the pipe. To allow lowering of sample equipment, some PVC pipe was cut off the top of the well. On March 12, 2021 Cascade under SPR oversight redeveloped MW7 and cut about 1 foot PVC to add flush mounted well box (because area will be paved in near future). After redevelopment, Cascade and later SCS measured a total depth below top of PVC casing of 56.40 feet. This well was repaired and redevelopment in March 2021. A new reference point elevation was taken on April 14, 2021 by M. Forkert.

Stabilized Groundwater Field Sampling Parameters Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

Monitoring Well	Sampling	Temperature	рН	Electrical Conductivity	Turbidity	Comments	
	Date	°F	pH units	μS/cm	NTUs	1	
	11/20/2017					Dry	
	2/6/2018					Dry	
	5/15/2018					Not enough water to sample	
	7/25/2018					Dry	
	12/10/2018					Dry	
	2/19/2019					Dry	
	5/22/2019	73.7	7.41	438	15.0	Not enough water to sample	
	8/28/2019					Not enough water to sample	
	11/13/2019					Dry	
	2/5/2020					Dry	
MW-3	5/5/2020					Dry	
IVI W-3	8/25/2020					Dry	
	11/17/2020					Dry	
	3/17/2021					Dry	
	6/22/2021					Dry	
	11/2/2021					Dry	
	3/22/2022					Dry	
	12/6/2022					Dry	
	2/21/2023					Dry	
	11/27/2023					Dry	
	2/22/2024	70.00	6.19	2,130	51	,	
	11/12/2024					Dry	
	3/24/2025					Dry	
						,	
	11/20/2017					Dry	
	2/6/2018					Not enough water to sample	
	5/15/2018					Not enough water to sample	
	7/25/2018					Not enough water to sample	
	12/10/2018					Dry	
	2/19/2019					Dry	
	5/22/2019					Dry	
	8/28/2019					Dry	
	11/13/2019					Dry	
	2/5/2020					Dry	
	5/5/2020					Dry	
MW-4a	8/25/2020					Dry	
	11/17/2020					Dry	
	3/17/2021					Dry	
	6/22/2021					Dry	
	11/2/2021					Dry	
	3/22/2022					Dry	
	12/6/2022					Dry	
	2/21/2023					Dry	
	11/28/2023					Dry	
						,	
	2/22/2024					Dry	
	11/12/2024					Dry	
	3/24/2025					Dry	
	11/20/2017					Dry	
	2/6/2018					Not enough water to sample	
	5/15/2018					Not enough water to sample	
	7/25/2018					Not enough water to sample	
	12/10/2018					Dry	
	2/19/2019					Dry	
	5/22/2019					Dry	
	8/28/2019					Dry	
	11/13/2019					Dry	
	2/5/2020					Dry	
	5/5/2020					Dry	
MW-4b	8/25/2020					Dry	
	11/17/2020					Dry	
	3/17/2021					Dry	
	6/22/2021					Dry	
	11/2/2021					Dry	
	3/22/2022					Dry	
	12/6/2022					Dry	
	2/21/2023			1 1		Dry	
	11/28/2023					Dry	
	2/22/2024					Dry	
	11/12/2024 3/24/2025					Dry Dry	

Stabilized Groundwater Field Sampling Parameters Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

NA	Sampling	Temperature	pН	Electrical	Turbidity	Commente	
Monitoring Well	Date	•F	pH units	Conductivity µS/cm	, NTUs	Comments	
	11/20/2017					Dry	
	2/6/2018					Not enough water to sample	
	5/15/2018					Not enough water to sample	
	7/25/2018					Not enough water to sample	
	12/10/2018 2/19/2019					Dry Dry	
	5/22/2019					Dry	
	8/28/2019					Not enough water to sample	
	11/13/2019					Dry	
	2/5/2020					Dry	
	5/5/2020					Dry	
MW-4c	8/25/2020					Dry	
	11/17/2020					Dry	
	3/17/2021					Dry	
	6/22/2021 11/2/2021					Dry Dry	
	3/22/2022					Dry	
	12/6/2022					Dry	
	2/21/2023					Dry	
	11/28/2023					Dry	
	2/22/2024					Dry	
	11/12/2024					Dry	
	3/24/2025					Dry	
	11/20/2017					Dry	
	2/6/2018					Dry	
	5/15/2018					Dry	
	7/25/2018					Dry Dry	
	2/19/2019					Dry	
	5/22/2019					Dry	
	8/28/2019					Dry	
	11/13/2019					Dry	
	2/5/2020					Dry	
	5/5/2020					Dry	
MW-5	8/25/2020					Dry	
	11/17/2020					Dry	
	3/17/2021 6/22/2021					Dry	
	11/2/2021					Dry Dry	
	3/22/2022					Dry	
	12/6/2022					Dry	
	2/21/2023					Dry	
	11/28/2023					Dry	
	2/22/2024					Dry	
	11/12/2024					Dry	
	3/24/2025					Dry	
	11/20/2017	76.2	6.87	3,005	25		
	2/6/2018	73.9	9.40	489	24.01		
	5/15/2018 7/25/2018	77.4 78.7	6.66 7.19	3,400 2,910	24 15.3		
	12/12/2018	78.7	6.77	3,273	15.3		
	2/19/2019	75.0	7.61	3,370	14.4		
	5/22/2019	72.3	6.48	3,170	8.8		
	8/28/2019	78.46	7.14	2,710	5.2		
	11/13/2019	74.91	6.74	2,810	15.3		
	2/5/2020	73.99	7.15	2,610	6.8		
	5/5/2020	72.01	7.18	2,760	6.31		
MW-6	8/25/2020	72.66	7.26	2,680	9.43		
	11/17/2020	76.51	6.38	1,890	71		
	3/17/2021 6/22/2021	69.08 69.08	6.39 6.53	1,840	68 76		
	6/22/2021 11/2/2021	69.08	6.53	1,900 1,920	76		
	3/22/2021	69.37	6.51	1,870	66		
	12/6/2022	69.15	6.56	1,910	70		
	2/21/2023	69.06	6.59	2,020	68		
	11/28/2023	70.11	6.51	1,970	56		
	2/22/2024	70.02	6.54	1,990	43		
	11/12/2024	70.09	6.57	2,040	38		
	3/24/2025	69.08	6.55	1,970	59		

Stabilized Groundwater Field Sampling Parameters Sentinel Peak Resources - Inglewood Oil Field Los Angeles, California

Monitoring Well	Sampling	Temperature	рН	Electrical Conductivity	Turbidity	Comments
	Date	°F	pH units	μS/cm	NTUs	
	11/20/2017	73.6	7.16	2,780	18	
	2/6/2018	82.6	8.25	57	12.6	
	5/15/2018	78.2	6.97	2,750	93	
	7/25/2018	78.8	7.20	1,650	13.4	
	12/12/2018	70.5	6.19	437	7	
	2/19/2019	74.0	7.49	326	8	
	5/22/2019	70.9	6.22	554	23.8	
	8/28/2019	74.91	7.08	982	6.8	
	11/13/2019	70.43	6.21	4,400	7.2	
	2/5/2020	69.85	6.63	701	8.3	
	5/5/2020	72.84	6.08	712	8.7	
MW-7	8/25/2020	72.03	6.73	811	9.3	
	11/17/2020	66.00	6.78	3,170	23	
	3/17/2021	64.40	6.96	2,780	89	
	6/22/2021	64.45	7.22	2,730	68	
	11/2/2021	69.62	7.28	2,690	64	
	3/22/2022	68.38	7.39	2,680	61	
	12/6/2022	68.13	7.31	2,650	86	
	2/21/2023	70.00	7.22	2,610	83	
	11/28/2023	70.66	7.28	2,650	69	
	2/22/2024	70.29	7.27	2,640	47	
	11/12/2024	70.27	7.29	2,640	39	
	3/24/2025	68.97	7.22	2,450	79	

 $\frac{\text{NOTES:}}{\text{F} = \text{Fahrenheit} (\text{Field Temperature recorded in Celsius and converted to Farhenheit})} \\ \mu S/cm = \text{Microsiemens per centimeter}$

NTU = Nephelometric Turbidity Unit

Groundwater Analytical Results

TPH, VOCs, and TRPH

Sentinel Peak Resources - Inglewood Oil Field

Los Angeles, California

		TOU DOO	TRU DDO		TRPH /								
Sample Location*	Date Collected	TPH-DRO (w/out Silica Gel Filtering) ¹	TPH-DRO (w/Silica Gel Filtering) ¹	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	Oil & Grease				
		mg/l	mg/l	μg/l	μg/l	μg/l	μg/l	μg/I	mg/l				
	2/22/2024	0.52	0.80	<0.5	<0.5	<0.5	<1.0	<0.5	0.81 J				
MW-3	11/12/2024	Dry											
	3/24/2025				Dr	У							
	11/20/2017	0.27	<0.10	<0.5	<0.5	<0.5	<1.0	<2.0	<5.0				
	2/6/2018	0.11 J	0.10 J	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/15/2018	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	7/25/2018	0.24	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	12/12/2018	0.15 J	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	0.89 J				
	2/19/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/22/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	8/28/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/13/2019	0.13 J	0.22	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	2/5/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/5/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
MW-6	8/25/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/17/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	3/17/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	6/22/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/2/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	3/22/2022	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	12/6/2022	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	2/21/2023	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/28/2023	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	2/22/2024	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	1.3 J				
	11/12/2024	<0.036	<0.036	<0.5	<0.5	<0.5	<1.0	<0.5	1.2 J				
	3/24/2025	<0.050	<0.050	<0.5	<0.5	<0.5	<1.0	<0.5	0.80 J				
	11/20/2017	0.12	<0.10	<0.5	<0.5	<0.5	<1.0	<2.0	<5.0				
	2/6/2018	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/16/2018	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	7/25/2018	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	12/12/2018	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<6.1				
	2/19/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/22/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	8/28/2019	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/15/2019	0.11 J	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	2/5/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	5/5/2020	0.13 J	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	1.1 J				
MW-7	8/25/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
-	12/29/2020	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	3/17/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	6/22/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/2/2021	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	3/22/2022	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	12/6/2022	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	2/21/2023	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/28/2023	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	0.75 J				
	2/22/2024	<0.20	<0.20	<0.5	<0.5	<0.5	<1.0	<0.5	<5.0				
	11/12/2024	<0.036	<0.036	<0.5	<0.5	<0.5	<1.0	<0.5	1.5 J				
	3/24/2025	<0.050	<0.050	<0.5	<0.5	<0.5	<1.0	<0.5	0.90 J				
	ry MCL			1.0	150	300	1,750	13					

NOTES:

< = Not detected. The parameter was not detected above the indicated reporting limit
 J = Estimated concentration above the method detection limit but below the reporting limit

J = Estimated concentration above the method detection limit but below the reporting limit µg/l = micrograms per liter. *MW-3, MW-4A, MW-4B, MW-4C, and MW-5 were dry or contained insufficient water for purging or filling of sample containers. TPH-DRO = Diesel Range Organics VOCS = Volatile Organic Compounds VTDC = Method has the detection

MTBE = Methyl tert-butyl ether

TRPH = Total Recoverable Petroleum Hydrocarbons or Total Oil and Grease

Primary MCL = Maximum Contaminant Level, the highest level of a substance that is allowed in California drinking water for health risk reasons.
 - = Not applicable/available
 1 = TPH DRO carbon range was C12-C24 February 2018 through February 2024 and returned to C10-C28 starting November 2024.

TABLE 5 Groundwater Analytical Results Metals, Nitrate, Nitrite, BOD, TDS, and pH Sentinel Peak Resources - Inglewood Oil Field Los Angeles California

	Los Angeles, California												
Comula						Me	als, Dissolved	^	n Tota BOD Dissolv				
Sample Location*	Date Collected	Nitrate as N	Nitrite as N	Arsenic	Barium	Chromium	Cobalt	Copper	Lead	Zinc	BOD	Solids (TDS)	рН
		mg/l	mg/l	μg/l	μg/l	μg/l	μg/I	μg/l	μg/l	μg/l	mg/l	mg/l	pH unit
	2/22/2024											2,000	7.85
Sample Location* MW-3	11/12/2024						Dry						
	3/24/2025						Dry						
	11/20/2017	<0.10	<0.30	<7.0	<100	<10	<50	72	<10	<50	14	1,300	6.8
	2/6/2018	<0.20	<0.05	<50**	160	42	8.6 J	30	9.5 J	76	13	1,900	7.45
	5/15/2018	0.068 J	<0.05	<50**	52	<10	<50	<10	<50***	<10	1.8	1,900	7.53
	7/25/2018	<0.20	0.015 JB	<50**	31	<10	<50	5.6 J	<50***	5.9 J	2.0	1,600	7.55
	12/12/2018	<0.20	<0.050	<50**	52	<10	<50	<10	<50***	<10	<2.0	1,700	7.55
	2/19/2019	<0.20	<0.050	<50**	46	<10	<50	<10	<50***	38	2.0	1,900	7.34
	5/22/2019	<0.20	<0.050	<50**	53	<10	<50	<10	<50***	<10	<1.5	1,800	7.54
	8/28/2019	<0.20	<0.050	<50**/4.1	35	<10	<50	<10	<50***	25	<1.5	1,500	7.74
	11/13/2019	<0.50	<0.050	17 J/5.0	48	<10	<50	3.1 J	<50***	<10	2.8	1,700	7.65
	2/5/2020	<0.20	<0.050	13 J/3.3	52	<10	<50	2.1 J	8.8 J	6.3 J	<1.5	1,800	7.14
	5/5/2020	<0.10	<0.050	<50**/4.2	37	1.2 J	<50	5.5 J	<50***	20	4.1	1,300	7.63
	8/25/2020	<0.20	<0.050	<50**/4.8	21	<10	<50	1.8 J	9.4 J	<10	3.9	950	7.74
14144-0	11/17/2020	<0.20	<0.050	<50**/4.2	24	<10	<50	2.21	<50***	<10	1.8	1,000	7.61
	3/17/2020	<0.20	<0.050	<50 /4.2	24	<10	<50	<10	5.9 J	14	4.5	1,300	7.47
	6/22/2021	<0.20	<0.050	20 J/5.6	31	<10	<50	1.1 J	4.6 J	<10	4.5	1,400	7.47
		<0.50	<0.050	20 3/ 5.6		<10			4.6 J	<10	3.8		8.23
	11/2/2021											1,100	
	3/22/2022											1,600	7.40
	12/6/2022											1,400	7.25
	2/21/2023											1,500	7.36
	11/28/2023											1,100	7.44
	2/22/2024											990	7.37
	11/12/2024											1,100	7.37
	3/24/2025											1,700	7.20
	11/20/2017	5.0	<0.30	<7.0	<100	<10	<50	78	<10	<50	<5.0	1,400	6.4
	2/6/2018	4.3	<0.05	<50**	98	38	11 J	15	6.1 J	54	<1.5	330	6.66
	5/16/2018	5.8	0.023 J	<50**	36	<10	1.7 J	<10	<50***	<10	<1.5	1,600	7.35
	7/25/2018	6.1	0.028 JB	14 J	36	2.1 JB	2.0 J	2.3 J	<50***	<10	<1.5	1,600	7.41
	12/12/2018	3.1	<0.050	<50**	7.7 J	2.7 J	<50	<10	<50***	<10	<1.5	290	6.78
	2/19/2019	1.0	<0.050	<50**	9.7 J	1.2 J	<50	2.2 J	<50***	43	3.5	210	6.83
	5/22/2019	1.1	0.015 J	<50**	9.6 J	<10	<50	2.9 J	<50***	<10	<1.5	330	7.15
	8/28/2019	2.7	<0.050	<50**/3.0	9.9 J	<10	<50	1.6 JB	<50***	24	2.0	580	7.62
	11/15/2019	4.1	0.016 J	<50**/6.4	30	<10	<50	4.9 J	5.9 J	<10	<1.5	1,600	7.04
	2/5/2020	0.59	<0.050	<50**/1.3 J	16	<10	<50	2.7 J	3.9 J	6.2 J	<1.5	520	6.82
	5/5/2020	1.6	<0.050	<50**/1.4 J	17	<10	<50	2.4 J	<50***	7.2 J	3.6	530	6.92
MW-7	8/25/2020	3.6	<0.050	<50**/4.1	20	<10	<50	3.9 J	17 J	7.4 J	<1.5	920	7.33
	12/29/2020	2.4	0.032 J	21 J/8.3	74	<10	<50	3.4 J	10 J	<10	2.3	1,800	7.17
	3/17/2021	5.4	<0.050	<50**/3.6	87	2.1 J	<50	3.8 J	10 J	20	1.5	1,400	6.94
	6/22/2021	5.3	0.016 J	<50**/7.6	70	6.0 J	4.6 J	7.2 J	8.8 J	18	<1.5	1,600	7.13
	11/2/2021											2,000	7.46
	3/22/2022											1,600	7.24
	12/6/2022											1,900	7.24
	2/21/2023											2,000	7.1
	11/28/2023												8.08
	, ,											1,900	
	2/22/2024											1,100	7.15
	11/12/2024											2,000	7.06
	3/24/2025											2,400	6.99

12-2020, 3-2021, 6-2021). For 8-2019, 11-2019, 2-2020, 5-2020, 5-2020, 12-2020, 3-2021, and 6-2021 arsenic was also analyzed by Method 6020 with a reporting limit of 2.0 ug/l and method detection limit is 0.3 ug/l.
*** Lead reporting limit is 0.3 ug/l.
*** Lead reporting limit is 50 µg/l and method detection limit is 3.5 µg/l.
Primary MCL = Primary Primary Primary Primary Primary Primary Primary Primary P

Appendix A

Groundwater Monitoring Sampling Records

Sample/Well ID: _Mw	1-3	Project #	01218001.0	0 77	
Facility Name:	glemond O.	il field	Date	03/24/25	
Well Depth: 15.0	_ Well Diameter:_	2"	Casing Material.:	PVC	
Depth to Water:	¥	Free F	Product (Y/N):	ND	_
Volume Of Water per V					
Sampler Name(s):	Anthony Bu	Mencos			
Sampling Equipment:	yater level	Helesbing	Material:	Pump set a	t NA ft.
Weather Conditions:					
NOTES: This LU	ell is Bay a	nd did.	Not Sample	ê	
TIME	<u> </u>				
Volume Purged	* .		<u> </u>		
Water Level (only if r	neasured during p	ourge)			
Purge Rate	<u>e nan a</u>	a			
Temp. (₀C)	<u> </u>	3	-	, 	
DO (mg/l)		-/			
EC (mS/cm)	/	/		· · ·	
РН		P			
ORP (mV)	<u>/.</u>				
Turbidity (NTL)			<u> </u>		
CO2					
Water Color /Tint:			Cloudy (Y/N):	NA	
Any Suspended Sedim					
Field Parameters meas					
Sampled Time:			method:		
Number of Bottles;					

Sample/Well ID: MW-4-A Project #	01218001-00 -77
Facility Name: Inglewood Oil Field	Date 03 / 74/ 25
Well Depth: 120.2 Well Diameter: 2	
Depth to Water: Free	Product (Y/N):
Volume Of Water per Well Volume: NA	
Sampler Name(s): Muthony Burrouces	
Sampling Equipment: Mater Level Motor	Material: <u>NA</u> Pump set at <u>NA</u> ft.
Weather Conditions:	••
NOTES: This well is dry and Not.	Sample
TIME	
Volume Purged	
Water Level (only if measured during purge)	
Durra Pata	
Purge Rate	
Temp. (oC)	
DO (mg/l)	
EC (mS/cm)	· · ·
РН	
ORP (mV)	
Turbidity (NTL)	
CO2	
Water Color /Tint: NA	Cloudy (Y/N):
Any Suspended Sediment: NA	
Field Parameters measured with: NA	
Sampled Time: NA Sample collection	a method: NA
Number of Bottles; NA	

Sample/Well ID:	W-48	Project # 01	218001.0	0 77	
Facility Name:	gelunsed Oil	E Freld	Date:	03/24/25	<u>.</u>
	Well Diameter:	A.8	ing Material.:_	PVC	
Depth to Water:	ey	Free Produ	uct (Y/N):	Nono	
	r Well Volume: NA				
Sampler Name(s):	Anny But	nues			
Sampling Equipment	Water Tenet	MEEping Mate	erial: <u>NA</u>	Pump s	et at 🔼 ft.
Weather Conditions:					
NOTES: This	wall is Day an	d was n	not Samp	NG .	
TIME					/
Volume Purged	5° .				
	f measured during put	rae)		/	
Purge Rate	· · · · ·	·		<u> </u>	
Temp. (₀C)	-	·	\square		
DO (mg/l)					
EC (mS/cm)	/				
РН		•			
ORP (mV)					
Turbidity (NTU)	·			-	
CO2					
Water Color /Tint:			oudy (Y/N):	A/A	
		Ch	ouuy (17N)		
Any Suspended Sedir	asured with: NA				
Sampled Time:		collection met			
Number of Bottles;		CONCCUON HIEU			· · · · · · · · · · · · · · · · · · ·
Number of Dottles;					

OLOGITER OF THE OTHER OFTEN OTHER OFT	GROUNDWA	TER	SAMPLING	RECORD
--	----------	-----	----------	--------

Sample/Well ID: MW-4C	Project # 01218001.00 T7
Facility Name: Inglemend	Ou Fuld Date: 03 / 24 / 25
Weil Depth:_140.0 Well Diame	eter: 2" Casing Material.: PVC
Depth to Water:	Free Product (Y/N):
Volume Of Water per Well Volume:_	
Sampler Name(s): Authory	
Sampling Equipment	Les Tubing Material: NA Pump set at NA
Weather Conditions:	
NOTES: This well is de	y and was not sample .
TIME '	
Volume Purged	
Water Level (only if measured du	
Purge Rate	
Temp. (₀C)	·
DO (mg/l)	
EC (mS/cm)	/
РН	· · · · · · · · · · · · · · · · · · ·
ORP (mV)	•
Turbidity (NTL)	
CO2	
Water Color /Tint:	Cloudy (Y/N): NA
Any Suspended Sediment:	
Field Parameters measured with: N	

,

GROUNDWATER SAMPLING RE	CORD
Sample/Well ID: MW-5	Project # 01218001.00 T7
Facility Name: Inglamod	Del Field Date: 03/24 125
Well Depth: 144.3 Well Diameter	er: 2" Casing Material.: Ro
Depth to Water: DRy	Free Product (Y/N):
Volume Of Water per Well Volume:	
Sampler Name(s): Anthrong	
Sampling Equipment: Mathee	e Mething Material: NA Pump set at NA ft.
Weather Conditions:	
NOTES: This well is dry	and was Not Sample.
TIME	
Volume Purged	<u> </u>
Water Level (only if measured durin	ng purge)
Purge Rate	
Temp. (0C)	<u> </u>
DO (mg/l)	_/
EC (mS/cm)	/·
РН	<u> </u>
ORP (mV)	·
Turbidity (NTU)	
CO2	
Water Color /Tint: NA	Cloudy (Y/N):
Any Suspended Sediment: NA	
Field Parameters measured with:	
	ample collection method:
Number of Bottles;	
	3/

-21

Sample/Well ID: MV	4-6	Project #0	0/218001-0	TOT	
Facility Name:	glemand	Oil Fuld	Da	te: 03 / 24 2	5
Well Depth: 73.6	Well Diamete	er: 2"	Casing Materia	PVC	
Depth to Water: 60	. 22	Free F	Product (Y/N):	NO	
Volume Of Water per V	1	-			
Sampler Name(s):	Innony 1	Buneaues			
Sampling Equipment:_	red with 10	Tubing	Material: Ally	Telle Pump	set at 6 ft.
Weather Conditions:					
NOTES: Clean			at time	of sample	4
TIME	1048	1051	1054	1057	1100
Volume Purged	Sooml	1000 ML	1750 mL	1500 mL	3530 mL
Water Level (only if r	measured durin	ng purge)			
Purge Rate	250 ml/m	- 150 Map	nin 250 m	L/man .	250 ml fine
Temp. (₀C)	22.45	21.90	20.64	20.62	20.60
DO (mg/l)	3.41	3.38	3.35	3.33	3.31
EC (mS/cm)	2.11	2.09	2.07	2.00	1.97
РН	6.64	6.62	6.59	6.57	6.55
ORP (mV)	- /55	- 156 -	157	- 158 -	159
Turbidity (NTU)	69	66	62	60	59
CO2					
Water Color /Tint:	lear		Cloudy (Y/N):	None	
Any Suspended Sedim	ent: Nine				
Field Parameters meas				-	
Sampled Time: 1101	<u> </u>	ample collection	method: 🗾	shine, QE) Sample PRO
Number of Bottles:					

GROUNDWATER SAMPLING RECORD	

.

.

Well Depth: 66.8	3 Well Diamet	er:	Casing Material	PYC	
Depth to Water:	-43	Free F	roduct (Y/N):	None	
Volume Of Water per	r Well Volume:				
Sampler Name(s): _	Arothony B	unous			
QED Sample Sampling Equipment	Waterlevel	Tubing	Material: Poly	Teffer Pump	set at <u>52.0.</u> ft.
Weather Conditions:	······································				
NOTES: Water	is clear an	d Odorless.	8 the time	of sample	ng
		٢			
TIME	12.52	1155	1258	1301	1304
Volume Purged	750 M	1500 MIL	2250m	3000m	1 3150 M
Water Level (only it	f measured duri	ng purge)			
Purge Rate	150mm /m	in 250 min	150 mb/m	in LSDynla	11 258 mL
Temp. (₀C)	21.43	20.91		20.56	20.54
DO (mg/l)	1.70	1.69		1.67	1.66
EĊ (mS/cm)	2.57	2.54	2.51		2.45
PH	7.30	7.28	7.26		2.22
ORP (mV)	- 123	-124	- 125	- 126	- 127
Turbidity (NTU)	84	82	81	80	79
CO2				<u> </u>	
Water Color /Tint:	least		Cloudy (Y/N);	No	
Any Suspended Sedir	ment: _ Non @				
			2.		

- .

-

Appendix B

Groundwater Laboratory Analytical Report and Chain-of-Custody Documentation

Date of Report: 04/10/2025

Tina Schmiesing

SCS Engineers - Long Beach 3900 Kilroy Airport Way, Suite 100 Long Beach, CA 90806

Client Project:01218001.00Pace Project:Inglewood Oil FieldPace Work Order:2504779Invoice ID:B514729

Enclosed are the results of analyses for samples received by the laboratory on 3/24/2025. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Vanessa Sandoval Client Service Rep

ver Bennett

Steven Bennett Operations Manager

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Table of Contents

Sample Information
Chain of Custody and Cooler Receipt form
Laboratory / Client Sample Cross Reference 5
Sample Results
2504779-01 - MW-6
Volatile Organic Analysis (EPA Method 8260B)6
Purgeable Aromatics and Total Petroleum Hydrocarbons7
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)
Total Petroleum Hydrocarbons9
EPA Method 166410
Water Analysis (General Chemistry) 11
2504779-02 - MW-7
Volatile Organic Analysis (EPA Method 8260B) 12
Purgeable Aromatics and Total Petroleum Hydrocarbons
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)
Total Petroleum Hydrocarbons15
EPA Method 166416
Water Analysis (General Chemistry) 17
2504779-03 - QCTB
Volatile Organic Analysis (EPA Method 8260B) 18
2504779-04 - QCEB
Volatile Organic Analysis (EPA Method 8260B) 19
Quality Control Reports
Volatile Organic Analysis (EPA Method 8260B)
Method Blank Analysis
Laboratory Control Sample
Precision and Accuracy
Purgeable Aromatics and Total Petroleum Hydrocarbons
Method Blank Analysis
Laboratory Control Sample 24
Precision and Accuracy
Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)
Method Blank Analysis
Laboratory Control Sample 27
Total Petroleum Hydrocarbons
Method Blank Analysis
Laboratory Control Sample
EPA Method 1664
Method Blank Analysis
Laboratory Control Sample
Water Analysis (General Chemistry)
Method Blank Analysis
Laboratory Control Sample
Precision and Accuracy
Notes
Notes and Definitions

Pace Analyt 4100 Atlas C Bakersfield, 25-04776	Ct. , CA 93308														C	hair	n of	Cu				mple A 18	£	2504	779				
Client: SCS	ENGINEERS		Cor	ntact	:		Tina	Sch	mie	sing										Pł	none No	b .	56	62-426-9					
	ilroy Airport Way, Su wood Oil MW 3 6 001.00		Tur	n Are	ound	I Tin	ne:	S	tate	: CA		<mark>X R</mark> a	outine	9080	3-5 (Day ush	4	8 Hou Rus	sh		Hour Rush	May Appty	-	Includ	de QC	Data P FAX Email Sta	Results:	Yes	No
Name: A				TDS Oil & Grease	EPA 8260 VOCs (BTEXM)	DRO (C10-C28)	DRO SGT (C10-C28)	0R0 (C28-C40) 0P0 (C28-C40) SGT	TPH GRO EPA 8260/Luft-GC/MS				quest	eu						G M S S	W = Drinki W = Waste W = Groun W = Monito = Soli W = Storm = Miscella	water dwater oring Well water				Not			
Sample ID MW-3	Date	Time	E X	× >		×	X	5 C X)			-	+				-		-		+			+			-			-
MW-6	3-24-2	nor	X	x>	(X	X	X	x >	(X															-1					
MW-7	1	1305	X	X>	(X	X	X	x >	(X															-2					
QCTB		0600			X									1	CH	KAY	-	Die						-3					
QCEB		1115			×										M		ş	24 1	SUE					4					
Relinquished By (sign) Print	Name / C	omp	any	-			Date	e / Ti	me			-		Receiv	ed By	(Sign	1)					Print	Name	Con	npany			
Profilioner Busie	Carcel	3 loren		-	es		-7	-	-	_	440		GO	he	5	Th	1	24h	9	41	Pa	ce ce	2	Co	C	Ble	ente	9	_
1		ties.		net			- 4		_		40	_			1						1-6-5	/	1.						_
(For Lab Use Only) Sample(s) Submitted Custody Seal(s		No	>	N/	A					Blan	0	с				Lab No	otes					Lab	No				of		_

ENVIRONMENTAL SCIENCES

ace Analytical®

Report ID: 1001584526

Page 3 of 35

Chain of Custody and Cooler Receipt Form for 2504779 Page 2 of 2

Submission #: <u> </u>	ORMATION	nd Delive fy)	ry 🗆	Ice Che	stor	CONTAI	Box 🗆	F	REE LIG ES Ø N (₩/I	NUID 10. D S
Refrigerant: Ice Z Blue Ice	None [⊐ Oth	er 🗆	Commen	fe:					
Custody Seals Ice Chest	Containe	ers 🗆 🗄		Comm						
All samples received? Yes I No I	All samples of		intact?	Yes 🖉 No		Descrip	tion(s) ma	tch COC? Ye	es 🖉 No	
	Emissivity: 0.							1	3/24/	
COC Received	Temperature:						 °C		e <u>57 L9 (</u> 1 nit <u>M/* (</u>	
1						E NUMBERS				
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	9	10
OT PE UNPRES	G	G		1		+				1
402/802/1602 PE UNPRES							1			
loz Cr ⁴⁴										
T INORGANIC CHEMICAL METALS		1								
NORGANIC CHEMICAL METALS 402 / 802 /	16oz					1				
PT CYANIDE										
T NITROGEN FORMS						1				
PT TOTAL SULFIDE			1	1						
202. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON							1			
PT CHEMICAL OXYGEN DEMAND										
PTA PHENOLICS		1								
10ml VOA VIAL TRAVEL BLANK			A			1				
40ml VOA VIAL	A-F	A-F		A-C						
OT EPA 1664B						1				
DEG OCE	HI	HI								
RADIOLOGICAL										
BACTERIOLOGICAL										
40 ml VOA VIAL- 504										
QT EPA 508/608.3/8081A										
QT EPA 515.1/8151A			1							
QT EPA 525.2			1							1
OT EPA 525.2 TRAVEL BLANK										
40ml EPA 547			i	1						
40ml EPA 531.1		1	1	1						1
80z EPA 548.1		1	1	1						1
OT EPA 549.2		1		11		1			,	1
OT EPA 8015M		11				1		+		
QT EPA 8015M QT EPA 8270C		11						+		
802/1602/3202 AMBER 402	J,K	J.K		1			<u> </u>	1		
80z / 160z / 320z AMBER 100		12-1-1		1				1		
SOIL SLEEVE	_		l				1			
PCB VIAL		1								
PLASTIC BAG										
TEDLAR BAG										
FERROUS IRON		1	1	1						
ENCORE		1				1				
SMART KIT			·							
SUMMA CANISTER				/						<u> </u>

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. Pace Analytical assumes no responsibility for report alteration, separation, detachment or third party interpretation. 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.pacelabs.com

Г

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informati	on		
2504779-01	COC Number:		Receive Date:	03/24/2025 18:45
	Project Number:		Sampling Date:	03/24/2025 11:01
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-6	Lab Matrix:	Water
	Sampled By:	Anthony Burrowes	Sample Type:	Water
2504779-02	COC Number:		Receive Date:	03/24/2025 18:45
	Project Number:		Sampling Date:	03/24/2025 13:05
	Sampling Location:		Sample Depth:	
	Sampling Point:	MW-7	Lab Matrix:	Water
	Sampled By:	Anthony Burrowes	Sample Type:	Water
2504779-03	COC Number:		Receive Date:	03/24/2025 18:45
	Project Number:		Sampling Date:	03/24/2025 06:00
	Sampling Location:		Sample Depth:	
	Sampling Point:	QCTB	Lab Matrix:	Water
	Sampled By:	Anthony Burrowes	Sample Type:	Blank Water
2504779-04	COC Number:		Receive Date:	03/24/2025 18:45
	Project Number:		Sampling Date:	03/24/2025 11:15
	Sampling Location:		Sample Depth:	
	Sampling Point:	QCEB	Lab Matrix:	Water
	Sampled By:	Anthony Burrowes	Sample Type:	Equipment Blank

٦

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Pace Sample ID: 2504779-01	Client Sample	e Name:	MW-6, 3/2	MW-6, 3/24/2025 11:01:00AM, Anthony Burrowes									
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN					
Benzene	ND	ug/L	0.50	0.083	EPA-8260B	ND		1					
Ethylbenzene	ND	ug/L	0.50	0.098	EPA-8260B	ND		1					
Methyl t-butyl ether	ND	ug/L	0.50	0.11	EPA-8260B	ND		1					
Toluene	ND	ug/L	0.50	0.093	EPA-8260B	ND		1					
Total Xylenes	ND	ug/L	1.0	0.36	EPA-8260B	ND		1					
p- & m-Xylenes	ND	ug/L	0.50	0.28	EPA-8260B	ND		1					
o-Xylene	ND	ug/L	0.50	0.082	EPA-8260B	ND		1					
Total Purgeable Petroleum Hydrocarbons	ND	ug/L	50	7.2	Luft-GC/MS	ND		1					
1,2-Dichloroethane-d4 (Surrogate)	109	%	75 - 125 (LC	L - UCL)	EPA-8260B			1					
Toluene-d8 (Surrogate)	102	%	80 - 120 (LC	L - UCL)	EPA-8260B			1					
4-Bromofluorobenzene (Surrogate)	95.0	%	80 - 120 (LC	L - UCL)	EPA-8260B			1					

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8260B	03/25/25 09:49	03/26/25 00:28	AGB	MS-V21	1	B209049	EPA 5030 Water MS

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons

Pace Sample ID:	2504779-01	Client Sampl	e Name:	MW-6, 3/2	24/2025 1 ⁻	1:01:00AM, Antho			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50	17	EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	80.6	%	70 - 130 (LC	L - UCL)	EPA-8015B			1

			Run			QC					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method			
1	EPA-8015B	03/27/25 10:54	04/01/25 18:12	TDH	GC-V9	1	B209205	EPA 5030 Water GC			

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Pace Sample ID:	2504779-01	Client Sampl	e Name:	MW-6, 3/2	4/2025 1 ⁻	1:01:00AM, Antho	ony Burrowes		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
TPH - Diesel Range C C28)	organics (C10 -	ND	ug/L	50	16	EPA-8015B	ND	A52	1
TPH - Oil Range Orga	nics (C28 - C40)	ND	ug/L	100	25	EPA-8015B	ND	A57	1
Tetracosane (Surrogat	te)	77.3	%	40 - 130 (LC	UCL)	EPA-8015B			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8015B	03/31/25 21:30	04/04/25 05:13	BUP	GC-19	1	B209423	EPA 3510C/SG

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Total Petroleum Hydrocarbons

Pace Sample ID:	2504779-01	Client Sampl	e Name:	MW-6, 3/2	MW-6, 3/24/2025 11:01:00AM, Anthony Burrowes						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN		
TPH - Diesel Range C C28)	rganics (C10 -	ND	ug/L	50	16	EPA-8015B	ND		1		
TPH - Oil Range Orga	nics (C28 - C40)	ND	ug/L	100	25	EPA-8015B	ND		1		
Tetracosane (Surrogat	e)	80.9	%	40 - 130 (LC	L - UCL)	EPA-8015B			1		

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8015B	03/31/25 09:40	04/01/25 06:10	BUP	GC-19	1	B209321	EPA 3510C

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

EPA Method 1664

Pace Sample ID:	2504779-01	Client Sample	e Name:	MW-6, 3/2	24/2025 11	:01:00AM, Anthon			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Oil and Grease		0.80	mg/L	5.0	0.74	EPA-1664B HEM	ND	J	1

		Run					QC				
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method			
1	EPA-1664B HEM	03/28/25 08:00	03/31/25 15:34	HMC	MAN-SV	1	B208998	EPA 1664/HEM			

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Water Analysis (General Chemistry)

Pace Sample ID:	2504779-01	Client Samp	le Name:	MW-6, 3/2	24/2025 11	1:01:00AM, Antho			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
рН		7.20	pH Units	0.05	0.05	SM-4500HB		S05	1
Total Dissolved Solids	s @ 180 C	1700	mg/L	50	25	SM-2540C	85	A10	2

			Run			QC				
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method		
1	SM-4500HB	03/27/25 07:00	03/27/25 09:11	ELR	MET-1	1	B208008	No Prep		
2	SM-2540C	03/27/25 14:00	03/27/25 14:00	RLH	MANUAL	5	B209209	No Prep		

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Pace Sample ID: 2504779-02	Client Sample	e Name:	MW-7, 3/2	24/2025 1	:05:00PM, Antho	ny Burrowes		
Constituent	Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene	ND	ug/L	0.50	0.083	EPA-8260B	ND		1
Ethylbenzene	ND	ug/L	0.50	0.098	EPA-8260B	ND		1
Methyl t-butyl ether	ND	ug/L	0.50	0.11	EPA-8260B	ND		1
Toluene	ND	ug/L	0.50	0.093	EPA-8260B	ND		1
Total Xylenes	ND	ug/L	1.0	0.36	EPA-8260B	ND		1
p- & m-Xylenes	ND	ug/L	0.50	0.28	EPA-8260B	ND		1
o-Xylene	ND	ug/L	0.50	0.082	EPA-8260B	ND		1
Total Purgeable Petroleum Hydrocarbons	23	ug/L	50	7.2	Luft-GC/MS	ND	J	1
1,2-Dichloroethane-d4 (Surrogate)	107	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)	99.6	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	101	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8260B	03/25/25 09:49	03/26/25 16:54	AGB	MS-V21	1	B209049	EPA 5030 Water MS

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons

Pace Sample ID: 2504779-02 Client Sample Name:				MW-7, 3/24/2025 1:05:00PM, Anthony Burrowes						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN	
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50	17	EPA-8015B	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	74.6	%	70 - 130 (LC	L - UCL)	EPA-8015B			1	

			Run				QC				
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method			
1	EPA-8015B	03/27/25 10:54	04/01/25 18:42	TDH	GC-V9	1	B209205	EPA 5030 Water GC			

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Pace Sample ID:	2504779-02	Client Sampl	e Name:	MW-7, 3/2	MW-7, 3/24/2025 1:05:00PM, Anthony Burrowes				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
TPH - Diesel Range C C28)	organics (C10 -	ND	ug/L	50	16	EPA-8015B	ND		1
TPH - Oil Range Orga	nics (C28 - C40)	ND	ug/L	100	25	EPA-8015B	ND		1
Tetracosane (Surrogat	te)	48.6	%	40 - 130 (LC	L - UCL)	EPA-8015B			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8015B	03/31/25 21:30	04/02/25 05:48	BUP	GC-2	1	B209423	EPA 3510C/SG

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Total Petroleum Hydrocarbons

Pace Sample ID:	Pace Sample ID: 2504779-02 Client Sample Name: MW-7, 3/24/2025 1:05:00PM, Anthony Burrowe					ny Burrowes			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
TPH - Diesel Range C C28)	rganics (C10 -	ND	ug/L	50	16	EPA-8015B	ND		1
TPH - Oil Range Orga	nics (C28 - C40)	ND	ug/L	100	25	EPA-8015B	ND		1
Tetracosane (Surrogat	e)	80.1	%	40 - 130 (LC	L - UCL)	EPA-8015B			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8015B	03/31/25 09:40	04/01/25 06:28	BUP	GC-19	1	B209321	EPA 3510C

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

EPA Method 1664

Pace Sample ID:	2504779-02	Client Sample	e Name:	MW-7, 3/24/2025 1:05:00PM, Anthony Burrowes					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Oil and Grease		0.90	mg/L	5.0	0.74	EPA-1664B HEM	ND	J	1

			QC						
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method	
1	EPA-1664B HEM	03/28/25 08:00	03/31/25 15:34	HMC	MAN-SV	1	B208998	EPA 1664/HEM	

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Water Analysis (General Chemistry)

Pace Sample ID:	2504779-02	Client Samp	le Name:	MW-7, 3/2	MW-7, 3/24/2025 1:05:00PM, Anthony Burrowes				
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
рН		6.99	pH Units	0.05	0.05	SM-4500HB		S05	1
Total Dissolved Solids	s @ 180 C	2400	mg/L	100	50	SM-2540C	170	A10	2

			Run				QC	
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	SM-4500HB	03/27/25 07:00	03/27/25 09:17	ELR	MET-1	1	B208008	No Prep
2	SM-2540C	03/27/25 14:00	03/27/25 14:00	RLH	MANUAL	10	B209209	No Prep

Reported: 04/10/2025 14:00 Project: Inglewood Oil Field Project Number: 01218001.00 Project Manager: Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Lab Quals	DCN 1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

			Run		QC				
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method	
1	EPA-8260B	03/25/25 09:49	03/26/25 15:38	AGB	MS-V21	1	B209049	EPA 5030 Water MS	

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Pace Sample ID:	2504779-04	Client Sampl	e Name:	QCEB, 3/2	24/2025 1	1:15:00AM, Antho	ony Burrowes		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	DCN
Benzene		ND	ug/L	0.50	0.083	EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50	0.098	EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	0.11	EPA-8260B	ND		1
Toluene		ND	ug/L	0.50	0.093	EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0	0.36	EPA-8260B	ND		1
p- & m-Xylenes		ND	ug/L	0.50	0.28	EPA-8260B	ND		1
o-Xylene		ND	ug/L	0.50	0.082	EPA-8260B	ND		1
Total Purgeable Petrole Hydrocarbons	um	7.2	ug/L	50	7.2	Luft-GC/MS	ND	J	1
1,2-Dichloroethane-d4 (S	Surrogate)	98.2	%	75 - 125 (LC	L - UCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		98.7	%	80 - 120 (LC	L - UCL)	EPA-8260B			1
4-Bromofluorobenzene (Surrogate)	89.5	%	80 - 120 (LC	L - UCL)	EPA-8260B			1

			Run					
DCN	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	Prep Method
1	EPA-8260B	03/25/25 09:49	03/27/25 04:40	AGB	MS-V21	1	B209049	EPA 5030 Water MS

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

		•					
Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals	Run #
QC Batch ID: B209049							
Benzene	B209049-BLK1	ND	ug/L	0.50	0.083		1
Ethylbenzene	B209049-BLK1	ND	ug/L	0.50	0.098		1
Methyl t-butyl ether	B209049-BLK1	ND	ug/L	0.50	0.11		1
Toluene	B209049-BLK1	ND	ug/L	0.50	0.093		1
Total Xylenes	B209049-BLK1	ND	ug/L	1.0	0.36		1
p- & m-Xylenes	B209049-BLK1	ND	ug/L	0.50	0.28		1
o-Xylene	B209049-BLK1	ND	ug/L	0.50	0.082		1
Total Purgeable Petroleum Hydrocarbons	B209049-BLK1	ND	ug/L	50	7.2		2
1,2-Dichloroethane-d4 (Surrogate)	B209049-BLK1	105	%	75 - 12	5 (LCL - UCL)		1
Toluene-d8 (Surrogate)	B209049-BLK1	100	%	80 - 12	0 (LCL - UCL)		1
4-Bromofluorobenzene (Surrogate)	B209049-BLK1	86.6	%	80 - 12	0 (LCL - UCL)		1

					Run				
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B209049-BLK1	PB	EPA-8260B	03/25/25	03/26/25 00:02	AGB	MS-V21	1	
2	B209049-BLK1	PB	Luft-GC/MS	03/25/25	03/26/25 00:02	AGB	MS-V21	1	

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

								Control I	imits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	Run #
QC Batch ID: B209049											
Benzene	B209049-BS1	LCS	24.500	25.000	ug/L	98.0		70 - 130			1
Toluene	B209049-BS1	LCS	24.580	25.000	ug/L	98.3		70 - 130			1
1,2-Dichloroethane-d4 (Surrogate)	B209049-BS1	LCS	9.4000	10.000	ug/L	94.0		75 - 125			1
Toluene-d8 (Surrogate)	B209049-BS1	LCS	10.200	10.000	ug/L	102		80 - 120			1
4-Bromofluorobenzene (Surrogate)	B209049-BS1	LCS	10.530	10.000	ug/L	105		80 - 120			1

					Run				
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B209049-BS1	LCS	EPA-8260B	03/25/25	03/26/25 00:53	AGB	MS-V21	1	

Page 21 of 35

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals R#
QC Batch ID: B209049	Use	d client samp	ole: Y - Des	cription: MV	V-6, 03/24/2	025 11:01					
Benzene	MS	2504779-01	ND	25.280	25.000	ug/L		101		70 - 130	1
	MSD	2504779-01	ND	24.470	25.000	ug/L	3.3	97.9	20	70 - 130	2
Toluene	MS	2504779-01	ND	25.380	25.000	ug/L		102		70 - 130	1
	MSD	2504779-01	ND	24.640	25.000	ug/L	3.0	98.6	20	70 - 130	2
1,2-Dichloroethane-d4 (Surrogate)	MS	2504779-01	ND	9.7300	10.000	ug/L		97.3		75 - 125	1
	MSD	2504779-01	ND	9.6300	10.000	ug/L	1.0	96.3		75 - 125	2
Toluene-d8 (Surrogate)	MS	2504779-01	ND	10.210	10.000	ug/L		102		80 - 120	1
	MSD	2504779-01	ND	10.030	10.000	ug/L	1.8	100		80 - 120	2
4-Bromofluorobenzene (Surrogate)	MS	2504779-01	ND	10.500	10.000	ug/L		105		80 - 120	1
	MSD	2504779-01	ND	10.270	10.000	ug/L	2.2	103		80 - 120	2

					Run				
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B209049-MS1	MS	EPA-8260B	03/25/25	03/26/25 01:18	AGB	MS-V21	1	
2	B209049-MSD1	MSD	EPA-8260B	03/25/25	03/26/25 01:43	AGB	MS-V21	1	

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent			QC Sample ID	MB Result	Units	P		IDL	Lab Quals	Run #
QC Bat	ch ID: B209205									
Gasoline Rang	ge Organics (C4 - C12)	B209205-BLK1	ND	ug/L	5	50	17		1
a,a,a-Trifluoro	toluene (FID Surroga	te)	B209205-BLK1	71.4	%		70 - 130 (LCL	- UCL)		1
Run #	QC Sample ID	QC Type	Method	Prep Date	Run Date Time	Analyst	Instrument	Dilutio	n	
1	B209205-BLK1	PB	EPA-8015B	03/27/25	03/28/25 05:02	TDH	GC-V9	1		

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control L	.imits		
Constituent		QC Sam	ple ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	Run #
QC Batch I	D: B209205												
Gasoline Ranç	ge Organics (C4 - C12)	B209205	-BS1	LCS	865.46	1000.0	ug/L	86.5		85 - 115			1
a,a,a-Trifluoro Surrogate)	toluene (FID	B209205	-BS1	LCS	36.148	40.000	ug/L	90.4		70 - 130			1
						I	Run						
Run #	QC Sample ID	QC Type	Method		Prep Date	Dat	e Time	Analyst	Instrume	nt Dilu	tion		
1	B209205-BS1	LCS	EPA-801	5B	03/27/25	03/28	/25 06:04	TDH	GC-V9	1			

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals R#
QC Batch ID: B209205	Use	d client samp	ole: N								
Gasoline Range Organics (C4 - C12)	MS	2504744-26	ND	828.56	1000.0	ug/L		82.9		70 - 130	1
012)	MSD	2504744-26	ND	855.49	1000.0	ug/L	3.2	85.5	20	70 - 130	2
a,a,a-Trifluorotoluene (FID Surrogate)	MS	2504744-26	ND	31.782	40.000	ug/L		79.5		70 - 130	1
	MSD	2504744-26	ND	34.724	40.000	ug/L	8.8	86.8		70 - 130	2
					Run						

						Run				
	Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
_	1	B209205-MS1	MS	EPA-8015B	03/27/25	03/28/25 16:05	TDH	GC-V9	1	
	2	B209205-MSD1	MSD	EPA-8015B	03/27/25	03/28/25 16:36	TDH	GC-V9	1	

Reported: 04/10/2025 14:00 Project: Inglewood Oil Field Project Number: 01218001.00 Project Manager: Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent			QC Sample ID	MB Result	Units	P	QL N	MDL	Lab Quals	Run #
QC Bat	ch ID: B209423									
TPH - Diesel F C28)	Range Organics (C10 -		B209423-BLK1	ND	ug/L	Ę	50	16		1
TPH - Oil Ran	ge Organics (C28 - C4	0)	B209423-BLK1	ND	ug/L	1	00	25		1
Tetracosane (Surrogate)		B209423-BLK1	73.9	%		40 - 130 (LCL	- UCL)		1
Run #	QC Sample ID	QC Type	Method	Prep Date	Run Date Time	Analyst	Instrument	Dilutio	n	
1	B209423-BLK1	PB	EPA-8015B	03/31/25	04/01/25 10:53	BUP	GC-19	1		

Page 26 of 35

Reported: 04/10/2025 14:00 Project: Inglewood Oil Field Project Number: 01218001.00 Project Manager: Tina Schmiesing

Purgeable Aromatics and Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

Percent			Limits		
Recovery	RPD	Percent Recovery	RPD	Lab Quals	Run #
56.9		40 - 130			1
61.0	6.8	40 - 130	30		2
64.6		40 - 130			1
70.6	8.9	40 - 130	30		2
52.8		40 - 130			1
56.3	6.5	40 - 130			2

					Run			
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B209423-BS1	LCS	EPA-8015B	03/31/25	04/01/25 11:11	BUP	GC-19	1
2	B209423-BSD1	LCSD	EPA-8015B	03/31/25	04/01/25 11:29	BUP	GC-19	1

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

			-	-			-			
Constituent			QC Sample ID	MB Result	: Units	P	QL I	NDL	Lab Quals	Run #
QC Bat	ch ID: B209321									
TPH - Diesel F C28)	Range Organics (C10 -		B209321-BLK1	ND	ug/L	Ę	50	16		1
TPH - Oil Ran	ge Organics (C28 - C4	0)	B209321-BLK1	ND	ug/L	1	00	25		1
Tetracosane (Surrogate)		B209321-BLK1	61.9	%		40 - 130 (LCL	- UCL)		1
					Run					
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilutio	n	
1	B209321-BLK1	PB	EPA-8015B	03/31/25	04/01/25 05:18	BUP	GC-19	1		

Reported: 04/10/2025 14:00 Project: Inglewood Oil Field Project Number: 01218001.00 Project Manager: Tina Schmiesing

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control I	Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	Run #
QC Batch ID: B209321											
TPH - Diesel Range Organics (C10 - C28)	B209321-BS1	LCS	2757.8	5000.0	ug/L	55.2		40 - 130			1
,	B209321-BSD1	LCSD	2840.0	5000.0	ug/L	56.8	2.9	40 - 130	30		2
TPH - Oil Range Organics (C28 - C40)	B209321-BS1	LCS	6595.1	10000	ug/L	66.0		40 - 130			1
,	B209321-BSD1	LCSD	6926.6	10000	ug/L	69.3	4.9	40 - 130	30		2
Tetracosane (Surrogate)	B209321-BS1	LCS	107.73	200.00	ug/L	53.9		40 - 130			1
	B209321-BSD1	LCSD	110.96	200.00	ug/L	55.5	3.0	40 - 130			2

					Run			
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution
1	B209321-BS1	LCS	EPA-8015B	03/31/25	04/01/25 05:35	BUP	GC-19	1
2	B209321-BSD1	LCSD	EPA-8015B	03/31/25	04/01/25 05:53	BUP	GC-19	1

Reported:04/10/202514:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

EPA Method 1664

Quality Control Report - Method Blank Analysis

Constituent			QC Sample ID	MB Result	Units	PC	QL I	MDL I	ab Quals	Run #
	ch ID: B208998									
Oil and Grease	9		B208998-BLK1	ND	mg/L	5	.0	0.74		1
					Run					
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilutior	ו	
1	B208998-BLK1	РВ	EPA-1664B HEM	03/28/25	03/31/25 15:34	HMC	MAN-SV	1		

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

EPA Method 1664

Quality Control Report - Laboratory Control Sample

								Control Limits			Run #
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery RPI		Lab Quals	
QC Batch ID: B208998											
Oil and Grease	B208998-BS1	LCS	42.900	43.000	mg/L	99.8		78 - 114			1
	B208998-BSD1	LCSD	41.700	43.000	mg/L	97.0	2.8	78 - 114	18		2

					Run				
Run #	QC Sample ID	QC Type	Method	Prep Date	Date Time	Analyst	Instrument	Dilution	
1	B208998-BS1	LCS	EPA-1664B HEM	03/28/25	03/31/25 15:34	HMC	MAN-SV	1	
2	B208998-BSD1	LCSD	EPA-1664B HEM	03/28/25	03/31/25 15:34	HMC	MAN-SV	1	

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Water Analysis (General Chemistry)

Quality Control Report - Method Blank Analysis

Constituent			QC Sample ID	MB Result	Units	PC	2L I	MDL	Lab Quals	Run #
	ch ID: B209209 ed Solids @ 180 C		B209209-BLK1	11.334	mg/L	6	.7	3.3	B01	1
Run #	QC Sample ID	QC Type	Method	Prep Date	Run Date Time	Analyst	Instrument	Dilu	ution	
1	B209209-BLK1	PB	SM-2540C	03/27/25	03/27/25 14:00	IJC	MANUAL	0.	667	

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Water Analysis (General Chemistry)

Quality Control Report - Laboratory Control Sample

					Spike		Percent		Control L Percent	imits	Lab	
Constituent		QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	Run #
QC Batch I	D: B208008											
рН		B208008-BS2	LCS	7.0400	7.0000	pH Units	101		95 - 105			1
QC Batch I	D: B209209											
Total Dissolve	d Solids @ 180 C	B209209-BS1	LCS	590.00	586.00	mg/L	101		90 - 110			2
						Run						
Run #	QC Sample ID	QC Type Metho	d	Prep Date	Dat	e Time	Analyst	Instrume	nt Dilu	tion		
1	B208008-BS2	LCS SM-45	00HB	03/27/25	03/27	/25 08:29	ELR	MET-1	1			
2	B209209-BS1	LCS SM-25	40C	03/27/25	03/27	/25 14:00	RLH	MANUAL	. 5	5		

Reported:04/10/2025 14:00Project:Inglewood Oil FieldProject Number:01218001.00Project Manager:Tina Schmiesing

Water Analysis (General Chemistry)

Quality Control Report - Precision & Accuracy

										Cont	rol Limits		
			Source	Source		Spike			Percent		Percent	Lab	
Constituent		Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	R#
QC Bate	ch ID: B208008	Used	l client sampl	e: N									
рН		DUP	2504778-02	7.7400	7.7600		pH Units	0.3		20			1
QC Bate	ch ID: B209209	Used	l client sampl	e: N									
Total Dissolved	Solids @ 180 C	DUP	2504846-01	89100	91800		mg/L	3.0		10			2
						Run							٦
Run #	QC Sample ID	QC Type	Method		Prep Date	Date Time	Analyst	In	strument	Diluti	on		
1	B208008-DUP1	DUP	SM-4500HB		03/27/25	03/27/25 08:51	ELR		MET-1	1			
2	B209209-DUP1	DUP	SM-2540C		03/27/25	03/27/25 14:00	RLH	1	MANUAL	100			

Reported: 04/10/2025 14:00 Project: Inglewood Oil Field Project Number: 01218001.00 Project Manager: Tina Schmiesing

Notes And Definitions

J	Estimated Value (CLP Flag)
MDL	Method Detection Limit
ND	Analyte Not Detected
PQL	Practical Quantitation Limit
A10	Detection and quantitation limits were raised due to matrix interference.
A52	Chromatogram not typical of diesel.
A57	Chromatogram not typical of motor oil.
B01	Analyte detected in the Continuing Calibration Blank (CCB) at a level greater than the PQL.
S05	The sample holding time was exceeded.

Appendix C

Historical Summary Table and Time Series Graphs

Well ID	Date	TPH-DRO <u>C₁₀-C₂₈ (mg/L)</u>	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈ (mg/L)	BTEX/MTBE (μg/L)	Total Recoverable Petroleum Hydrocarbons or Oil and Grease (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Nitrate and Nitrite (mg/L)	Metals (µg/L)	BOD (mg/L)	COMMENTS
	4/2/2010	1.3	0.14	0.95 toluene	<5.0	900	NA	NA	NA	
	6/2/2010	1.4	<0.10	0.76 toluene	<5.0	780	NA	NA	NA	
	H								ł	Insufficient Water
	9/16/2010	NS	NS	NS	NS	NS	NS	NS	NS	
	12/14/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/11/2011	1.1	<0.10	5.8 toluene	<5.0	1,100	Below Detection Limit	33 arsenic	40.1	
	6/6/2011	1.3	0.18	Below Detection Limit	<5.0	850	<0.20	28 arsenic	50.5	
	9/19/2011	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	11/22/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/15/2012	2.1	0.34	0.85 benzene, 0.57 toluene, 0.5 ethylbenzene, 1.73 xylenes	<5.0	760	Below Detection Limit	37 arsenic, 130 barium, 32 chromium, 36 copper, 4.2 lead, 88 zinc	43.4	
	4/26/2012	1.3	0.19	Below Detection Limit	<5.0	810	Below Detection Limit	28 arsenic, 73 barium, 15 chromium, 19 copper, 79 zinc	40.9	
	8/30/2012	0.99	0.23	Below Detection Limit	<5.0	764	0.1 nitrate	29 arsenic, 16 zinc	Feb-00	
	11/20/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/27/2013	0.73	<0.10	Below Detection Limit	<5.0	880	Below Detection Limit	32 arsenic	52.1	
	5/13/2013	0.78	<0.10	Below Detection Limit	<5.0	910	Below Detection Limit	28 arsenic	57.6	
	8/15/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	11/21/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	3/13/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/12/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/26/2015	1.4	0.43	0.67 toluene	<5.0	950	0.83 nitrite	31 arsenic	46.3	Purged with bailer
		0.6				930		28 arsenic		Fulged with baller
	5/18/2015		<0.10	Below Detection Limit	<5.0		Below Detection Limit		34.8	
	8/18/2015	1.1	<0.10	Below Detection Limit	<5.0	930	Below Detection Limit	Below Detection Limit	37	
	11/16/2015	1.2	0.13	Below Detection Limit	<5.0	840	0.36 nitrate	45 arsenic	70	Purged with bailer
	2/1/2016	0.28	<0.10	Below Detection Limit	<5.0	650	2.7 nitrate	35 arsenic	25.3	
	5/16/2016	0.97	<0.10	Below Detection Limit	<5.0	500	0.36 nitrate	36 arsenic	34	
MW-3	8/25/2016	0.72	<0.10	Below Detection Limit	NS	660	<0.10 Nitrate	Below Detection Limit	NS	
	11/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	3/17/2017	0.91	<0.10	Below Detection Limit	<5.0	580	Below Detection Limit	44 arsenic, 170 barium, 35 copper	24.3	
	6/1/2017	0.87	<0.10	Below Detection Limit	<5.0	390	Below Detection Limit	Below Detection Limit	42	
	9/5/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/6/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/15/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	7/25/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	12/10/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/19/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2019	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	8/28/2019	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	11/13/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/17/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/17/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/2/2021	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/22/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	12/6/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/21/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/27/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/22/2024	0.80	0.52	Below Detection Limit	1.7 /1.0 / 0.81 J	2,000	NA	NA	NA	
	11/12/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/24/2025	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry

Well ID	Date	TPH-DRO C ₁₀ -C ₂₈ (mg/L)	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈ (mg/L)	BTEX/MTBE (µg/L)	Total Recoverable Petroleum Hydrocarbons or Oil and Grease (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Nitrate and Nitrite (mg/L)	Metals (µg/L)	BOD (mg/L)	COMMENTS
	4/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	6/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	9/16/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	12/14/2010	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 -										
1 -	3/10/2011	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 -	6/6/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	9/19/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1	11/22/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í L	2/15/2012	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
í E	4/26/2012	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
í F	8/5/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	11/20/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	2/27/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
í F	5/13/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 F	8/15/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 -	11/21/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	3/13/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -										
1 -	5/22/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	11/12/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	2/26/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	5/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1	8/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í L	11/16/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
ί [2/1/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	5/17/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	8/25/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
MW-4a	11/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	3/8/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	6/1/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 F	9/5/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	11/20/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	2/6/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 -	5/15/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
1 -										
-	7/25/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
-	12/10/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	2/19/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 -	8/28/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
1 L	11/13/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í L	2/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
l L	5/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	8/25/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í ľ	11/17/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	3/17/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
í F	6/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
(F	11/2/2021	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
(F	3/22/2022	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
(F	12/6/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
(F	2/21/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
(F	11/28/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
(F	2/22/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
(F	11/12/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
í L	3/24/2025	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry

Well ID	Date	TPH-DRO	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈	BTEX/MTBE	Total Recoverable Petroleum Hydrocarbons or Oil and Grease	Total Dissolved Solids (TDS)	Nitrate and Nitrite	Metals	BOD	COMMENTS
		(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(mg/L)	
	4/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/16/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	12/14/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/12/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/6/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/19/2011	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	11/22/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/15/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	4/26/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/5/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2012	NS		NS	NS	NS	NS	NS		
			NS						NS	Well Dry
	2/27/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/13/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/15/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/21/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/13/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/12/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/26/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/16/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/1/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/17/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
MW-4b	11/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/8/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/1/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/5/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/6/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	5/15/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	7/25/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	12/10/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/19/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/28/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/13/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2020									· · · · · · · · · · · · · · · · · · ·
	3/17/2020	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS	Well Dry
						NS			NS	Well Dry
	6/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/2/2021	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/22/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	12/6/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/21/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/28/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/22/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/12/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/24/2025	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry

Well ID	Date	TPH-DRO <u>C₁₀-C₂₈ (mg/L)</u>	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈ (mg/L)	BTEX/MTBE (µg/L)	Total Recoverable Petroleum Hydrocarbons or Oil and Grease (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Nitrate and Nitrite (mg/L)	Metals (µg/L)	BOD (mg/L)	COMMENTS
			(0, ,	(67-7	(0, ,			(ro/-)		
	4/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/16/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	12/14/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/12/2011	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	6/6/2011	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	9/19/2011	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	11/22/2011	NS	NS	NS	NS	NS	NS	NS	NS	y Well Dry
	2/15/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	4/26/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/5/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/27/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/13/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/15/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/21/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/13/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/12/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/26/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/16/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/1/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/17/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
MW-4c	11/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/8/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/1/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/5/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/6/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	5/15/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	7/25/2018	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	12/10/2018 2/19/2019	NS NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	Well Dry
	5/22/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry Well Dry
	8/28/2019	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	11/13/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/17/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/17/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/2/2021	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/22/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	12/6/2022	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/21/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/28/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	2/22/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/12/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/24/2025	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry

Well ID	Date	TPH-DRO <u>C₁₀-C₂₈ (mg/L)</u>	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈ (mg/L)	BTEX/MTBE (µg/L)	Total Recoverable Petroleum Hydrocarbons or Oil and Grease (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Nitrate and Nitrite (mg/L)	Metals (µg/L)	BOD (mg/L)	COMMENTS
	4/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/2/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/16/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	12/14/2010	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/11/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/6/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/19/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/22/2011	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/15/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	4/26/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/5/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2012	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/23/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/13/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/15/2013	NS	NS	NS	NS	NS	NS	NS	NS	Insufficient Water
	11/21/2013	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/13/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/22/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/12/2014	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/26/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/18/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/16/2015	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/17/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
MW-5	11/16/2016	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/8/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/1/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	9/5/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/20/2017	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/6/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/15/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	7/25/2018	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	12/10/2018	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	2/19/2019	NS	NS	NS	NS	NS	NS	NS	NS	, Well Dry
	5/22/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/28/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/13/2019	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	2/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	5/5/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	8/25/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/17/2020	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	3/17/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	6/22/2021	NS	NS	NS	NS	NS	NS	NS	NS	Well Dry
	11/2/2021	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
	3/22/2022	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
	12/6/2022	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
	2/21/2023	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	11/28/2023	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
	2/22/2024	NS	NS	NS	NS	NS	NA	NA	NA	, Well Dry
	11/12/2024	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry
	3/24/2025	NS	NS	NS	NS	NS	NA	NA	NA	Well Dry

Well ID	Date	TPH-DRO C ₁₀ -C ₂₈	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈	BTEX/MTBE	Total Recoverable Petroleum Hydrocarbons or Oil and Grease	Total Dissolved Solids (TDS)	Nitrate and Nitrite	Metals	BOD	COMMENTS
		(mg/L)	(mg/L)	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(μg/L)	(mg/L)	
	4/2/2010	0.52	<0.10	Below Detection Limit	<5.0	2,300	NA	NA	NA	
	6/2/2010	0.32	<0.10	0.62 toluene	<5.0	2,300	NA	NA	NA	
	9/16/2010	1.20	<0.10	7.2 toluene	<5.0	2,700	Below Detection Limit	70 barium, 22 zinc	49.2	
	12/14/2010	0.31	<0.030	7.4 toluene	7.1	2,500	5.3 nitrate	70 barium	49.2	
	9/19/2011	0.31	<0.10	2.0 toluene	<5.0	2,300	Below Detection Limit	51 barium, 23 zinc	34.1	
						· · · ·	Below Detection Limit	,		
	11/22/2011	0.34	<0.10	Below Detection Limit	<5.0	2,000		56 barium	30.4	
	2/15/2012	0.71	0.12	Below Detection Limit	<5.0	2,500	Below Detection Limit	70 barium, 18 zinc	32.6	
	4/26/2012	-0.10		-0.50	.5.0	1.000				
	2/14/2012	<0.10	<0.10	<0.50	<5.0	1,600	Delaw Detection Limit	CO havium	26.7	
	4/26/2012	0.40	<0.10 <0.10	Below Detection Limit Below Detection Limit	<5.0	2,200	Below Detection Limit Below Detection Limit	60 barium 64 barium	36.7 38.8	
	8/30/2012				<5.0	2,580				
	11/20/2012	0.42	<0.10 <0.10	Below Detection Limit Below Detection Limit	<5.0	1,400	Below Detection Limit	61 barium Below Detection Limit	23.2	
	2/27/2013	0.36			<5.0	2,600	Below Detection Limit		41.6	
	5/13/2013 8/15/2013	0.24	<0.10 <0.10	Below Detection Limit Below Detection Limit	<5.0 <5.0	2,500	Below Detection Limit 0.65 nitrate	Below Detection Limit 52 barium	63.0 23.0	
	8/15/2013	0.40	<0.10	Below Detection Limit	<5.0	2,500	0.65 nitrate	52 barium Below Detection Limit	23.0 50.7	
	3/13/2014	0.36	<0.10	Below Detection Limit	<5.0	2,400	Below Detection Limit	Below Detection Limit Below Detection Limit	43.1	
	5/22/2014	0.42	<0.10	Below Detection Limit	<5.0	2,800	Below Detection Limit	Below Detection Limit Below Detection Limit	37.4	
	11/12/2014	0.44	<0.10	Below Detection Limit	<5.0	2,800	1.5 nitrate	Below Detection Limit	37.4	
	2/26/2015	0.32	<0.10	Below Detection Limit	<5.0	2,800	Below Detection Limit	Below Detection Limit	37.3	
	5/18/2015	0.43	<0.10	Below Detection Limit	<5.0	2,400	Below Detection Limit	Below Detection Limit	33.0	
	8/18/2015	0.18	0.10	Below Detection Limit	<5.0	1,380	Below Detection Limit	Below Detection Limit	35.0	
	11/16/2015	0.31	<0.10	Below Detection Limit	<5.0	2,500	Below Detection Limit	Below Detection Limit	52.6	
	2/1/2016	0.84	<0.10	Below Detection Limit	<5.0	1,600	0.33 nitrate	Below Detection Limit	36.1	
	5/17/2016	NS	NS	Below Detection Limit	<5.0	NS	1.1 nitrate	Below Detection Limit	NS	
	8/25/2016	0.19	<0.10	Below Detection Limit	<5.0	1,200	0.73 nitrate	Below Detection Limit	22.5	
	11/16/2016	0.28	<0.10	2.7 toluene	<5.0	1,200	Below Detection Limit	Below Detection Limit	24.5	
	3/8/2017	0.25	<0.10	Below Detection Limit	<5.0	1,100	Below Detection Limit	Below Detection Limit	14.0	
	6/1/2017	0.23	<0.10	Below Detection Limit	<5.0	680	Below Detection Limit	99 zinc	20.0	
	9/5/2017	0.31	<0.10	Below Detection Limit	<5.0	1,600	Below Detection Limit	Below Detection Limit	39.0	
MW-6	11/20/2017	0.27	<0.10	Below Detection Limit	<5.0	1,300	Below Detection Limit	72 copper	14	
	2/6/2018	0.11 J	0.10 J	Below Detection Limit	<5.0	1,900	Below Detection Limit	160 barium, 42 chromium, 8.6 J cobalt, 30 copper, 9.5 J lead, 76 zinc	13	
	5/15/2018	<0.20	<0.20	Below Detection Limit	<5.0	1,900	nitrate 0.068 J	52 barium	1.8	
	7/25/2018	0.24	<0.20	Below Detection Limit	<5.0	1,600	nitrite 0.015 JB	31 barium, 5.6 J copper,	2.0	
								5.9 J zinc		
	12/12/2018	0.15 J	<0.20	Below Detection Limit	0.89 J	1,700	Below Detection Limit	52 barium	<2.0	
	2/19/2019	<0.20	<0.20	Below Detection Limit	<5.0	1,900	Below Detection Limit	46 barium, 38 zinc	2.0	
	5/22/2019	<0.20	<0.20	Below Detection Limit	<5.0	1,800	Below Detection Limit	53 barium 4.1 arsenic, 35 barium,	<1.5	
	8/28/2019	<0.20	<0.20	Below Detection Limit	<5.0	1,500	Below Detection Limit	25 zinc	<1.5	
	11/13/2019	013 J	0.22	Below Detection Limit	<5.0	1,700	Below Detection Limit	17 J/5 arsenic, 48 barium, 3.1 J copper	2.8	
	2/5/2020	<0.20	<0.20	Below Detection Limit	<5.0	1,800	Below Detection Limit	13 J/3.3 arsenic, 52 barium, 2.1 J copper, 8.8 J lead, 6.3 J zinc	<1.5	
	5/5/2020	<0.20	<0.20	Below Detection Limit	<5.0	1,300	Below Detection Limit	4.2 arsenic, 37 barium, 1.2 J chromium, 5.5 J copper, 20 zinc	4.1	
	8/25/2020	<0.20	<0.20	Below Detection Limit	<5.0	950	Below Detection Limit	4.8 arsenic, 21 barium, 1.8 J copper, 9.4 J lead	3.9	
	11/17/2020	<0.2	<0.2	Below Detection Limit	<5.0	1,000	Below Detection Limit	4.2 arsenic, 24 barium, 2.2 J copper	1.8	
	3/17/2021	<0.2	<0.2	Below Detection Limit	<5.0	1,300	Below Detection Limit	3.2 arsenic, 26 barium, 5.9 J lead, 14 zinc	4.5	
	6/22/2021	<0.2	<0.2	Below Detection Limit	<5.0	1,400	Below Detection Limit	5.6 arsenic, 31 barium, 1.1 J copper, 4.6 J lead	3.8	
	11/2/2021	<0.2	<0.2	Below Detection Limit	<5.0	1,100	NA	NA	NA	
	3/22/2022	<0.2	<0.2	Below Detection Limit	<5.0	1,600	NA	NA	NA	
	12/6/2022	<0.2	<0.2	Below Detection Limit	<5.0	1,400	NA	NA	NA	
	2/21/2023	<0.2	<0.2	Below Detection Limit	<5.0	1,500	NA	NA	NA	
	11/28/2023	<0.2	<0.2	Below Detection Limit	<5.0	1,100	NA	NA	NA	
	2/22/2024	<0.2	<0.2	Below Detection Limit	1.3 J	990	NA	NA	NA	
	11/12/2024	<0.036	<0.036	Below Detection Limit	1.2 J	1,100	NA	NA	NA	
	3/24/2025	<0.050	<0.050	Below Detection Limit	0.80 J	1,700	NA	NA	NA	

Well ID	Date	TPH-DRO <u>C₁₀-C₂₈ (mg/L)</u>	TPH-DRO (w/Silica Gel Filtering) C ₁₀ -C ₂₈ (mg/L)	BTEX/MTBE (μg/L)	Total Recoverable Petroleum Hydrocarbons or Oil and Grease (mg/L)	Total Dissolved Solids (TDS) (mg/L)	Nitrate and Nitrite (mg/L)	Metals (µg/L)	BOD (mg/L)	COMMENTS
	4/2/2010	0.21	<0.10	0.58 toluene	<5.0	1,100	NA	NA	NA	
	6/2/2010	0.29	<0.10	0.86 toluene	<5.0	1,100	NA	NA	NA	
	9/16/2010	0.48	<0.050	18 toluene	<5.0	2,000	6.9 nitrate	3.2 arsenic, 40 barium, 5.7 cobalt, 28 zinc	20.7	
	12/14/2010	0.25	<0.10	11 toluene	<5.0	2,200	6.0 nitrate	45 barium	35.1	
	3/11/2011	0.18	<0.10	6.4 toluene	<5.0	1,400	5.0 nitrate	Below Detection Limit	15.2	
	6/6/2011	0.25	<0.10	Below Detection Limit	<5.0	1,200	7.0 nitrate	Below Detection Limit	22	
	9/19/2011	0.35	<0.10	2.7 toluene	<5.0	2,700	5.3 nitrate	48 barium	32.8	
	11/22/2011	0.29	<0.10	Below Detection Limit	<5.0	2,500	3.8 nitrate	60 barium	25.6	
	2/15/2012	0.29	0.15	Below Detection Limit	<5.0	1,000	5.5 nitrate	26 barium, 2.7 chromium	14.6	
	4/26/2012	0.12	<0.10	Below Detection Limit	<5.0	510	Below Detection Limit	3.0 chromium, 5.7 copper	11.8	
	8/30/2012	0.15	<0.10	Below Detection Limit	<5.0	1,640	7.15 nitrate	35 barium	22.9	
	11/20/2012	0.26	<0.10	Below Detection Limit	<5.0	1,200	5.0 nitrate	3.0 arsenic, 50 barium	12.7	
	2/27/2013	0.16	<0.10	Below Detection Limit	<5.0	1,600	3.7 nitrate	Below Detection Limit	21.5	
	5/13/2013	<0.10	<0.10	Below Detection Limit	<5.0	2,000	6.4 nitrate	Below Detection Limit	37.8	
	8/15/2013	0.32	<0.10	Below Detection Limit	<5.0	2,500	7.1 nitrate	33 barium	14.3	
	11/21/2013	0.3	<0.10	Below Detection Limit	<5.0	2,200	2.3 nitrate	Below Detection Limit	24.9	
	3/13/2014	0.39	<0.10	Below Detection Limit	<5.0	3,200	3.8 nitrate	Below Detection Limit	33.5	
	5/22/2014	0.39	<0.10	Below Detection Limit	<5.0	1,900	7.9 nitrate	Below Detection Limit	35.3	
	11/12/2014	0.32	<0.10	Below Detection Limit	<5.0	2,100	3.1 nitrate	Below Detection Limit	23.9	
	2/26/2015	0.42	<0.10	Below Detection Limit	<5.0	430	5.3 nitrate, 0.83 nitrite	Below Detection Limit	11.7	
	5/18/2015 8/18/2015	<0.10	<0.10 <0.10	Below Detection Limit Below Detection Limit	<5.0 <5.0	700	6.2 nitirate 4.4 nitirate	Below Detection Limit Below Detection Limit	13.9 20.0	
	11/16/2015	0.34	<0.10	Below Detection Limit	<5.0	1,400	7.3 nitrate	16 arsenic	18.7	
	2/16/2016	0.24	<0.10	Below Detection Limit	<5.0	680	3.6 nitrate	Below Detection Limit	18.7	
	5/17/2016	0.14	<0.10	Below Detection Limit	<5.0	1,300	5.3 nitrate	Below Detection Limit	14.0	
	8/25/2016	0.18	<0.10	Below Detection Limit	<5.0	1,000	0.54 nitrate	Below Detection Limit	12.6	
	11/16/2016	0.26	<0.10	4.0 toluene	<5.0	1,400	4.6 nitrate	Below Detection Limit	15.8	
	3/8/2017	0.21	<0.10	Below Detection Limit	<5.0	<200	1.1 nitrate	Below Detection Limit	ND	
	6/1/2017	0.17	<0.10	Below Detection Limit	<5.0	190	0.60 nitrate	13 chromium	18.0	
	9/5/2017	0.12	<0.10	Below Detection Limit	<5.0	610	2.4 nitrate	Below Detection Limit	17.0	
	11/20/2017	0.12	<0.10	Below Detection Limit	<5.0	1,400	5.0 nitrate	78 copper	<5.0	
MW-7	2/6/2018	<0.20	<0.20	Below Detection Limit	<5.0	330	4.3 nitrate	98 barium, 38 chromium, 11 J cobalt, 15 copper, 6.1 J lead, 54 zinc	<1.5	
	5/16/2018	<0.20	<0.20	Below Detection Limit	<5.0	1,600	5.8 nitrate; 0.23 J nitrite	36 barium, 1.7 J cobalt	<1.5	
	7/25/2018	<0.20	<0.20	Below Detection Limit	<5.0	1,600	6.1 nitrate; 0.28 JB nitrite	14 J arsenic, 36 barium, 2.1 JB chromium, 2.0 J cobalt, 2.3 J copper	<1.5	
	12/12/2018	<0.20	<0.20	Below Detection Limit	<6.1	290	3.1 nitrate	7.7 J barium, 2.7 J chromium	<1.5	
	2/19/2019	<0.20	<0.20	Below Detection Limit	<5.0	210	1.0 nitrate	9.7 J barium, 1.2 J chromium, 2.2 J cobalt, 43 zinc	3.5	
	5/22/2019	<0.20	<0.20	Below Detection Limit	<5.0	330	1.1 nitrate; 0.015 J nitrite	9.6 J barium, 2.9 J copper	<1.5	
	8/28/2019	<0.20	<0.20	Below Detection Limit	<5.0	580	2.7 nitrate	3.0 arsenic, 9.9 J barium, 1.6 JB copper, 24 zinc	2.0	
	11/15/2019	0.11 J	<0.20	Below Detection Limit	<5.0	1,600	4.1 nitrate, 0.016 J nitrite	6.4 arsenic, 30 barium, 4.9 J copper, 5.9 J lead 1.3 J arsenic, 16 barium,	<1.5	
	2/5/2020	<0.20	<0.20	Below Detection Limit	<5.0	520	0.59 nitrate	2.7 J copper, 3.9 J lead, 6.2 J zinc	<1.5	
	5/5/2020	0.13 J	<0.20	Below Detection Limit	1.1 J	530	1.6 nitrate	1.4 J arsenic, 17 barium, 2.4 J copper, 7.2 J zinc 4.1 arsenic, 20 barium,	3.6	
	8/25/2020	<0.20	<0.20	Below Detection Limit	<5.0	920	3.6 nitrate	3.9 J copper, 17 J lead, 7.4 J zinc	<1.5	
	12/29/2020	<0.20	<0.20	Below Detection Limit	<5.0	1,800	2.4 nitrate, 0.032 J nitrite	21J/8.3 arsenic, 74 barium, 3.4 J copper, 10 J lead 3.6 arsenic, 87 barium,	2.3	
	3/17/2021	<0.20	<0.20	Below Detection Limit	<5.0	1,400	5.4 nitrate	2.1 J chromium, 3.8 J copper, 10 J lead, 20 zinc	1.5	
	6/22/2021	<0.20	<0.20	Below Detection Limit	<5.0	1,600	5.3 nitrate; 0.016 J nitrite	7.6 arsenic, 70 barium, 6.0 J chromium, 4.6 J cobalt, 7.2 J copper, 8.8 J lead, 18 zinc	<1.5	
	11/2/2021	<0.20	<0.20	Below Detection Limit	<5.0	2,000	NA	NA	NA	
	3/22/2022	<0.20	<0.20	Below Detection Limit	<5.0	1,600	NA	NA	NA	
	12/6/2022	<0.20	<0.20	Below Detection Limit	<5.0	1,900	NA	NA	NA	
	2/21/2023	<0.20	<0.20	Below Detection Limit	<5.0	2,000	NA	NA	NA	
	11/28/2023	<0.20	<0.20	Below Detection Limit	0.75 J	1,900	NA	NA	NA	
	2/22/2024	<0.20	<0.20	Below Detection Limit	<5.0	1,100	NA	NA	NA	
	11/12/2024	<0.036	<0.036	Below Detection Limit	1.5 J	2,000	NA	NA	NA	
	3/24/2025	<0.050	<0.050	Below Detection Limit	0.90 J	2,400	NA	NA	NA	

<u>Notes:</u> <# indicates parameter was not detected above the indicated method reporting limit

J = Concentration above the method detection limit but below the reporting limit

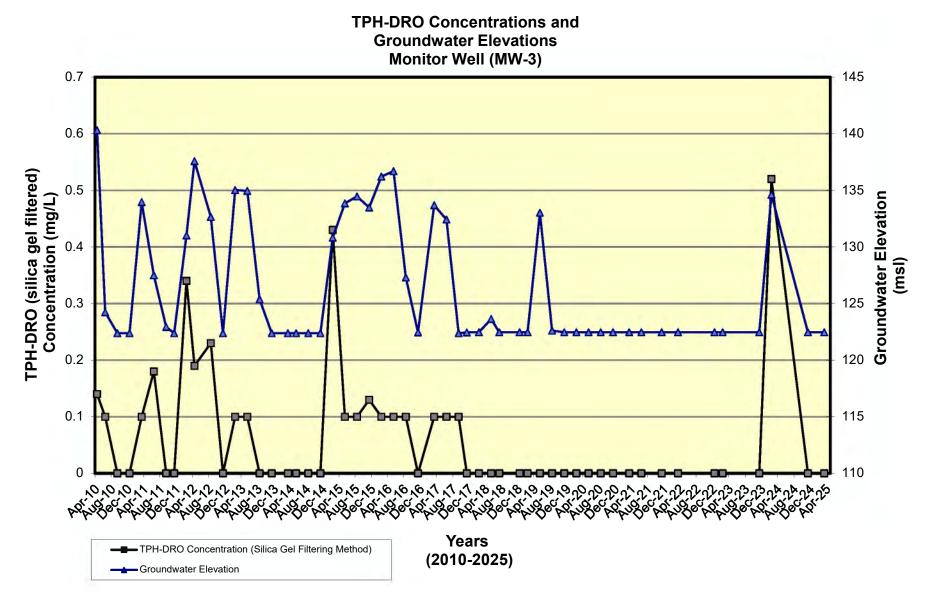
B = Parameter also detected in the associated method blank

 μ g/L = micrograms per liter.

mg/L= milligrams per liter.

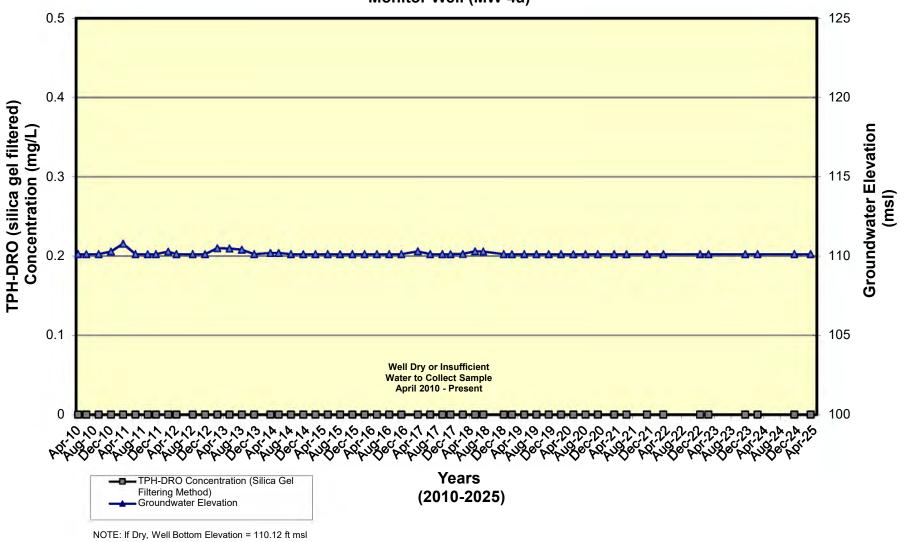
TPH-DRO = Total Petroluem Hydrocarbons - Diesel Range Organics

VOCs = Volatile Organic Compounds

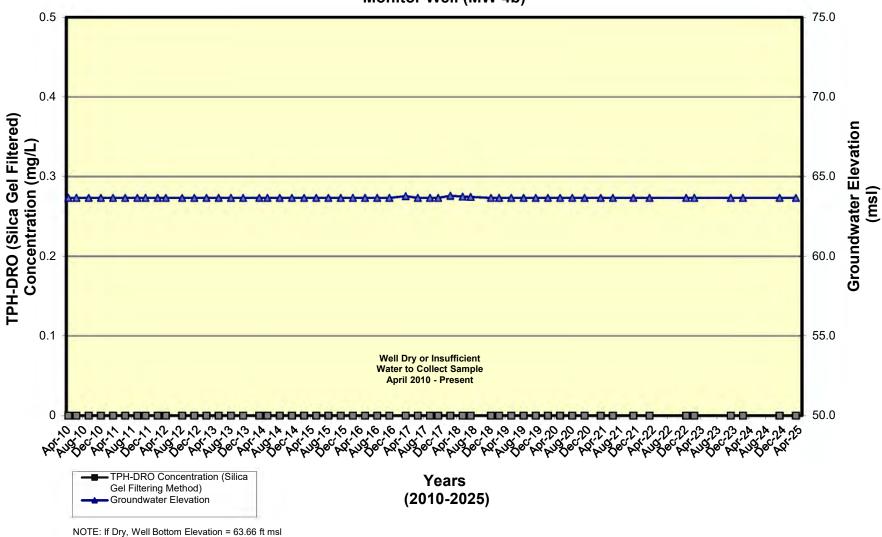

MTBE = Methyl tert-butyl ether

BTEX = Benzene, Toluene, Ethylbenzene, Xylenes

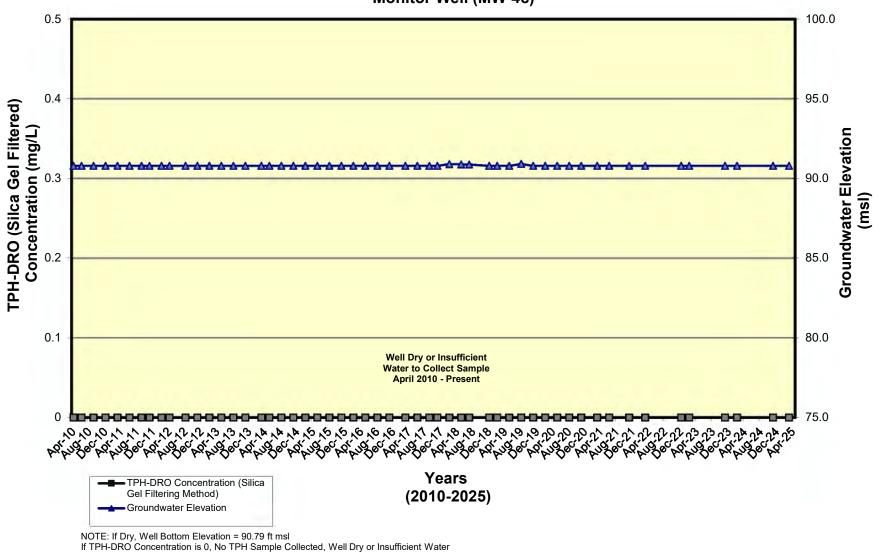
BOD = Biochemical Oxygen Demand


NA = Not Analyzed; Starting with November 2021 data, parameters with NA are not required under SPR Groundwater Monitoring Program and Workplan (October 2021 Rev1).

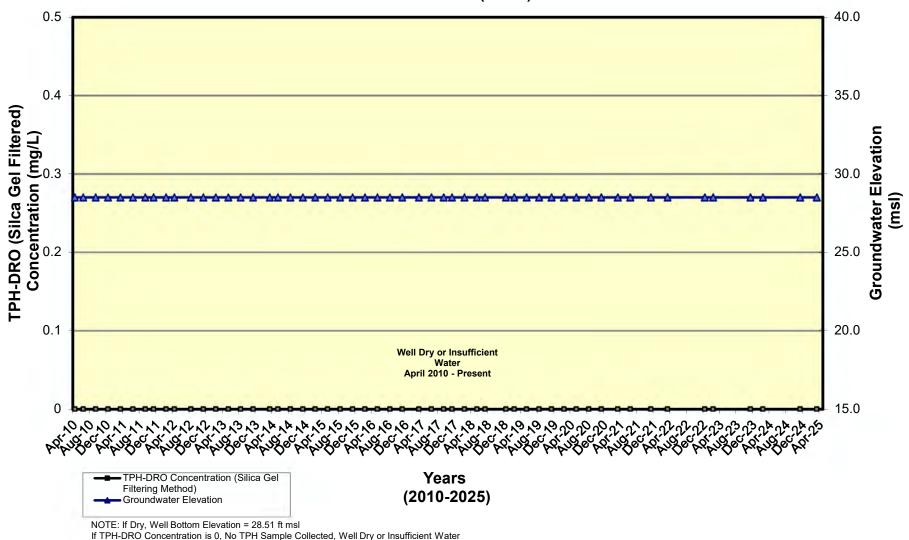
NS = Not Sampled


NOTE: If Dry, Well Bottom Elevation betwee 122.38 and 122.46 ft msl over time. If TPH-DRO Concentration is 0, No Sample Collected, Well Dry or Insufficient Water

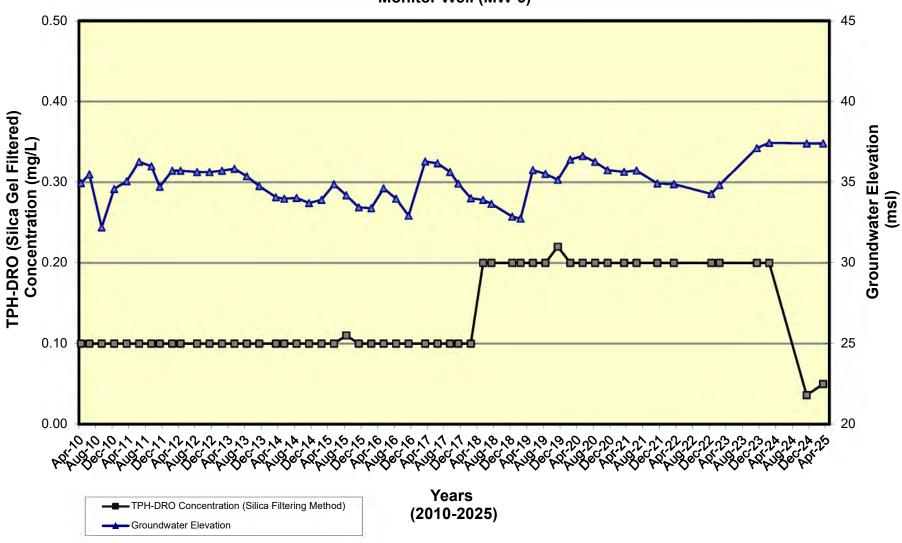
TPH-DRO Concentrations and Groundwater Elevations Monitor Well (MW-4a)

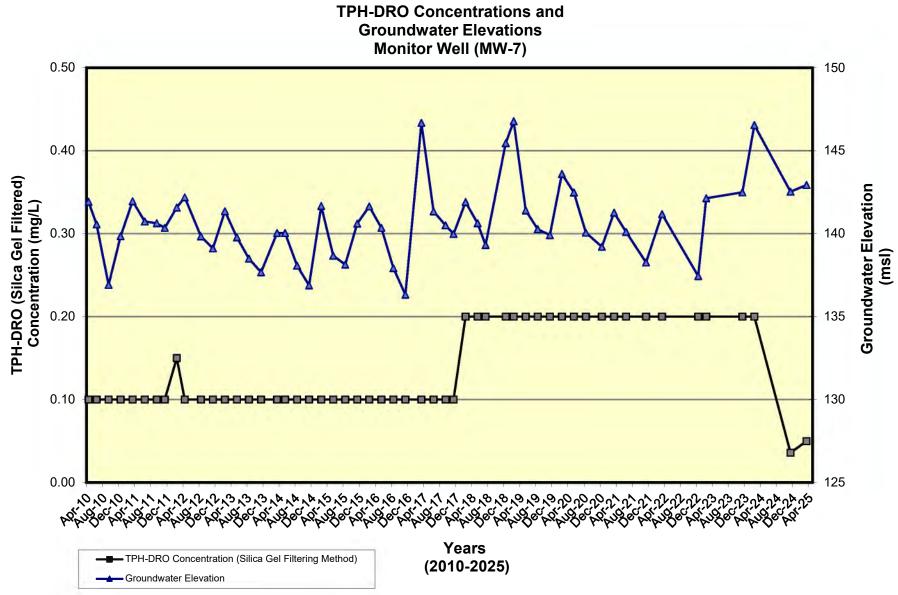

If TPH-DRO Concentration is 0, No Sample Collected, Well Dry or Insufficient Water

TPH-DRO Concentrations and Groundwater Elevations Monitor Well (MW-4b)



If TPH-DRO Concentration is 0, No TPH Sample Collected, Well Dry or Insufficient Water


TPH-DRO Concentrations and Groundwater Elevations Monitor Well (MW-4c)


TPH-DRO Concentrations and Groundwater Elevations Monitor Well (MW-5)

TPH-DRO Concentrations and Groundwater Elevations Monitor Well (MW-6)

NOTE: TPH DRO Reporting Limit (0.1 mg/L April 2010 - Nov 2017; 0.2 mg/L Feb 2018 - Feb 2024; 0.036 mg/L starting Nov 2024; and 0.050 mg/l in Mar 2025)

NOTE: TPH DRO Reporting Limit (0.1 mg/L April 2010 - Nov 2017; 0.2 mg/L Feb 2018 - Feb 2024; 0.036 mg/L in Nov 2024; and 0.050 in Mar 2025) If Dry, Well Bottom = 127.04 ft msl. Dec 29, 2020 and Mar 17, 2021 elevations are estimated. New reference elevation is needed.

Inglewood Oil Field												
Date	MW-3	MW-4A	MW-4B	MW-4C	MW-5	MW-6	MW-7					
		Grou	Indwater El	evation (ft	msl)							
4/2/2010	140.32	Dry	Dry	Dry	Dry	34.94	141.92					
6/2/2010	124.23	Dry	Dry	Dry	Dry	35.48	140.56					
9/16/2010	Dry	Dry	Dry	Dry	Dry	32.20	136.91					
12/14/2010	Dry	110.29	Dry	Dry	Dry	34.58	139.85					
3/10/2011	133.96	110.78	Dry	Dry	Dry	35.06	141.96					
6/13/2011	127.50	Dry	Dry	Dry	Dry	36.27	140.73					
9/19/2011	122.93	Dry	Dry	Dry	Dry	35.98	140.63					
11/22/2011	Dry	Dry	Dry	Dry	Dry	34.72	140.35					
2/15/2012	131.03	110.29	Dry	Dry	Dry	35.71	141.57					
4/26/2012	137.59	Dry	Dry	Dry	Dry	35.71	142.19					
8/30/2012	132.65	Dry	Dry	Dry	Dry	35.63	139.84					
11/20/2012	Dry	Dry	Dry	Dry	Dry	35.62	139.11					
2/27/2013	135.03	110.50	Dry	Dry	Dry	35.71	141.35					
5/13/2013	134.96	110.48	Dry	Dry	Dry	35.83	139.78					
8/15/2013	Dry	110.41	Dry	Dry	Dry	35.37	138.49					
11/21/2013	Dry Dry	Dry 110.19	Dry Dry	Dry Dry	Dry Dry	34.76	137.67 140.04					
3/13/2014 5/22/2014	Dry Dry	110.19	Dry Dry	Dry Dry	Dry Dry	34.07 33.98	140.04					
8/21/2014	-		Dry Dry	Dry Dry	Dry Dry	33.98 34.03	138.07					
11/12/2014	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	34.03 33.71	136.88					
2/26/2015	130.83	Dry	Dry	Dry	Dry	33.91	141.67					
5/18/2015	133.85	Dry	Dry	Dry	Dry	34.87	138.67					
8/18/2015	134.46	Dry	Dry	Dry	Dry	34.18	138.14					
11/16/2015	133.48	Dry	Dry	Dry	Dry	33.44	140.61					
2/16/2016	136.22	Dry	Dry	Dry	Dry	33.39	141.64					
5/17/2016	136.70	Dry	Dry	Dry	Dry	34.62	140.35					
8/25/2016	127.30	Dry	Dry	Dry	Dry	33.98	137.93					
11/8/2016	122.45	Dry	Dry	Dry	Dry	32.92	136.32					
3/8/2017	133.68	110.30	63.78	Dry	Dry	36.28	146.68					
6/1/2017	132.43	Dry	Dry	Dry	Dry	36.17	141.34					
9/5/2017	Dry	Dry	Dry	Dry	Dry	35.63	140.50					
11/20/2017	Dry	Dry	Dry	Dry	Dry	34.91	139.98					
2/6/2018	Dry	110.13	63.80	90.90	Dry	34.01	141.90					
5/15/2018	123.64	110.31	63.75	90.88	Dry	33.91	140.63					
7/25/2018	Dry	110.29	63.73	90.87	Dry	33.66	139.31					
12/10/2018	Dry	Dry	Dry	Dry	Dry	32.86	145.45					
2/19/2019	Dry	Dry	Dry	Dry	Dry	32.75	146.77					
5/22/2019	133.02	Dry	Dry	Dry	Dry	35.75	141.40					
8/28/2019	122.61	Dry	Dry	Dry	Dry	35.51	140.27					
11/13/2019	Dry	Dry	Dry	Dry	Dry	35.15	139.91					
2/5/2020	Dry	Dry	Dry	Dry	Dry	36.40	143.60					
5/5/2020	Dry	Dry	Dry	Dry	Dry	36.63	142.48					
8/25/2020	Dry	Dry	Dry	Dry	Dry	36.26	140.06					
11/17/2020	Dry	Dry	Dry	Dry	Dry	35.74	139.21					
3/17/2021	Dry	Dry	Dry	Dry	Dry	35.64	141.26					
6/22/2021	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	35.72	140.11					
11/2/2021	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	34.92	138.26					
3/22/2022	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	34.88	141.18 137.44					
12/6/2022	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	34.27	137.44 142.13					
2/21/2023 11/27/2023	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	34.82 37.11	142.13					
2/22/2023	Dry 134.61	Dry Dry	Dry Dry	Dry Dry	Dry Dry	37.11 37.44	142.49 146.54					
2/22/2024		Dry Dry	Dry Dry	Dry Dry	Dry Dry		146.54 142.53					
3/24/2025	Dry Dry	Dry Dry	Dry Dry	Dry Dry	Dry Dry	37.40 37.40	142.55					
5/27/2023	ыу	лу	ыу	лу	ыу	57.40	172.00					

Historical Groundwater Elevations and TPH-DRO Concentrations Inglewood Oil Field

Inglewood Oil Field												
Date	MW-3	MW-4A	MW-4B	MW-4C	MW-5	MW-6	MW-7					
			TPH-DR	O (mg/l)								
4/2/2010	0.14	NS	NS	NS	NS	<0.10	<0.10					
6/2/2010	<0.10	NS	NS	NS	NS	<0.10	<0.10					
9/16/2010	NS	NS	NS	NS	NS	<0.10	<0.10					
12/14/2010	NS	NS	NS	NS	NS	<0.10	<0.10					
3/10/2011	<0.10	NS	NS	NS	NS	<0.10	<0.10					
6/13/2011	0.18	NS	NS	NS	NS	<0.10	<0.10					
9/19/2011	NS	NS	NS	NS	NS	<0.10	<0.10					
11/22/2011	NS	NS	NS	NS	NS	<0.10	<0.10					
2/15/2012	0.34	NS	NS	NS	NS	<0.10	0.15					
4/26/2012	0.19	NS	NS	NS	NS	<0.10	<0.10					
8/30/2012	0.23	NS	NS	NS	NS	<0.10	<0.10					
11/20/2012	NS	NS	NS	NS	NS	<0.10	<0.10					
2/27/2013	<0.10	NS	NS	NS	NS	<0.10	<0.10					
5/13/2013	<0.10	NS	NS	NS	NS	<0.10	<0.10					
8/15/2013	NS	NS	NS	NS	NS	<0.10	<0.10					
11/21/2013	NS	NS	NS	NS	NS	<0.10	<0.10					
3/13/2014	NS	NS	NS	NS	NS	<0.10	<0.10					
5/22/2014	NS	NS	NS	NS	NS	<0.10	<0.10					
8/21/2014	NS	NS	NS	NS	NS	<0.10	<0.10					
11/12/2014	NS	NS	NS	NS	NS	<0.10	<0.10					
2/26/2015	0.43	NS	NS	NS	NS	<0.10	<0.10					
5/18/2015	<0.10	NS	NS	NS	NS	<0.10	<0.10					
8/18/2015	<0.10	NS	NS	NS	NS	0.11	<0.10					
11/16/2015	0.13	NS	NS	NS	NS	<0.10	<0.10					
2/16/2016	<0.10	NS	NS	NS	NS	<0.10	<0.10					
5/17/2016	<0.10	NS	NS	NS	NS	<0.10	<0.10					
8/25/2016	<0.10	NS	NS	NS	NS	<0.10	<0.10					
11/8/2016	NS	NS	NS	NS	NS	<0.10	<0.10					
3/8/2017	<0.10	NS	NS	NS	NS	<0.10	<0.10					
6/1/2017	<0.10	NS	NS	NS	NS	<0.10	<0.10					
9/5/2017	0.10	NS	NS	NS	NS	<0.10	<0.10					
11/20/2017	NS	NS	NS	NS	NS	<0.10	<0.10					
2/6/2018	NS	NS	NS	NS	NS	0.10 J	<0.20					
5/15/2018	NS	NS	NS	NS	NS	<0.20	<0.20					
7/25/2018	NS	NS	NS	NS	NS	<0.20	<0.20					
12/10/2018	NS	NS	NS	NS	NS	<0.20	<0.20					
2/19/2019	NS	NS	NS	NS	NS	<0.20	<0.20					
5/22/2019	NS	NS	NS	NS	NS	<0.20	<0.20					
8/28/2019	NS	NS	NS	NS	NS	<0.20	<0.20					
11/13/2019	NS	NS	NS	NS	NS	<0.20	<0.20					
2/5/2020	NS	NS	NS	NS	NS	<0.20	<0.20					
5/5/2020	NS	NS	NS	NS	NS	<0.20	<0.20					
8/25/2020	NS	NS	NS	NS	NS	<0.20	<0.20					
11/17/2020	NS	NS	NS	NS	NS	<0.20	<0.20					
3/17/2021	NS	NS	NS	NS	NS	<0.20	<0.20					
6/22/2021	NS	NS	NS	NS	NS	<0.20	<0.20					
11/2/2021	NS	NS	NS	NS	NS	<0.20	<0.20					
3/22/2022	NS	NS	NS	NS	NS	<0.20	<0.20					
12/6/2022	NS	NS	NS	NS	NS	<0.20	<0.20					
2/21/2023	NS	NS	NS	NS	NS	<0.20	<0.20					
11/27/2023	NS	NS	NS	NS	NS	<0.20	<0.20					
2/22/2024	0.52	NS	NS	NS	NS	<0.20	<0.20					
11/12/2024	NS	NS	NS	NS	NS	< 0.036	< 0.036					
3/24/2025	NS	NS	NS	NS	NS	< 0.050	< 0.050					

Historical Groundwater Elevations and TPH-DRO Concentrations Inglewood Oil Field

ft msl = elevation in feet above mean sea level

TPH-DRO = Total Petroleum Hydrocarbons - Diesel Range with Silica Gel Filtering

mg/l = milligrams per liter

<RL = not detected above the reporting limit

NS = Not Sampled due because well was dry or insufficient liquid to collect sample

J = Estimated concentration below the RL