Appendix A Notice of Preparation, Initial Study, and Scoping Comments

A-1 Notice of Preparation (NOP)

Los Angeles County Department of Regional Planning

Planning for the Challenges Ahead

Director

NOTICE OF PREPARATION

DATE: October 30, 2015

PROJECT TITLE: Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION: The Specific Plan area is located in the unincorporated community

> of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities would be provided at appropriate locations such as bicycle stations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

• Transportation/Traffic

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **October 30, 2015 to November 30, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **November 30, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Telephone: (213) 974-641 Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov

SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015**, from 10:00 am to 12:00 pm.

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/TOD as well as at the following libraries:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

Mark Twain Public Library 9621 S Figueroa St Los Angeles, CA 90003 Compton Library 240 W Compton Blvd Compton, CA 90220

Los Angeles Public Library - Alma Reaves Woods - Watts Branch 10205 Compton Ave Los Angeles, CA 90002

A C Bilbrew Library (Temporary Location) 12603 S Broadway Los Angeles, CA 90061

Hollydale Library 12000 Garfield Ave South Gate, CA 90280

A-2 Initial Study

Environmental Checklist Form (Initial Study)

County of Los Angeles, Department of Regional Planning

Project title: Willowbrook Transit Oriented District (TOD) Specific Plan/ Project No. R2015-02007/
Case Nos. RADV T201500004, RENV T201500136, RPA T201500005, RSP T201500001, RZC
T201500006

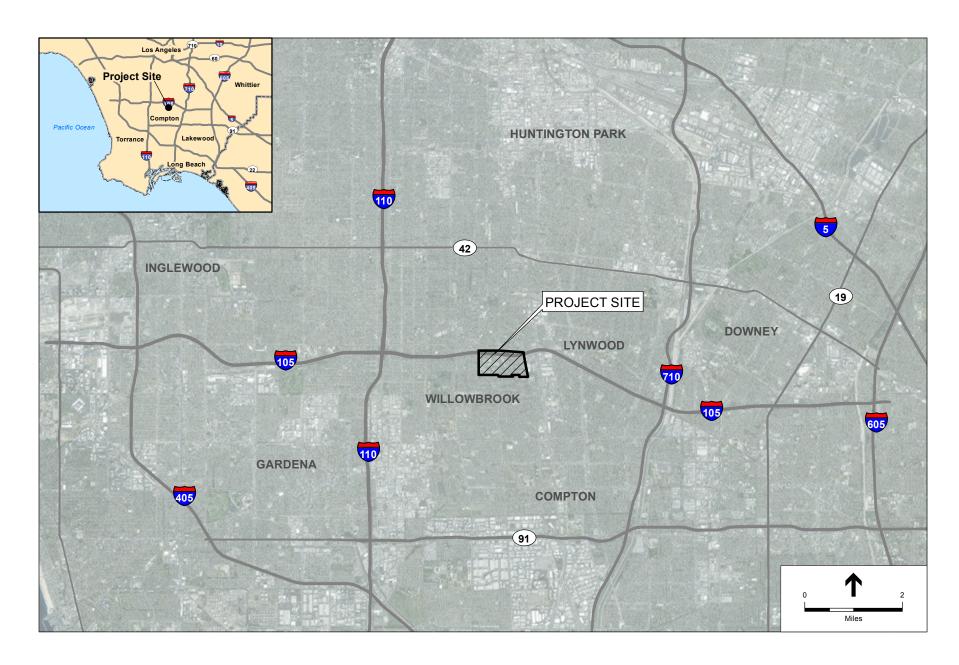
Lead agency name and address: Los Angeles County, 320 West Temple Street, Los Angeles, CA 90012

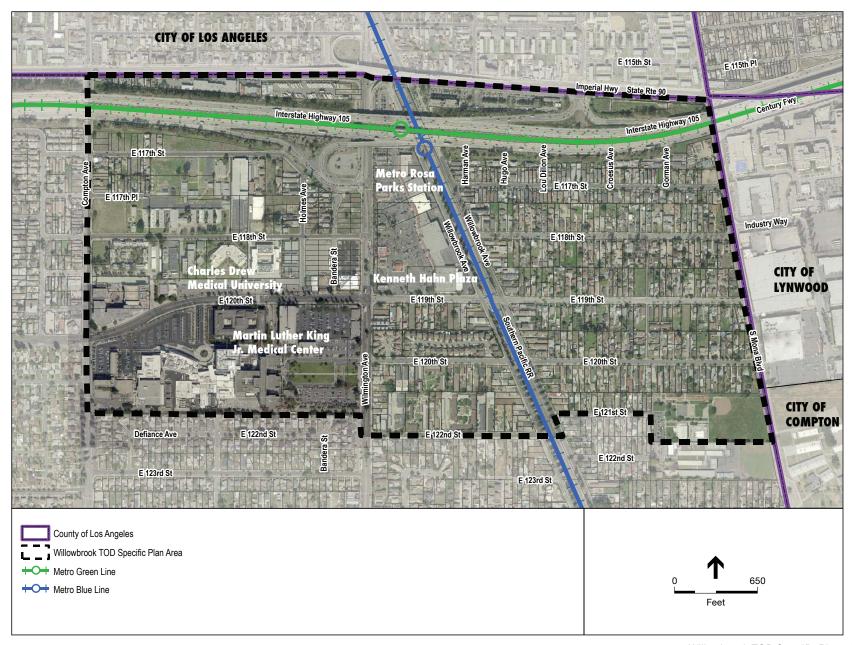
Contact Person and phone number: Connie Chung, AICP, (213) 974-6417

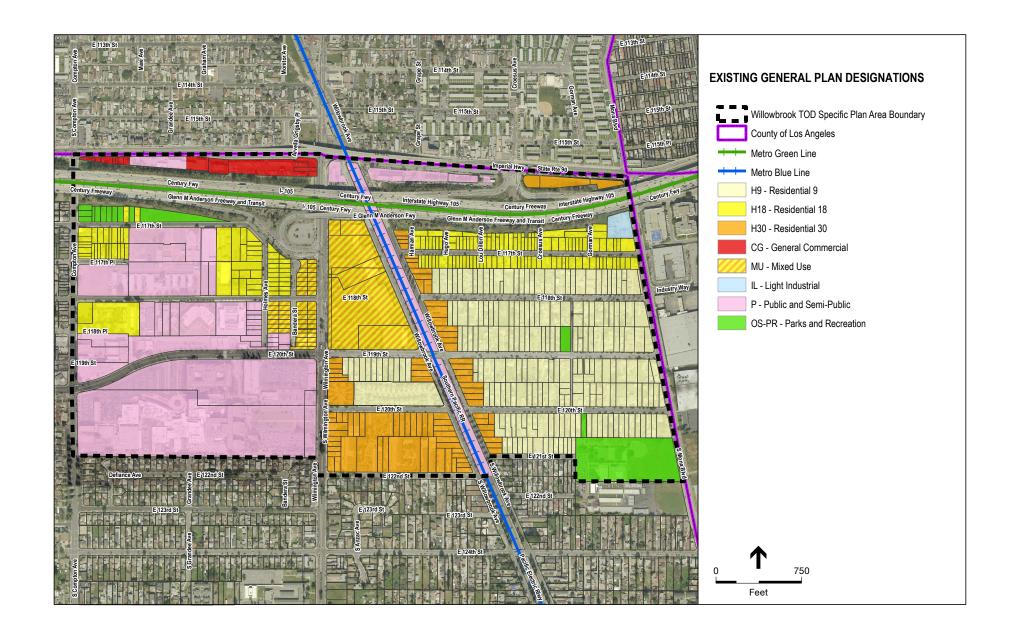
<u>Project sponsor's name and address:</u> Los Angeles County, 320 West Temple Street, Los Angeles, CA 90012

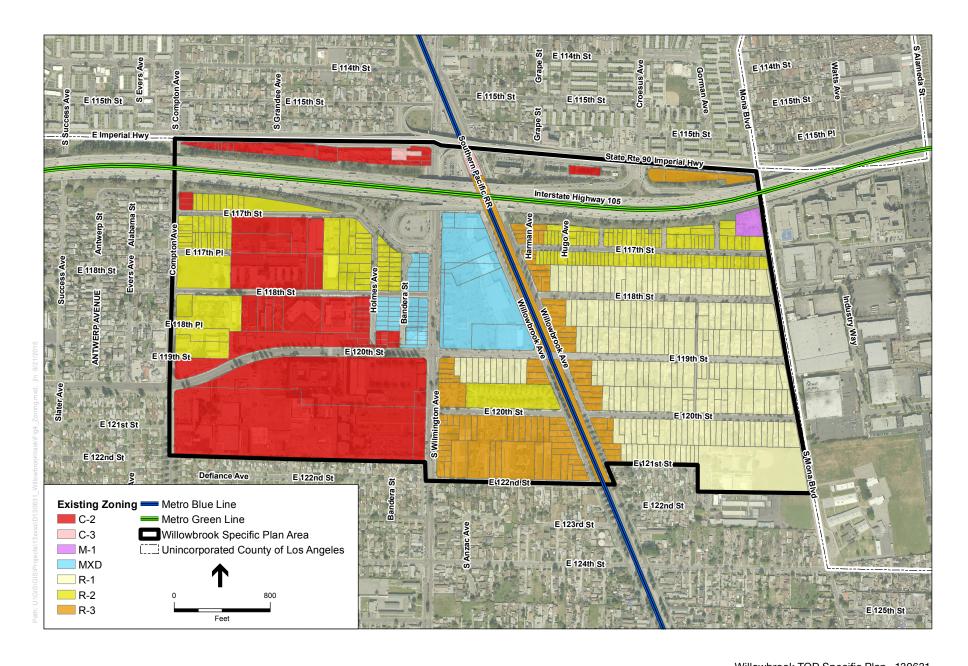
Project location: The Specific Plan area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east (Figure 1, Regional Location).

The proposed Specific Plan area is focused on lands around the Willowbrook/Rosa Parks Station. The Willowbrook/Rosa Parks Station is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson), which is an above grade freeway location; and access to the Blue Line is at grade, below the Green Line. The Specific Plan generally encompasses a half mile radius south of the station (Figure 2, Project Location).


APN: Various USGS Quad: Southgate


Gross Acreage: The Specific Plan area totals 312 acres.


General plan designations: <u>Major Commercial</u>, <u>Residential (low, low/medium, medium and high density)</u>, <u>Open Space</u>, <u>Public and Semi-Public Facilities and Transportation</u> (<u>Figure 3, Existing General Plan Designations</u>)


Community/Area wide Plan designation: Willowbrook/Los Angeles County General Plan Metro Planning Area

Zoning: C-2 (neighborhood commercial), C-3 (unlimited commercial), M-1 (light manufacturing), MXD (mixed use development), R-1 (Single-family residence), R-2 (two-family residence), and R-3 (limited multiple residence) (**Figure 4, Existing Zoning**)

Description of project: The proposed Specific Plan is a County-initiated, Los Angeles County Metropolitan Transit Authority (Metro) grant-funded planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses. The proposed zoning as shown on Figure 5 includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Table 1 shows the increase in development that would result from build out of the proposed Specific Plan. Table 2 shows the existing acreage, zoning and land uses that would be revised by implementation of the proposed Specific Plan.

TABLE 1
DEVELOPMENT GENERATED FROM BUILDOUT OF THE PROPOSED SPECIFIC PLAN

	Residential Units	Non-Residential (SF)
Buildout of Proposed Specific Plan Zoning	2,702	4,540,830
Existing Development	968	1,910,524
Net New Development	1,734	2,630,306

Specific Plan Subareas - Existing Uses

The existing land uses within the Specific Plan area include the Martin Luther King, Jr. (MLK) Medical Center Campus, Charles R. Drew University of Medicine and Science (CDU), Kenneth Hahn Plaza, Willowbrook Library, and the MLK Center for Public Health. The Specific Plan area is divided into seven distinct subareas that support a range of land uses, as described below and shown in **Figure 6**.

MLK Medical Center and Associated Facilities: The medical center campus is bound by Wilmington Avenue to the east, E. 120th Street to the north, Compton Avenue to the west, and a residential neighborhood to the south. The approximately 38-acre campus includes the MLK Community Hospital, which serves approximately 1.2 million residents throughout South Los Angeles including Compton, Inglewood, Watts, Willowbrook and Lynwood. In addition, the MLK Center for Public Health is adjacent to the hospital and is operated by the County of Los Angeles.

In 2011, Los Angeles County certified an environmental impact report for the MLK Medical Center Campus Redevelopment Project, Tiers I and II. Tier I development consisted of the MLK Multi-Service Ambulatory Care Center which has been developed, and is now part of the Specific Plan area's existing setting. Tier II programmatically considered mixed-use development including: medical office, commercial, retail, office space, recreation, and multi-family residential uses.

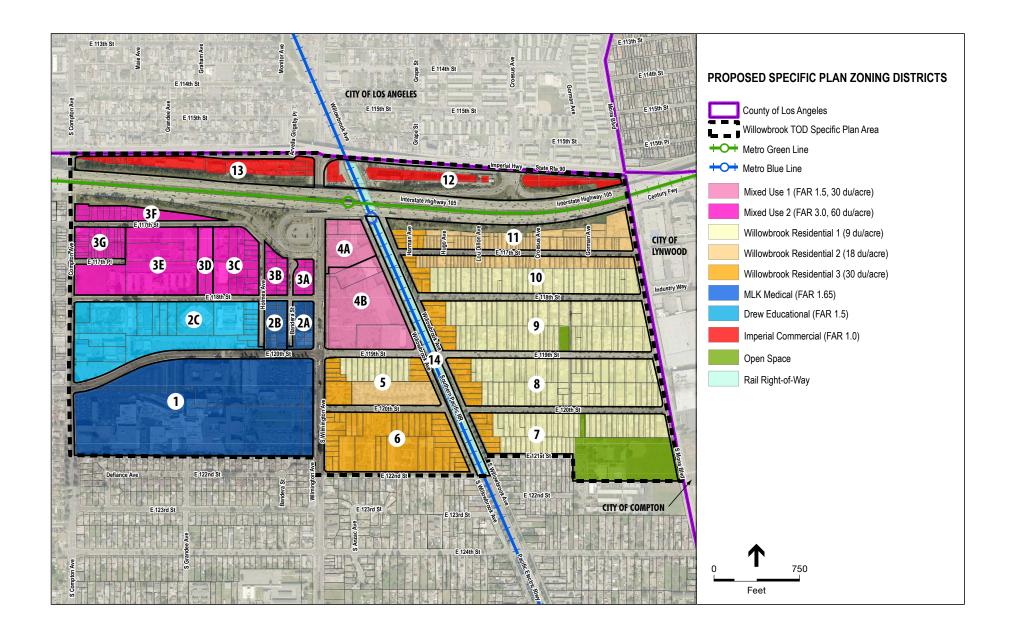
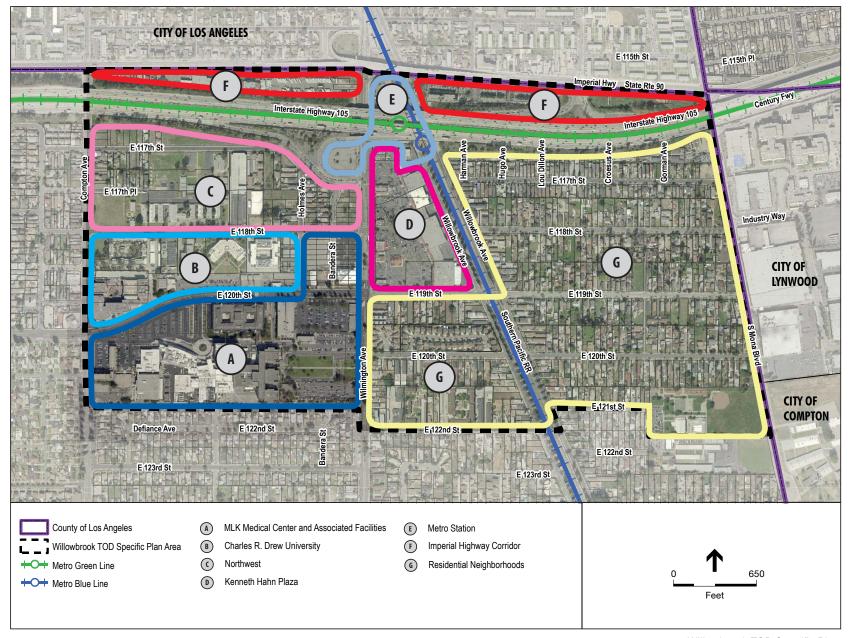


TABLE 2
SUMMARY OF SPECIFIC PLAN ZONING AND GENERAL PLAN LAND USE AMENDMENTS

Subarea	Group	Existing Zoning and Land Use	Existing Residential Units	Existing Non- Residential (SF)	Proposed Zoning and Land Use	Capacity for Residential Units	Capacity for Non-Residential (SF)
MLK	1	Public	-	890,891	MLK Medical	100	2,139,413
MLK	2A	Public/Parking	-	33,000	MLK Medical	-	55,084
MLK	2B	Public/Parking	=	5,960	MLK Medical	-	5,960
CDU	2C	Institutional/Vacant/Public	49	477,842	Drew Educational	119	722,990
Northwest	3A	Vacant	-	-	Mixed Use 2	105	8,939
Northwest	3B	Single Family Residential/Vacant	19	-	Mixed Use 2	83	56,865
Northwest	3C	Public/Residential/Vacant.	30	16,816	Mixed Use 2	255	173,065
Northwest	3D	Institutional	-	150,000	Mixed Use 2	-	351,610
Northwest	3E	Vacant/Public	-	86,684	Mixed Use 2	553	375,433
Northwest	3F	Residential/Vacant	4	-	Mixed Use 2	145	98,494
Northwest	3G	Residential/Vacant	24	3,359	Mixed Use 2	134	91,373
Kenneth Hahn	4A	Retail/Commercial	-	49,447	Mixed Use 1	48	40,761
Kenneth Hahn	4B	Retail/Commercial	-	139,839	Mixed Use 1	264	179,355
Residential	5	Residential/Vacant/Religious	83	1,900	Willowbrook Residential	96	1,900
Residential	6	Residential/Vacant	272	-	Willowbrook Residential 3	278	-
Residential	7	Residential/Open Space	70	16,728	Willowbrook Residential 1	70	16,728
Residential	8	Residential/Vacant	99	-	Willowbrook Residential 1	102	-
Residential	9	Residential/Vacant	116	0	Willowbrook Residential 1	120	-
Residential	10	Residential//Vacant/Religious	129	2,112	Willowbrook Residential 1	132	2,112
Residential	11	Residential/Vacant/Industrial	67	-	Willowbrook Residential 2	91	-
Imperial Highway Corridor	12	Vacant/Rail Right-of-Way/Park and Ride	-	-	Imperial Commercial	-	55,281
Imperial Highway Corridor	13	Parking/Institutional/Public/Retail/ Commercial, Residential	6	35,945	Imperial Commercial	6	115,467
Metro Station	14	Rail Right-of-Way	-	-	Rail Right-of-Way	-	-
Totals			968	1,910,524		2,702	4,540,830

In 2012, Los Angeles County prepared a MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision to guide Tier II development of the campus. The master plan and community vision were not formally adopted by the Los Angeles County Board of Supervisors, and it is the County's intent that the Willowbrook TOD Specific Plan serve as the regulatory document for buildout of the campus. Thus, while the master plan and community vision provides a guiding framework for buildout of the medical campus, future development within the campus will be required to comply with the provisions of the Willowbrook TOD Specific Plan. While the construction of the MLK Community Hospital was subject to the mitigation measures of the 2011 EIR, all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Willowbrook TOD Specific Plan.

CDU: Immediately north of the MLK Medical Center campus are CDU and the King/Drew Magnet High School. The high school is a four story building on the northeast corner of Compton Avenue and 120th Street and is a part of the Los Angeles Unified School District system. These institutions are bounded by Holmes Avenue to the east, Compton Avenue to the west, 120th Street to the south and 118th Street to the north.


Northwest: The northwest subarea encompasses a variety of uses, including educational, retail, residential and institutional. Several vacant lots, owned by the Los Angeles County Community Development Commission (CDC), are located along E. 117th Street. A large vacant site on the northeast corner of E. 118th Street and Compton Avenue is owned by the Compton Unified School District. The educational uses include Lincoln-Drew Elementary School, a part of the Compton Unified School District (CUSD), and the Barack Obama Charter School (an Ingenium Charter School), which are both located north of E. 118th Street. CDU also owns and operates a two-story parking garage and parking lot in this subarea. Other uses in this subarea include a mini-mart, municipal water well and storage and a mix of single family homes, duplexes and multifamily structures. A mixed-use affordable housing and County public library project will break ground at the corner of Wilmington Avenue and 118th street in 2016.

Kenneth Hahn Plaza: Kenneth Hahn Plaza is a privately owned shopping center with approximately 189,287 square feet of retail/commercial space that is located on County-owned land immediately south of the Willowbrook/Rosa Parks Station, and bound by Wilmington Avenue to the west, 119th Street to the south and Willowbrook Avenue to the east. The anchor tenant is a Food 4 Less grocery store; and other tenants include Rite-Aid, General Discount, DaVita Dialysis Center, McDonalds, Taco Bell, Pizza Hut, and Denny's. The Plaza also includes the Willowbrook Library (soon to be relocated) and a Los Angeles County Sheriff's Department substation.

Metro is acquiring approximately 1.5 acres of land on the northern end of the Plaza for expansion of the Willowbrook/Rosa Parks Station. The rest of the Plaza site is being purchased by the shopping center operator, Kimco.

Metro Station: The Willowbrook/Rosa Parks station is adjacent to Kenneth Hahn Plaza, but is blocked off by a fence. Access to the residential neighborhoods to the east of the rail line is limited. Metro is currently implementing the Willowbrook/Rosa Parks Station Improvement Project, which would improve the existing physical conditions of the station. Specific improvements include lighting, signage, and pedestrian access to and from the surrounding neighborhood.

Imperial Highway Corridor: The uses along Imperial Highway Corridor are generally a mix of auto repair, retail, residential, Metro facilities, and underutilized and vacant lots. A school bus

parking lot and a Metro maintenance yard are located to the west of Wilmington Avenue, and a Metro parking lot is located to the east of Wilmington Avenue. A barber shop and auto shop (towing) are located further west, near Compton Avenue. In addition, a few new homes have been built recently, and a vacant site owned by the Housing Authority for the City of Los Angeles is located within this corridor. On the north side of Imperial Highway (and not within the Specific Plan area) is Imperial Courts, a public housing project.

Residential Neighborhoods: Residential areas within the Specific Plan area include a mix of single family homes, duplexes, apartments, and condominiums and townhouses, which comprise just over 30 percent of the total Specific Plan area. The residential area south of Kenneth Hahn Plaza, east of Wilmington Avenue and west of Willowbrook Avenue is primarily multi-family, with a mix of apartments and detached town homes.

The residential area bounded by Mona Boulevard, 105 Freeway, Willowbrook Avenue and 121st Street contains mostly single-family uses, with the exception of the Willowbrook Avenue East frontage along the Metro Blue Line tracks, which is primarily multi-family use.

Specific Plan Subareas - Proposed Zoning

The Specific Plan area proposes new zoning designations, as described below and shown in Figure 5.

Mixed Use 1 (MU-1) (Kenneth Hahn Plaza Subarea): The Mixed Use 1 (MU-1) zone is intended to provide commercial and residential development with an emphasis on neighborhood serving retail, restaurant and service uses. The Specific Plan envisions a large retail or mixed use center, with a neighborhood plaza or community gathering space as a focal point and strong pedestrian connections to the Willowbrook/Rosa Parks Station, as well as the educational and medical campuses to the west. The proposed density for Mixed Use 1 (MU-1) zone is 1.5 floor area ratio (FAR) and 30 dwelling units per acre.

Mixed Use 2 (MU-2) (Northwest Subarea): The Mixed Use 2 (MU-2) zone is intended to provide commercial and residential development with an emphasis on employment generating uses and residential infill development. The area is appropriate for office, business park, or mixed use developments, with a significant open space component and strong pedestrian connections to the Willowbrook/Rosa Parks Station, and the educational and medical campuses to the south.

The Specific Plan would implement a mixed use district with employment generating uses and high-density residential infill within the Northwest Subarea. The employment generating uses are intended for medical back office, laboratory facilities, hospital equipment facility; medical or university support businesses that provide job opportunities. The high-density residential infill would provide housing for current and future workers, students, and residents in the area. The proposed density for Mixed Use 2 (MU-2) zone is 3.0 FAR and 60 dwelling units per acre.

MLK Medical (MLK Medical Center and Associated Facilities Subarea): The MLK Medical zone is established to maintain and promote medical, clinic, medical office, and associated uses such as incidental retail, supportive residential and parking. This subarea includes the MLK Medical Center campus, which includes the Los Angeles County Multi-Service Ambulatory Care Center (MACC) that opened in 2014 and provides outpatient services including general medicine, cardiology, dermatology, dentistry, geriatrics, HIV and AIDS care, neurology, orthopedics and physical therapy. In addition, the campus includes the new MLK Community Hospital, which opened on July 7, 2015 and has a total of 131 beds, including 93 medical/surgical beds, 20 intensive

care beds and 18 obstetrical beds. In addition, the hospital has a 21-bed emergency department. A 50,000 square foot medical office building and a 1,400 car parking garage are also in the planning and design stages within the MLK campus.

The Specific Plan would provide for pedestrian connection improvements between the MLK Medical Center campus and other activity areas. The proposed density for the MLK Medical zone is 1.65 FAR.

Drew Educational (CDU Subarea): The Drew Educational zone is established to meet the existing and future needs of the CDU and King Drew Magnet High School, while ensuring compatibility with adjacent land uses. The CDU master plan includes a pedestrian, bicycle and shuttle circulation network that connects with the major activity centers in the Specific Plan area. The CDU master plan also includes housing opportunities. The proposed housing types include residences for undergraduate students in a dorm-suite setting, shared graduate student housing, and family housing for visiting faculty. The proposed density for Drew Educational zone is 1.5 FAR.

Imperial Commercial (Imperial Highway Corridor Subarea/ Metro Rosa Parks Station Subarea): The Imperial Commercial zone is established to meet the commerce and service needs of community while ensuring compatibility with adjacent land uses. The intent is to maintain and promote commercial uses between Imperial Highway and I-105 Freeway. The Imperial Commercial zone provides for development of a broad range of retail and service uses, as well as freeway-oriented, regional-serving retail, office complexes, and light manufacturing businesses.

This corridor is suited for less intensive, non-residential uses, such as maintenance yards and parking facilities, self-service public storage facilities, and communications equipment buildings. The proposed density for Imperial Commercial zone is 1.0 FAR.

Willowbrook Residential 1 (Residential Neighborhoods Subarea): The Willowbrook Residential 1 zone provides for primarily detached, single-family residences to preserve existing residential uses in certain areas. The proposed density for Residential 1 zone is 9 dwelling units per acre.

Willowbrook Residential 2 (Residential Neighborhoods Subarea): The Willowbrook Residential 2 zone provides for single family residential, while also providing for two-family residences. The intent is to promote the desirable characteristics of low to medium density neighborhoods. The proposed density for Residential 2 zone is 18 dwelling units per acre.

Willowbrook Residential 3 (Residential Neighborhoods Subarea): The Willowbrook Residential 3 zone is established to provide opportunities for developments containing multiple units, such as apartments or condominiums with common open space and other shared amenities. The proposed density for Residential 3 zone is 30 dwelling units per acre.

Parking Reduction Overlay Zone: The Specific Plan establishes a Parking Reduction Overlay zone within which minimum parking requirements are reduced and maximum parking standards are established to provide appropriate parking for each individual development project, and consistent with the projected increased transit use and less need for parking. The parking overlay zone is primarily located within the CDU, Northwest, Kenneth Hahn Plaza and Metro Station Subareas.

Proposed Mobility and Parking

Roadway Network: The roadway system provides the backbone circulation system for all modes of transportation. The existing street system would be largely maintained in its current configuration, with some improvements designed to improve access, circulation, and walkability (Figure 7, Existing Street Network and Proposed Road Diets). The major roadways are Wilmington Avenue and Imperial Highway. Secondary roadways are Compton Avenue, Willowbrook Avenue and Mona Boulevard in the north-south direction, and 120th Street/119th Street in the east-west direction. The number of traffic lanes and roadway lane configurations would generally remain the same, except where road diets would be implemented. Road diets reduce the number of car lanes and add bicycle/pedestrian lanes. The following street enhancements, shown in Figure 8, are intended to improve circulation for bicycles and pedestrians in the Specific Plan area.

Road Diet and Bicycle Lanes on 120th Street: As part of the Willowbrook Area Access Improvements Project, a portion of 120th Street between Compton Avenue and Wilmington Avenue would be reduced from four lanes to three lanes, with a bicycle lane in each direction.

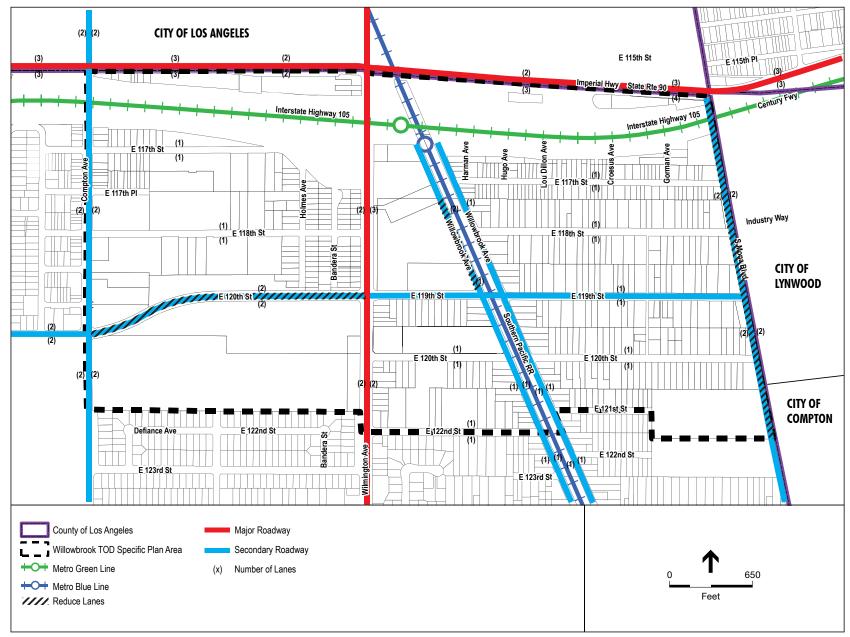
Road Diet and Bicycle/Pedestrian Trail on Mona Boulevard: Mona Boulevard from the I-105 Freeway to 124th Street would be converted from a four lane street to a three lane street, and a pedestrian/bicycle trail installed on the west side of the street.

Willowbrook Avenue: The section of Willowbrook Avenue West between the Willowbrook/Rosa Parks Station and 119th Street, would be reduced from two lanes southbound to one lane southbound, and a bicycle path installed on the west side of the street.

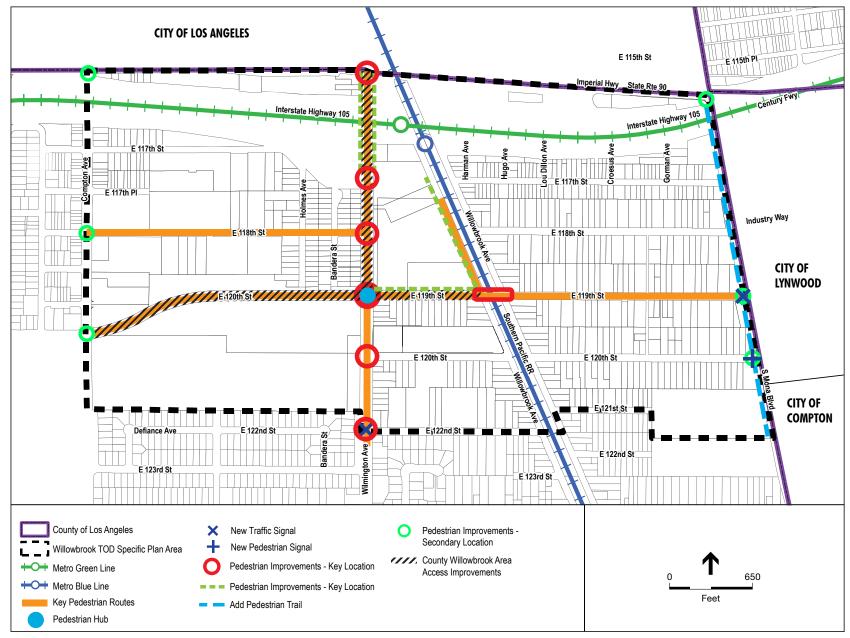
Existing Pedestrian Circulation: The key pedestrian routes in the Specific Plan area are shown in Figure 8, Existing Pedestrian Routes and Proposed Pedestrian Improvements. The backbone of the pedestrian system is formed by Wilmington Avenue in the north-south direction and 120th/119th Street in the east-west direction. These two backbone corridors connect the major activity areas of the Willowbrook/Rosa Parks Station, the Kenneth Hahn Plaza, and the MLK Medical Center campus. They also cross at the intersection of Wilmington Avenue and 120/119th Street, which is the pedestrian hub of the Specific Plan area. Additional key elements of the pedestrian system are 118th Street between Compton Avenue and Wilmington Avenue, which connects the CDU campus to the rest of the Specific Plan area, Willowbrook Avenue West between 119th Street and the Willowbrook/Rosa Parks Station, providing access from residential areas to the station, and 119th Street between Willowbrook Avenue and Mona Boulevard, which provides access from the residential areas to the activity centers of the Specific Plan area. Mona Boulevard also provides north-south pedestrian access on the east side of the Specific Plan area including access to Mona Park, the MLK Elementary School and the Dr. Ralph Bunche Middle School.

Pedestrian Sidewalk Improvements: Sidewalks currently exist on most streets in the Specific Plan area, although some are narrow or substandard in quality. The Specific Plan would implement improvements to sidewalks as new development occurs in the following locations: the currently unpaved west side of Willowbrook Avenue West between the Metro Station and 119th Street; the sidewalks on Wilmington Avenue between the 1-105 Freeway off-ramps and Imperial Highway would be improved by widening and adding streetscape improvements including better street lighting.

Pedestrian Oriented Intersection Improvements: To enhance the pedestrian environment and to calm traffic, the proposed Specific Plan would implement a number of

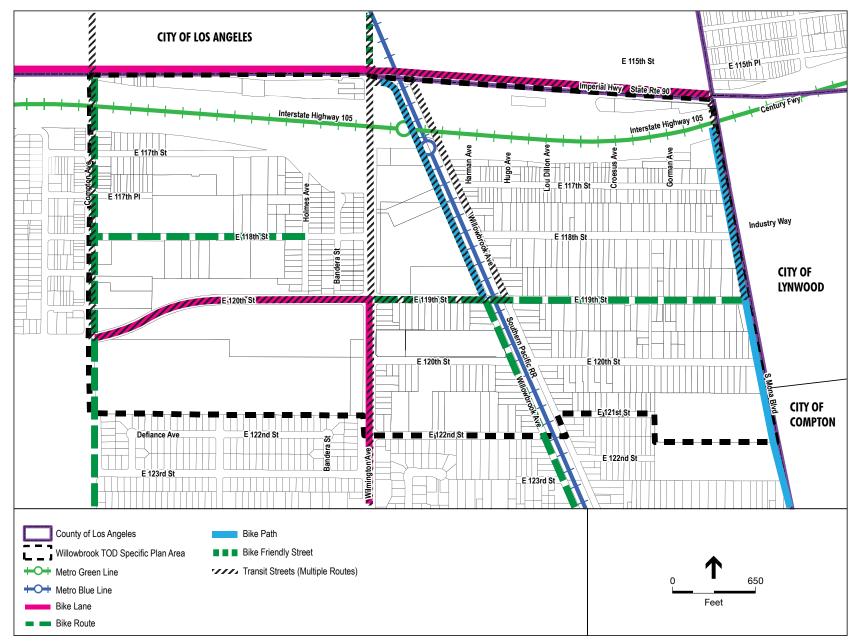

pedestrian oriented intersection improvements, as shown in Figure 9. These include adding high visibility crosswalks at intersections; adding passive pedestrian detection and pedestrian push buttons for crosswalks at traffic signals at intersections; adding countdown pedestrian signals and audio signals to crosswalks at intersections; adding advance stop bars to intersection approaches; adding sidewalk bulb-outs and extensions, or reducing curb returns, on intersection corners where feasible; adding median nose/crossing islands where advantageous and feasible. These measures would facilitate pedestrian circulation, by reducing the width of roadway for pedestrians to cross, providing additional sidewalk space, and making pedestrian crossings more visible to both pedestrians and motorists. The locations for proposed improvements are: Wilmington Avenue and Imperial Highway; Wilmington Avenue and I-105 Eastbound Ramps; Wilmington Avenue and 118th Street; Wilmington Avenue and 120/119th Streets; Wilmington Avenue and 120 Street; Wilmington Avenue and 122nd Street; Willowbrook Avenue West and 119th Street; Willowbrook Avenue East and 119th Street; Mona Avenue and Imperial Highway; Mona Avenue and 119th Street; Mona Avenue and 120th Street; Compton Avenue and Imperial Highway; Compton Avenue and 118th Street; and Compton Avenue and 120th Street.

The type of improvements (Figure 9) would follow the concepts identified in the "Los Angeles County Transit Oriented Districts Access Study". The improvements at Wilmington Avenue and I-105 eastbound ramp would add a crosswalk across Wilmington Avenue to facilitate access to the Willowbrook/Rosa Parks Station. Other specific improvements include new traffic signals at Wilmington Avenue and 122nd Street, and at Mona Avenue and 119th Street, to facilitate pedestrian crossings on long stretches of both streets currently without signalized crosswalks and a signalized pedestrian crosswalk at Mona Avenue and 120th Street, to facilitate pedestrians crossing to the Dr. Ralph Bunche Middle School.


Bicycle Circulation: The Specific Plan Bicycle Network, shown in Figure 9, Bicycle Network and Key Transit Streets, includes a combination of Class I, Class II, Class III and Class IV facilities to provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks station, and provides a network for bicyclists to use safely and efficiently.

Bicycle Facilities: Class I bicycle paths would be implemented on Willowbrook Avenue West between 119th Street and Imperial Highway to provide access to the rail station, and on Mona Avenue (west side) between Imperial Highway and 119th Street. Class II bicycle lanes would be implemented on 120th Street between Compton Avenue and Wilmington Avenue, on Wilmington Avenue between 124th Street and 120th Street, and on Imperial Highway between Compton Avenue and Mona Avenue.

Not all streets can support bicycle lanes. In these instances, a connected bicycle network is achieved through implementation of Class III bicycle routes. Class III bicycle routes would be implemented on Compton Avenue, Willowbrook Avenue West south of 119th Street, 119th Street between Wilmington Avenue and Mona Avenue, and on 124th Street throughout the Specific Plan area.


Willowbrook TOD Specific Plan . 130631

Willowbrook TOD Specific Plan . 130631

SOURCE: Willowbrook TOD Specific Plan

Figure 8
Existing Pedestrian Routes and
Proposed Pedestrian Improvements

Willowbrook TOD Specific Plan . 130631

Figure 9
Bicycle Network and Key Transit Streets

Bicycle Parking and Stations: Bicycle parking would be provided according to the Los Angeles County Code for all new developments. In addition, bicycle parking would be provided at the Kenneth Hahn Plaza and the Willowbrook/Rosa Parks Station. Bicycle stations include repair facilities and small bicycle shops, bicycle share program facilities and, secure bicycle parking. Bicycle Stations would be provided within the MLK Medical Center campus and the CDU campus, and in the Northwest Subarea of office uses. A Bicycle Share Program would be implemented in the Specific Plan area to encourage the use of bicycling and reduce vehicle trips. Bicycle share programs provide bicycles that can be rented for a period of time and can be picked up or dropped off at any bicycle share facility in an area.

Shuttle Routes: Existing shuttle routes that are operated by the County to serve the MLK Medical Center and CDU campus would continue, and additional shuttle routes would be added to serve new development in the Northwest Subarea and connect the land uses to the Metro Station.

Surrounding land uses and setting: The area surrounding the proposed Specific Plan area is heavily urbanized with residential, commercial and institutional land uses. North of the Specific Plan area is predominately residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominately residential.

Project Requirements

CEQA: The proposed Project will require certification of a CEQA document.

- County of Los Angeles Board of Supervisors
- Certification of an Environmental Impact Report. General Plan Amendment, and Zoning Amendment

Other public agencies whose approval may be required (e.g., permits, financing approval, or participation agreement): None for the proposed Specific Plan. Future specific development and redevelopment projects pursuant to the proposed Specific Plan would be subject to approvals by various trustee and regulating agencies, including, but not limited to the CDC, Metro, Caltrans, South Coast Air Quality Management District, and the Los Angeles Regional Water Quality Control Board.

Major projects in the area:

Metro Willowbrook/Rosa Parks Station Improvement Project: Metro's Willowbrook/Rosa Parks Station Improvement Project would provide improvements to this station. In addition to the two rail lines, the Station is served by six Metro bus lines as well as several municipal bus lines and community shuttles. Improvements part of the Metro's Willowbrook/Rosa Parks Station Improvement Project include platform extensions and enhancements, upgraded entrances and pedestrian crossings, improved lighting, landscaping and signage throughout the site, and upgrades to the bus, bicycle and park-and-ride facilities. The Final Initial Study/Negative Declaration was prepared May 8, 2015.

Wilmington & 118th Street Senior Housing and Los Angeles County Public Library: A five-story mixed-use building that includes an 8,939-square-foot first-floor space for a County library and public meeting room is planned for 11737-11753 Wilmington Avenue and 11732-11756 Bandera Street. The four upper floors contain 105 apartments for lower-income seniors. The project contains 104 ground-level and underground parking spaces; and the structure has a total floor area of 92,358 square feet on 1.7 gross (1.0 net) acres. Most of the structure is proposed to have a maximum height of 65 feet

above grade, although an architectural feature may extend to a height of 70 feet above grade. This project is scheduled to break ground in 2016. The Mitigated Negative Declaration prepared for this project was adopted by the Regional Planning Commission on February 11, 2015.

DPW Willowbrook Area Access Improvements: The Department of Public Works (DPW) is planning for improvements to the public right-of-way in the vicinity of the MLK Community Hospital. The primary objective of this project is to improve mobility of pedestrians and bicyclists in the area. The project limits are: Wilmington Avenue from Imperial Highway to 480 feet south of 120th Street, 120th Street from Compton Avenue to Wilmington Avenue, 119th Street from Wilmington Avenue to Willowbrook Avenue. The project includes the following improvements: landscape and irrigation throughout the project limits; sidewalk enhancements such as colored concrete unit pavers and curb ramp upgrades; pavement repair and crosswalk enhancements; construction of new raised medians with landscaping; renovation of existing landscaped median; refurbishing existing and providing new site furnishings such as bus shelters, trash receptacles, benches, and bicycle racks; pedestrian lighting; bicycle routes/lanes; wayfinding and monument signage; and traffic signal upgrades. Construction is set to begin the summer of 2016. The Willowbrook Area Access Improvements project was categorically exempt from the provisions of the California Environmental Quality Act. The CEQA exemption was adopted by the Board of Supervisors on April 2, 2013.

Reviewing Agencies:

Responsible Agencies	Special Reviewing Agencies	Regional Significance
☐ None Regional Water Quality Control Board: ☐ Los Angeles Region ☐ Lahontan Region ☐ Coastal Commission ☐ Army Corps of Engineers	None Santa Monica Mountains Conservancy National Parks National Forest Edwards Air Force Base Resource Conservation District of Santa Monica Mountains Area City of Los Angeles Bureau of Sanitation and City of Los Angeles Department of Planning	 None SCAG Criteria Air Quality Water Resources Santa Monica Mtns. Area
Trustee Agencies ☐ None ☐ State Dept. of Fish and Wildlife ☐ State Dept. of Parks and Recreation ☐ State Lands Commission ☐ University of California (Natural Land and Water Reserves System)	County Reviewing Agencies DPW: - Land Development Division (Grading & Drainage) - Geotechnical & Materials Engineering Division - Watershed Management Division (NPDES) - Traffic and Lighting Division - Environmental Programs Division - Waterworks Division - Waterworks Division - Sewer Maintenance Division	 ➢ Fire Department Forestry, Environmental Division Planning Division Land Development Unit Health Hazmat Sanitation District Public Health/Environmental Health Division: Land Use Program (OWTS), Drinking Water Program (Private Wells), Toxics Epidemiology Program (Noise) Sheriff Department Parks and Recreation Subdivision Committee Beaches and Harbors Parks and Recreation Subdivision Committee Beaches Parks and Harbors Parks and Harbors Parks and Harbors Parks and Harbors

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED:

The environmental factors checked below would be potentially affected by this project. Aesthetics Greenhouse Gas Emissions Population/Housing Agriculture/Forest Hazards/Hazardous Materials **Public Services** Air Quality Hydrology/Water Quality Recreation Biological Resources Land Use/Planning Transportation/Traffic Cultural Resources Mineral Resources Utilities/Services Energy Noise Mandatory Findings of Significance Geology/Soils DETERMINATION: (To be completed by the Lead Department.) On the basis of this initial evaluation: I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared. I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared. \boxtimes I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required. I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed. I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required. Signature (Prepared by) Date Signature (Approved by) Date

EVALUATION OF ENVIRONMENTAL IMPACTS:

- 1) A brief explanation is required for all answers except "No Impact" answers that are adequately supported by the information sources the Lead Department cites in the parentheses following each question. A "No Impact" answer is adequately supported if the referenced information sources show that the impact simply does not apply to projects like the one involved (e.g., the project falls outside a fault rupture zone). A "No Impact" answer should be explained where it is based on project-specific factors as well as general standards (e.g., the project will not expose sensitive receptors to pollutants, based on a project-specific screening analysis).
- 2) All answers must take account of the whole action involved, including off-site as well as on-site, cumulative as well as project-level, indirect as well as direct, and construction as well as operational impacts.
- 3) Once the Lead Department has determined that a particular physical impact may occur, then the checklist answers must indicate whether the impact is potentially significant, less than significant with mitigation, or less than significant. "Potentially Significant Impact" is appropriate if there is substantial evidence that an effect may be significant. If there are one or more "Potentially Significant Impact" entries when the determination is made, an EIR is required.
- 4) "Negative Declaration: Less Than Significant With Mitigation Incorporated" applies where the incorporation of mitigation measures has reduced an effect from "Potentially Significant Impact" to a "Less Than Significant Impact." The lead agency must describe the mitigation measures, and briefly explain how they reduce the effect to a less than significant level. (Mitigation measures from Section XVII, "Earlier Analyses," may be cross-referenced.)
- 5) Earlier analyses may be used where, pursuant to the tiering, program EIR, or other CEQA processes, an effect has been adequately analyzed in an earlier EIR or negative declaration. (State CEQA Guidelines § 15063(c)(3)(D).) In this case, a brief discussion should identify the following:
 - a) Earlier Analysis Used. Identify and state where they are available for review.
 - b) Impacts Adequately Addressed. Identify which effects from the above checklist were within the scope of, and adequately analyzed in, an earlier document pursuant to applicable legal standards, and state whether such effects were addressed by mitigation measures based on the earlier analysis.
 - c) Mitigation Measures. For effects that are "Less than Significant with Mitigation Measures Incorporated," describe the mitigation measures which were incorporated or refined from the earlier document and the extent to which they address site-specific conditions for the project.
- 6) Supporting Information Sources: A source list should be attached, and other sources used or individuals contacted should be cited in the discussion.
- 7) The explanation of each issue should identify: the significance threshold, if any, used to evaluate each question, and; mitigation measures identified, if any, to reduce the impact to less than significance. Sources of thresholds include the County General Plan, other County planning documents, and County ordinances. Some thresholds are unique to geographical locations.
- 8) Climate Change Impacts: When determining whether a project's impacts are significant, the analysis should consider, when relevant, the effects of future climate change on: 1) worsening hazardous conditions that pose risks to the project's inhabitants and structures (e.g., floods and wildfires), and 2) worsening the project's impacts on the environment (e.g., impacts on special status species and public health).

1. AESTHETICS

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	1	1	1	1
a) Have a substantial adverse effect on a scenic vista?			\boxtimes	
Less Than Significant Impact. Typically, a scenic vista is aesthetically pleasing. Aesthetic components of a scenic vista and (3) view access. The Specific Plan area is a flat, level are natural open space. Willowbrook is an urbanized communi generally adjacent to urban development and associated roady not considered to have a high level of sensitivity for scenic viswould not occur and further discussion of this will not be included.	a with no heaty and, as a ways and landstaimpacts.	scenic quality, ills and there a result, views dscaping. The Therefore, imp	(2) sensitivi are no large in all directi Specific Plai	ty level, areas of ions are n area is
b) Be visible from or obstruct views from a regional riding or hiking trail?				
No Impact. The Specific Plan area is located within a fully of vicinity of a County regional riding or hiking trail (LA County (a 7 mile bike path from the north side of Griffith Park at R Barclay Street, north of Downtown LA) is 3 miles to the earn River Trail is not located in the vicinity of the Specific Plan area; thus, the EIR will not include an evariding or hiking trails and scenic views.	y, 2012). Ho iverside Dri ist of the Sp area and doe	wever, the Los ve along the I secific Plan are s not have dir	Angeles Rivos Angeles I ea. The Los ect or indirect	ver Trail River to Angeles ct views
c) Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
No impact. The Specific Plan area is not located within or not not located within view of a state or federal scenic highway. It the northern portion of the project area but is not designated designated Scenic Highway is a portion of Highway 210 (Conorth of the Specific Plan area. Thus, the Specific Plan area is would not result in impacts to scenic resources within view of require further analysis in the EIR.	Interstate Hi ed as a scen altrans, 201 s not visible	ghway 105 rur nic highway. T 5) located app from this high	ns east to we he nearest Coroximately 2 way, and the	st along Caltrans- 20 miles project
d) Substantially degrade the existing visual character or quality of the site and its surroundings because of height, bulk, pattern, scale, character, or other features?				

Potentially Significant Impact. The proposed Specific Plan would allow for redevelopment at an increased intensity; taller buildings, expanded sidewalks, bicycle lanes and bicycle parking facilities, and alterations to the existing street intersections in order to implement a TOD development pattern to the Specific Plan area. New development would be located within walking distance of the existing

Willowbrook/Rosa Parks Station and would include a mix	of residential	, mixed-us	e, commer	cial, and
complementing public uses designed for pedestrians while	: also accomm	odating ve	hicular tra	ffic. The
proposed Specific Plan is intended to be consistent with th	<u>ie Los Angeles</u>	County G	eneral Plar	n goal to
strengthen aesthetic character within the area, and would inc	<u>:lude landscapir</u>	ng and beau	utification of	elements.
However, these improvements would alter the existing visual	l character of t	he area. Th	ne EIR will	evaluate
the planned changes to determine if they would degrade the	ne existing visi	ual characte	er or qualit	ty of the
Specific Plan area.	_			
e) Create a new source of substantial shadows, light,	\boxtimes			
or glare which would adversely affect day or nighttime				
views in the area?				

Potentially significant impact. The proposed infill development and redevelopment, as well as the new pedestrian-friendly light signals and walkway lighting could potentially increase ambient or "spillover" light in the Specific Plan area. In addition, the proposed Specific Plan provides architectural, residential, commercial and mixed-use, parking, landscaping, and street lighting standards. These standards include a prohibition against light fixtures that cause glare or reflect into upper stories of buildings. Chapter 2 of the proposed Specific Plan states that pedestrian-scaled lighting should be provided along all streets in the project area. Light fixtures would adhere to guidelines set forth by the Dark Sky Association to protect the area's view of stars. Light fixtures in the public right-of-way would also follow the Southern California Edison (SCE) standards for maintenance. However, potentially significant impacts related to an increase in ambient and spillover light could occur; thus, potential impacts related to light and glare will be further evaluated in the EIR.

2. AGRICULTURE / FOREST

In determining whether impacts to agricultural resources are significant environmental effects, lead agencies may refer to the California Agricultural Land Evaluation and Site Assessment Model (1997) prepared by the California Department of Conservation as an optional model to use in assessing impacts on agriculture and farmland. In determining whether impacts to forest resources, including timberland, are significant environmental effects, lead agencies may refer to information compiled by the California Department of Forestry and Fire Protection regarding the state's inventory of forest land, including the Forest and Range Assessment Project and the Forest Legacy Assessment project; and forest carbon measurement methodology provided in Forest Protocols adopted by the California Air Resources Board.

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impaci
Would the project:				
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				
No impact. The Willowbrook area does not contain any P of Statewide Importance (CDOC, 2015). The proposed Sp area that does not contain any farmland uses. Therefore, Prime Farmland, Unique Farmland, or Farmland of State impacts related to the conversion of farmland to non-agric analyzed further in the EIR.	pecific Plan a the proposed ewide import	rea consists o l Specific Plar tance to nona	f a develope n would not gricultural u	ed urban convert ses. No
b) Conflict with existing zoning for agricultural use, with a designated Agricultural Opportunity Area, or with a Williamson Act contract?				
No impact. The project area does not contain an agricultuand is not regulated by a Williamson Act Contract (CDOC, proposed Specific Plan and this issue will not be analyzed further than the specific Plan and the specific	<u>2013). No im</u>	pact would oc		
c) Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code § 12220 (g)), timberland (as defined in Public Resources Code § 4526), or timberland zoned Timberland Production (as defined in Government Code § 51104(g))?				
No impact. Willowbrook is not zoned for forest land o Protection. No impact would occur as a result of the proanalyzed further in the EIR.				
d) Result in the loss of forest land or conversion of forest land to non-forest use?				\boxtimes

No impact. See explanation 2c above.		
e) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use or conversion of forest land to non-forest use?		
No impact. See explanation 2c above.		

3. AIR QUALITY

Where available, the significance criteria established by the applicable air quality management or air pollution control district may be relied upon to make the following determinations.

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impac
a) Conflict with or obstruct implementation of applicable air quality plans of either the South Coast AQMD (SCAQMD) or the Antelope Valley AQMD (AVAQMD)?				
Potentially Significant Impact. Willowbrook is located won the urbanized areas of Los Angeles, Riverside, San Bermonitors the Basin for pollutants and is responsible for registationary sources. The Basin is currently under both federa particulate matter smaller than 10 and 2.5 microns (PM16 Southern California Association of Governments (SCAG management plan (AQMP) to address federal and state Cogoals, policies, and programs for improving air quality in the national and state ambient air quality standards. The most Governing Board on December 12, 2012. On February 1 public meeting to consider the minor revision to the South Company Indicated the proposed Specific Plan would generated and operation of the proposed Specific Plan would generated and operation of new developments in the Specific Plan emissions include heavy off-road equipment as well as one and from development sites. Construction activities would as nitrous oxides (NOx) and volatile organic compounds (V Additionally, because build out of the proposed Specific I intensity and traffic patterns, an increase of air pollutant applicable air quality plans of the SCAQMD. Furthermore increase emissions from new area sources. Overall, the pospecific Plan project could potentially conflict with Simplementation of the proposed Specific Plan to conflict will be evaluated in the EIR.	nardino, and plating and coul and state not and PM2.5 are respondlean Air Actue Basin and recent AQM 19, 2015, the Coast 2012 Plate pollutant of area. During road motor versult in emissions could be consisted as a project version of the plan project version of the coast 2012 Plan project versions could be compared to the coast 2012 Plan project versions could be compared to the plan project versions could be compared to the compared to the coast 2012 Plan project versions could be compared to the compared to the coast 2012 Plan project versions could be	Orange Countrolling emission-attainment, respectively). sible for preprequirements. to bring it into IP was adopted Air Resources M2.5 SIP (CAI) emissions during construction, rehicles and we are precursors would involve ould occur that of new or alterions associated AQMP. Thus	status for oz SCAQMD aring the air The AQMD attainment attainment attainment at by the SC Board cone (B, 2015). Ing both consources of porkers' commutate matter to ozone for changes in at may conferred building at with the poter.	caoming from and the requality P details with the CAOMIC ducted a struction pollutant mutes to the requality mutes to the requality and used in the could be reposed in the requirement of the reposed in the requirement of t
b) Violate any air quality standard or contribute				

Potentially Significant Impact. The Basin is currently under both federal and state non-attainment status in ozone and particulate matter smaller than 10 and 2.5 microns (PM10 and PM2.5, respectively). Implementation of the proposed Specific Plan would result in pollutant emissions generated from the construction and operation of new land uses within the Specific Plan area. Construction of new developments and roadway improvements would generally involve activities such as demolition, site preparation, grading, and building construction, which would result in fugitive dust and equipment exhaust

violation?

emissions. Construction worker and delivery vehicle trips would also generate temporary pollutant
emissions. These construction-related emissions could adversely affect the regional ambient air quality in the
Basin and locally within Willowbrook. Additionally, operation of the new land uses in the proposed Specific
Plan area may result in increased emissions of air pollutants from new stationary sources and from vehicle
trips accessing the Specific Plan area. Thus, the pollutant emissions generated from implementation of the
proposed Specific Plan may violate an air quality standard or contribute to an existing or projected air
quality violation. Therefore, this impact is considered to be potentially significant and will be analyzed in the
EIR. Mitigation measures will be identified if necessary.
7
c) Result in a cumulatively considerable net increase
of any criteria pollutant for which the project region is
non-attainment under an applicable federal or state
ambient air quality standard (including releasing
emissions which exceed quantitative thresholds for
ozone precursors)?
Potentially Significant Impact. As indicated under 3b, short-term construction activities and long-term
operation of future developments associated with the proposed Specific Plan may generate emissions that
could result in either a violation of an ambient air quality standard or contribute to an existing air quality
violation. Due to the elevated concentrations of air pollutants that currently occur in the Basin, when
combined with other past, present, or reasonably foreseeable future projects in the area, the net increase of
criteria pollutants could cumulatively contribute to the nonattainment designations of pollutants in the
1
Basin. Thus, the EIR will evaluate the potential for the proposed Specific Plan to generate a cumulatively
Basin. Thus, the EIR will evaluate the potential for the proposed Specific Plan to generate a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment.
Basin. Thus, the EIR will evaluate the potential for the proposed Specific Plan to generate a cumulatively considerable net increase of any criteria pollutant for which the project region is in nonattainment.

Potentially Significant Impact. Sensitive receptors are locations where uses or activities result in increased exposure of persons more sensitive to the unhealthful effects of emissions (such as children and the elderly). Examples of land uses that can be classified as sensitive receptors include residences, schools, daycare centers, parks, recreational areas, medical facilities, rest homes, and convalescent care facilities. Sensitive receptors within the Specific Plan area include residential areas, medical facilities, and schools such as King-Drew Magnet High School, CDU, Barack Obama Charter School, and MLK Elementary. Future development pursuant to implementation of the proposed Specific Plan project may expose these existing and/or new sensitive receptors to substantial pollutant concentrations. The EIR will evaluate the potential for construction and operation of the future developments in the Specific Plan area to expose sensitive receptors to substantial pollutant concentrations.

concentrations?

e) Create objectionable odors affecting a substantial		
number of people?		

Less Than Significant Impact. The SCAQMD Air Quality Handbook identifies the following uses as having potential odor issues; wastewater treatment plants, food processing plants, agricultural uses, chemical plants, composting, refineries, landfills, dairies, and fiberglass moldings, none of which are proposed within the Specific Plan. The Specific Plan proposes mixed use commercial and residential development within the project area, which do not involve the types of uses that would emit objectionable odors affecting a substantial number of people. In addition, odors generated by new and existing non-residential land uses in the Specific Plan area are required to be in compliance with SCAQMD Rule 402 to prevent odor nuisances on sensitive land uses.

During construction of future projects allowed under the proposed Specific Plan, emissions from construction equipment, such as diesel exhaust, and volatile organic compounds from architectural coatings and paving activities may generate odors. However, these odors would be limited and temporary; and thus, are not expected to affect a substantial number of people. Therefore, impacts relating to both operational and construction activity odors would be less than significant, and odors will not be evaluated in the EIR.

4. BIOLOGICAL RESOURCES

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impaci
Would the project:				
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife (CDFW) or U.S. Fish and Wildlife Service (USFWS)?				
No Impact. No candidate, sensitive, or special-status species of the Specific Plan area by the California Natural Diversity proposed Specific Plan provides for infill development environment. This development would not result in any direct any habitat modifications that could indirectly result in a species. Therefore, the proposed Specific Plan project would candidate, sensitive, or special-status, and further analysis of the species of	ty Database within an ect impacts to substantial acd not result	(CNDDB) (C already high o special-statu lverse effect o in impacts on	NDDB, 202 aly disturbed s species or on any speci species iden	15). The d urban result in al-status
b) Have a substantial adverse effect on any sensitive natural communities (e.g., riparian habitat, coastal sage scrub, oak woodlands, non-jurisdictional wetlands) identified in local or regional plans, policies, regulations or by CDFW or USFWS?				
No Impact. Riparian habitat is lowland habitat associated wash. The nearest river is the Los Angeles River 4 miles east Plan area. Compton Creek is located 2 miles west of the west Both rivers are concrete-lined and channelized and, therefor banks. The Specific Plan area is located in an upland area that surfaces (i.e., asphalt and cemented streets and parking lots shrubs, and ground cover and, therefore, riparian habitat is sinvolve infill development within an already highly disturbed changes or alterations to any riparian habitat or other sensitives Specific Plan project would not result in impacts on riparian further analysis in the EIR.	st of the east estern most bore, do not le t contains an and building not present. urban environ we natural co	ern most bour boundary of the nave any ripar appreciable ar s) and nonnati The proposed conment and we mmunity. The	ndary of the see Specific Prian habitat a mount of impove ornamen. Specific Pla ould not inverefore, the p	Specifical lan area. Along its pervious tal trees, n would olve any proposed
c) Have a substantial adverse effect on federally or state protected wetlands (including, but not limited to, marshes, vernal pools, coastal wetlands, and drainages) or waters of the United States, as defined by § 404 of the federal Clean Water Act or California Fish & Game code § 1600, et seq. through direct removal, filling, hydrological interruption, or other means?				

No Impact. As discussed above, the Specific Plan area is				
portion of the area contains the proper vegetation (i.e., a p	reponderance ·	of hydrophy	tes or "water	r-loving"
plants), soils (i.e., hydric or waterlogged soils), and hydrolog	gic conditions (i.e., inundate	ed either perr	<u>nanently</u>
or periodically or saturated during the growing season of the	he prevalent ve	getation) to	be defined a	wetland
according to the U.S. Army Corps of Engineers' (USAC	E) Wetlands D	elineation Ma	nual (USACE	E, 1987).
Compton Creek (located approximately 2 miles west of	,		`	
channelized wash. Overall, because the Specific Plan area of				
wetland, the proposed Specific Plan project would not				
protected wetlands as defined by Section 404 of the Clean				•
marsh, vernal pool, coastal, etc.) through direct removal, fi				
Impacts would not occur and this criterion requires no furth			don, or othe	i iiicaiis.
impacts would not occur and this effection requires no furth	<u>1C1 allaly 515 111 C</u>	IC LIII.		
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?				
No Impact. The Specific Plan area is within a fully development areas such that it could not provide for the mover wildlife species, nor could it provide an established native mative wildlife nursery sites. Therefore, no impacts would specific Plan and no further analysis of this issue is required	ment of any na resident or mig d result from	tive resident ratory wildlif	or migrator e corridor or	y fish or contain
a) Convert call woodlands (as defined by the state				\square
e) Convert oak woodlands (as defined by the state,		Ш		
oak woodlands are oak stands with greater than 10%				
canopy cover with oaks at least 5 inch in diameter				
measured at 4.5 feet above mean natural grade) or				
otherwise contain oak or other unique native trees				
(junipers, Joshuas, southern California black walnut,				
etc.)?				
No Impact. No oak woodlands or other unique native tree impacts to oak woodlands or unique native trees would respecific Plan.				
				<u> </u>
f) Conflict with any local policies or ordinances				\boxtimes
protecting biological resources, including Wildflower				
Reserve Areas (L.A. County Code, Title 12, Ch. 12.36),				
the Los Angeles County Oak Tree Ordinance (L.A.				
County Code, Title 22, Ch. 22.56, Part 16), the				
Significant Ecological Areas (SEAs) (L.A. County				
Code, Title 22, § 22.56.215), and Sensitive				
Environmental Resource Areas (SERAs) (L.A. County				
Code, Title 22, Ch. 22.44, Part 6)?				

No Impact. The only local policy or ordinance related to the protection of biological resources that would be applicable to the Specific Plan area is the Oak Tree Ordinance; which establishes that a person shall not cut, destroy, remove, relocate, inflict damage, or encroach into the protected zone of any tree of the oak tree

genus without first obtaining a permit. The proposed Specific Plan would not affect any oak trees located
he project area. Furthermore, implementation of the proposed Specific Plan would adhere to all Coun
ordinances applicable to the Specific Plan area, including the Los Angeles County Oak Tree Ordinance
applicable. The Specific Plan proposes new street tree designations as the project area has an inconsiste
palette and pattern of street trees; none of those designations include Oak Trees. As a result, the propose
Specific Plan would not conflict with any local plans or policies protecting biological resources and r
mpacts are anticipated as a result of the proposed Specific Plan. No further analysis of this issue is require
n the EIR.
g) Conflict with the provisions of an adopted state, \
No Impact. The Specific Plan area is not located within or near a Habitat Conservation Plan, Natur
Community Conservation Plan or any other approved local, regional, or state habitat conservation plan. N
mpact would occur, and this issue will not be discussed further in the EIR.

5. CULTURAL RESOURCES

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	-	-	-	•
a) Cause a substantial adverse change in the significance of a historical resource as defined in CEQA Guidelines § 15064.5?				
Potentially Significant Impact. The Specific Plan area in considered important historic resources; therefore, the project significance of a historical resource. The EIR will identify at have been listed as a California Point of Historical Interest Register of Historic Places, or the National Register of Historic any other properties within the Specific Plan that have the potential occur to these properties by implementation of the pro-	et may cause ny properties t, a Californ toric Places. otential to be	a substantial as within the Spia Historical I In addition, the historic and p	dverse chang pecific Plan a andmark, C he EIR will	ge in the area that California evaluate
b) Cause a substantial adverse change in the significance of an archaeological resource pursuant to CEQA Guidelines § 15064.5?				
Potentially Significant Impact. The Specific Plan area is undisturbed due to previous development. Therefore, the likelih resources is minimal. However, the Specific Plan would resurconstruction could that could disturb native soils and resurchaeological deposits, resulting in a significant impagarcheological resources will be evaluated in the EIR.	nood of the o lt in infill an alt in inadve	discovery of su d redevelopme ertent damage	rficial archae ent of parcel to unknown	eological s, where n buried
c) Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature, or contain rock formations indicating potential paleontological resources?				
Potentially Significant Impact. The Specific Plan area is which consists predominately of loose to dense sands, silty sat become much more dominant adjacent to the Rosecrans Histocontain significant fossils. However, older Quaternary depromation (Qi) may lie below the Quaternary Alluvium; In Although no paleontological resources are known to exist with that unknown resources may be uncovered during construct and grading activities would involve native soil layers that have is potential for the proposed Specific Plan to result in in impacts to paleontological resources will be evaluated in the International Control of the proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in the International Control of the Proposed Specific Plan to result in t	nds, and silt lls nearby (Coosits or depoth are knothin the Specion activities we not previously to pacts to pacts.	s. Clay units ar CDOC, 1998). sosits of the Pl own to conta- cific Plan area, s. It is possible ously been dist	Alluvium is eistocene Ingin vertebrate, there is a post that site desurbed; as such	sent, but unlikely glewood fossils. ossibility molition ch, there
d) Disturb any human remains, including those interred outside of formal cemeteries?			Ш	

Potentially Significant Impact. There is no known site w	<u>vithin the Sp</u>	<u>ecific Plan are</u>	<u>a that has b</u>	een used
for human burial purposes. Therefore, it is unlikely that	<u>human rem</u>	ains would be	encountere	d during
construction activities related to the proposed Specific Plan	. However,	previously unk	nown buried	d human
remains could be inadvertently disturbed during construction	on activities,	which would	result in a si	<u>gnificant</u>
impact. Thus, potential impacts related to human remains wi	<u>ll be discuss</u>	ed in the EIR.		
e) Cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074?	\boxtimes			

Potentially Significant Impact. Tribal cultural resources can be sites, features, places, cultural landscapes, sacred places, or objects with cultural value to any California Native American Tribe (Public Resources Code 21074). There is no known site within the Specific Plan area that is a tribal cultural resource. Therefore, it is unlikely that any adverse change to a tribal cultural resource would occur due to redevelopment or new development in the Willowbrook Community. However, previously unknown tribal cultural resources could lose significance once redevelopment or development occurs due to the implementation of the proposed Specific Plan, which would result in a significant impact. Thus, potential impacts related to tribal cultural resources will be discussed in the EIR.

6. ENERGY

Less Than

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impac
Would the project:				
a) Conflict with Los Angeles County Green Building Ordinance (L.A. County Code Title 22, Ch. 22.52, Part 20 and Title 21, § 21.24.440) or Drought Tolerant Landscaping Ordinance (L.A. County Code, Title 21, § 21.24.430 and Title 22, Ch. 22.52, Part 21)?				
No Impact. The project includes redevelopment of existing	g uses and is	subject to the	requirement	ts of the
Los Angeles County Green Building and Drought Toleran	0	,		
comply with these ordinances, which are intended to conserve	ve energy, wa	ter, natural res	ources, and p	oromote
a healthier environment (Municipal Code Section 22.52.21)	00). The Spe	ecific Plan inco	orporates sus	stainable
design guidelines that would not conflict with the Los Ans	geles County	Green Buildin	ng Ordinanc	e or the
Drought Tolerant Landscaping Ordinance. No further discu	ssion of this	issue will be in	cluded in the	EIR.
b) Involve the inefficient use of energy resources (see Appendix F of the CEQA Guidelines)?				
No Impact. The Specific Plan is proposed to guide future of	development	and redevelop	ment in the	area and

No Impact. The Specific Plan is proposed to guide future development and redevelopment in the area and implement TOD land uses. Development projects that are implemented by the proposed Specific Plan would comply with State and County regulations related to energy usage and efficient energy design. Therefore, implementation of the proposed Specific Plan would not result in an inefficient use of energy resources, and no further discussion of this issue will be included in the EIR.

7. GEOLOGY AND SOILS

	Potentiall y Significan t Impact	Less Than Significant Impact with Mitigation Incorporate d	Less Than Significant Impact	No Impac t
Would the project:	v ====p == v	_	<i>p</i> v	•
a) Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving:				
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known active fault trace? Refer to Division of Mines and Geology Special Publication 42.				
No Impact. Seismically-induced ground rupture is dedeposits in response to an earthquake's seismic wave rupture can vary for different faults or even along rupture is considered more likely along active faults. The potentially active faults, and is considered a region of located with or adjacent to an Alquist-Priolo Fault unlikely to experience surface fault rupture (CDOC, 2) the Specific Plan area is the Newport-Inglewood approximately 3 miles southwest of the Specific Plan between the Specific Plan area and the active fault, in would not result in impacts related to the rupture of a least of the specific Plan area and the rupture of a least of the specific Plan area and the rupture of a least of the rupture of the rup	s. The mag different strate Los Ange high seismic Rupture H 2010; DRP, d-Rose Car an area (US mplementati	nitude, sense, rands of the eles Basin content activity. The azard Zone fa 2014). The clayon Fault, SGS, 2015). I on of the pro	and nature same fault. tains both ac Specific Planults and is the losest active Strike 334, Due to the	of fault Ground tive and harea is herefore fault to located distance
ii) Strong seismic ground shaking?				
Less Than Significant Impact. As described above, of high seismic activity due to the numerous faults that Newport, and Inglewood Faults (CDOC, 2010). The development of new structures and redevelopment of the proposed Specific Plan has the potential to expension of the proposed Specific Plan has the potential to expension ground shaking. Ground movement during an amagnitude, distance to the fault, focus of earthquake errors. Angeles County's standard approval requirements.	t transect the propose existing structure ose addition to earthquake nergy, and ty	he area, included Specific I ctures. Thereful al people and e varies depertue of geologic	ling the Hol Plan would ore, implement structures to inding on the material.	lywood, include entation o strong overall

level, and this issue requires no further analysis in the EIR.

California Building Code and the County's Building Regulations established in the County's Municipal Code. Continued adherence to applicable building codes through the County's building permit process would reduce impacts related to seismic ground shaking to a less than significant

iii) Seismic-related ground failure, including liquefaction and lateral spreading?	g 🖂			
Potentially Significant Impact. Liquefaction of areas of saturated, loose, fine-to-medium grained the ground surface. Seismic shaking temporar provided by the sediment grains. The waters between material and the sudden increase in pore was properties. The saturated material (with the frie overlying structures. Liquefaction-related efficiently oscillations, lateral spreading, and slumping. Liquefactions, lateral spreading, and slumping. Liquefactions in the approximately 34 feet below the ground surface not necessarily an indicator to the area-wide variable (SWRCB, 2005).	d soils where the rily eliminates the tween the grains a ter pressure resuctionless propertiects include los equefaction may oproject area beca Furthermore, a contraction of the soil of	water table is a grain-to-grain assume the wealts in the soiles of a liquid) as of bearing occur in water use the depth agreement of the soil as of bearing occur in water and depth agreement of the soil as of bearing occur in water and depth agreement of the soil as of bearing occur in water and depth agreement of the soil as of the s	40 feet or lead on support of the coil losing its will fail to get strength, resaturated so of ground tan individue.	ss below normally overlying friction support ground sediment lwater is ial site is
Liquefaction susceptibility reflects the relative reto ground shaking. Physical properties of soil seementation, saturation, and depth govern the configuration of the South Gate Quadrangle occurrences of clay. Most test boreholes drilled medium dense sand and silt. Some deposits convater levels are within 40 feet of the surface, a susceptible to liquefaction. Historic liquefaction Quadrangle (CDOC, 1998). Therefore, the position and further discussion will be included in the ED.	uch as sediment of legree of resistance consist largely of the led in these units on sist of very looms in Willowbrood on has also beestential for liquefa	grainsize districted to liquefaction of sand, silt, and report the passes sand. When the second confirmed	bution, comon. Youngend gravel, and resence of re historical sits are judged in the Sou	r alluvial nd lesser loose to ground- ed to be th Gate
iv) Landslides?				
No Impact. The Specific Plan area is a flat, I landslides is very low. As a result, impacts reimplementation of the Specific Plan (CDOC, 1996). b) Result in substantial soil erosion or the loss of topsoil?	elated to landslide 98).			
Potentially Significant Impact. The proposed area, and development projects implemented by that are largely covered with impervious surface the Specific Plan, such as roadway, sidewalk, be may include excavation, grading, and other some result in erosion and/or topsoil loss. Therefore hydrology and water quality impacts in the EIR.	the Specific plares. However, con icycle path, and bildisturbing activ	n would be destruction active building developments, which h	veloped with vities associa opment com ave the pot	nin areas ted with ponents ential to

c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?				
Potentially Significant Impact. As described above, Valluvial plain, and the Specific Plan area is a flat, leapproximately 34 feet deep. The Specific Plan area is local landslide area, but due to the flat topography and variable spreading is also considered very low. In the South Gate Cowas noted in the vicinity of the project area following speculated that the considerable damage in Willowbrook was not formerly marshy ground, particularly in areas along Cowas Angeles River (CDOC, 1998). The proposed Specific existing uses and the addition of structures on soils that liquefaction, therefore further impacts associated with unstable proposed specific proposed specific existing uses and the addition of structures on soils that liquefaction, therefore further impacts associated with unstable proposed specific propo	vel area wated in a lide groundwa Quadrangle, the 1933 as probably empton Credic Plan wout have hist	ith groundwar quefaction or ter table, the damage attrib Long Beach due to the co ek and the fo ald implement orically been	earthquake- potential for puted to lique Earthquake mmunities' rmer course t redevelops known as	that are induced or lateral refaction; it was location as of the ment of areas of
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?				
Less Than Significant Impact. The Specific Plan area which are dominated by loose to moderately dense sand typically expansive. Non-engineered artificial fills have not Quadrangle. Consequently, no areas are zoned for potentia 1998). The County's building permit process requires structural observation programs (ALPC, 2015) and permit and appropriate construction practices for the propose proposed Specific Plan would result in less than significant issue requires no further analysis in the EIR.	ly sediment been delinea l liquefaction submittal of ts would no ed structure	s (CDOC, 19 atted or mappe on relative to a soft soil investion be issued uses is confirm	998), which ed in the Sountificial fill (igation repondents soil sunded. Therefore)	are not oth Gate (CDOC, orts and orts ility ore, the
e) Have soils incapable of adequately supporting the use of onsite wastewater treatment systems where sewers are not available for the disposal of wastewater?				
No Impact. The Specific Plan area is served by a sewer sethe proposed Specific Plan. All development associated we connect to and be served by the existing public sewer system. No impacts would occur as a result of the proposed Speanalysis in the EIR.	th the prop tem for was	osed Specific stewater disch	Plan project narge and tro	et would eatment.
f) Conflict with the Hillside Management Area Ordinance (L.A. County Code, Title 22, § 22.56.215) or hillside design standards in the County General Plan Conservation and Open Space Element?				

No Impact. The Specific Plan area is not located within a Hillside Management Area or within an area that is subject to hillside design standards. The Specific Plan area is flat land that is not in the vicinity of

a hillside. As a result, the Specific Plan would not conflict with the Hillside Management Area Ordinance or any hillside standards, and will not be discussed further in the EIR.

8. GREENHOUSE GAS EMISSIONS

Less Than

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	1	1	1	•
a) Generate greenhouse gas (GHGs) emissions, either				
directly or indirectly, that may have a significant				
impact on the environment?				
-				
Potentially Significant Impact. Gases that trap heat in	the atmosp	here are calle	ed greenhou	se gases
(GHGs). The major concern with GHGs is that increases in	their concer	ntrations are c	ausing global	l climate
change. The principal GHGs are carbon dioxide (CO ₂),	methane (C	(H_4) , nitrous of	oxide (N2O)), sulfur
hexafluoride (SF ₆), perfluorocarbons (PFCs), and hydrofluor	ocarbons (F	IFCs). Constri	action and o	peration
of development permitted by the proposed Specific Plan wor	uld generate	GHG emissio	ns, both dire	ectly and
indirectly. Construction activities are short-term and cease	to emit GI	HGs upon co	mpletion. O	peration
emissions associated with the future developments in the Sp	ecific Plan a	rea would incl	ude GHG ei	missions
from mobile sources (transportation), energy, water use and	treatment, a	nd waste dispo	osal. GHG ei	<u>missions</u>
generated by electricity and natural gas use by future develo	pments are	indirect GHG	emissions f	rom the
energy that is produced off-site. These sources would have t	the potential	to generate C	GHGs and re	sult in a
significant impact on the environment. Therefore, impacts a	associated w	ith GHG emis	ssions are po	<u>stentially</u>
significant and will be evaluated in the EIR.				
b) Conflict with any applicable plan, policy, or	\boxtimes			
regulation adopted for the purpose of reducing the				
emissions of greenhouse gases?				

Potentially Significant Impact. Assembly Bill (AB) 32, signed by Governor Arnold Schwarzenegger in 2006, directs the State of California to reduce statewide GHG emissions to 1990 levels by the year 2020. In accordance with AB 32, ARB developed the Climate Change Scoping Plan (Scoping Plan), which outlines how the state would achieve the necessary GHG emission reductions to achieve this goal (ARB, 2008). On October 6, 2015, the County adopted the Community Climate Action Plan (CCAP) a component of the Air Quality Element in the new General Plan. The CCAP will reduce greenhouse gas emissions generated by community activities and works in conjunction with other sustainability initiatives in the County to reduce carbon emissions by 2020. The CCAP establishes a recent baseline inventory of emissions and identifies a target reduction needed to achieve the State goals. By implementing mandatory actions identified in the CCAP, projects can streamline their quantitative greenhouse gas analysis requirements in CEQA. However, the CCAP analysis is based on the land use densities and intensities specified in the new General Plan. Because the proposed Specific Plan proposes a plan amendment and would likely increase densities, it does not qualify for streamlining. The EIR will need to include both a quantitative and qualitative analysis of greenhouse gas emissions.

9. HAZARDS AND HAZARDOUS MATERIALS

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Create a significant hazard to the public or the environment through the routine transport, storage, production, use, or disposal of hazardous materials?				
Less Than Significant Impact. A hazardous material is de concentration, or physical or chemical characteristics, pose human health and safety or to the environment if released is materials include, but are not limited to, hazardous substantius business or the local implementing agency has a reasonable health and safety of persons or harmful to the environment if	es a significanto the work ces, hazardo e basis for b	ant present or kplace or envir us wastes, and elieving would	potential har ronment. Ha l any materia l be injuriou	azard to azardous al that a
There are multiple state and local laws that regulate the storm The Los Angeles County Health and Hazardous Materials Distriction Environmental Protection 1997 as the Certified Unified Procupation of the local administrative agency that coordinates materials and hazardous wastes: the Hazardous Waste General Response Plans and Inventory Program, the California A ARP"), the Aboveground Storage Tank Program and the Unit 2011).	vision was dogram Agend the following ator Program accidental Re	esignated by the cy ("CUPA") and programs resulting the Hazardo belease Prevent	ne State Secretor the Courtegulating has bus Materials ion Progran	etary for nty. The nzardous Release n ("Cal-
Operation of the proposed project provides for increased intended the site. Hazardous materials associated with residential and agents, paints, pesticides, batteries, and aerosol cans. The mediarge-quantity generator of hazardous materials such as small mixed oil; oxygenated solvents including acetone, butanol, and other hazardous materials including batteries, lamps, projectly polychlorinated biphenyls. All of the hazardous materials the existing applicable federal, state, and local regulations. Becaremain the same as under current conditions, substantial chartof potentially hazardous materials are not anticipated. Normal conditions would not result in a significant hazard to resident	nd commercedical facilities medical was addethyl aceta pesticides, that would be tause the proges to the onal routine under the proges to the onal routine unde	ial uses includes and hospita tes such as need te; spent halog hermostats, in used by the poposed project perational chase of these products.	le solvents, l is also a smedles to waste genated solve nercury, silveroject are su t uses would racteristics as	cleaning nall- and e oil and ents; and ver and abject to d largely nd types
Construction of the new development within the Specific Plastorage, transport, and disposal of hazardous materials such applicable federal, state, and local regulations. In complete regulations, the amounts of these materials present during pose a significant adverse hazard to workers or the environment to implement standard BMPs regarding hazardous reconstruction in compliance with the State General Permit.	as fuels, paliance with construction nment. The	existing feder would be lim construction of	ents, consisteral, state, and we contractor w	ent with nd local ould not vould be
b) Create a significant hazard to the public or the environment through reasonably foreseeable upset				

and accident conditions involving the release of hazardous materials or waste into the environment?

Potentially Significant Impact. The Specific Plan area has long been developed with	a variety o	of urban
uses. Roadway improvements and development projects that would occur by impl	<u>ementation</u>	of the
proposed Specific Plan could unearth unknown contaminants that may be prese	nt in soil	and/or
groundwater from current and/or historic site usage. The potential for the propose	d Specific	Plan to
produce significant impacts to the public during the transportation of hazards or invo		
release of hazards will be evaluated in the EIR.	0 1	·
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of sensitive land uses?		
Potentially Significant Impact. The Specific Plan area contains existing schools, income Magnet High School, Charles R. Drew University of Medicine and Science, Barack Obarand Martin Luther King, Jr. Elementary. Other sensitive land uses include residential facilities. As described above, the proposed Specific Plan could result in excavation hazardous materials if unknown contaminants are found during excavation activities. Will include an identification of the schools, residential areas, and medical facilities near area and evaluation of impacts related to the potential release of hazardous materials.	ma Charter areas and and hand Therefore,	School, medical dling of the EIR
d) Be located on a site which is included on a list of hazardous materials sites compiled pursuant to Government Code § 65962.5 and, as a result, would it create a significant hazard to the public or the environment?		
Potentially Significant Impact. As described above, the Specific Plan area has long burban uses that could have a history of hazardous material usage or contamination. As deproposed Specific Plan could result in excavation and handling of hazardous material to environment. Thus, the EIR will include a database search of federal, state, and databases to identify any hazardous material sites within the Specific Plan area and potention implementing the proposed Specific Plan.	escribed ab erials if u ard to the p local gover	ove, the nknown oublic or nmental
e) For a project located within an airport land use plan, or where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?		
No Impact. The proposed Specific Plan area is not located within an airport land approach zone (ALUC, 2015). The nearest public airport is approximately 2 miles south area (Compton/Woodley Airport); the Hawthorn Municipal Airport is approximately 5 Specific Plan area and Los Angeles International Airport is approximately 10 miles west area. Therefore, the potential for the proposed project to result in a safety hazard for working in the vicinity of an airport will not require further analysis in the EIR.	of the Spec miles wes of the Spec	ific Plan et of the ific Plan
f) For a project within the vicinity of a private airstrip,		\boxtimes

residing or working in the project area? No Impact. The proposed Specific Plan area is not located within the vicinity of a private airstrip. Therefore, the potential for the proposed project to result in a safety hazard for people residing or working in the vicinity of an airport will not require further analysis in the EIR. g) Impair implementation of, or physically interfere \square with, an adopted emergency response plan or emergency evacuation plan? Less Than Significant Impact. Existing County development standards would require new development within the Specific Plan to be designed so as not to interfere with an adopted emergency response plan or emergency evacuation plan. Impacts would be less than significant as a result of the proposed Specific Plan and no further analysis of this criterion is required in the EIR. h) Expose people or structures to a significant risk of loss, injury or death involving fires, because the project is located: i) within a Very High Fire Hazard Severity Zone \square (Zone 4)? No Impact. The Specific Plan area is located within an urban area that does not contain wildlands, and is not located in an area classified as a Very High Fire Hazard Severity Zone (Cal Fire, 2012). Therefore, impacts related to wildland fires would not occur, and this issue requires no further analysis in the EIR. ii) within a high fire hazard area with inadequate \square access? No Impact. As described above, the Specific Plan area is located within an urban developed area and is not located within an identified wildland fire hazard area. Furthermore, the Specific Plan area currently has adequate access, which would be continued with further development. As a result, impacts related to high fire hazards and inadequate access would not occur, and no further discussion will be included in the EIR. iii) within an area with inadequate water and \square pressure to meet fire flow standards? No Impact. The availability of sufficient water pressure is a basic requirement of the Fire Department (Los Angeles, 2010). Existing fire flows within and near the Specific Plan area are at or above the minimum requirements and impacts related to fire flow would not occur, and no further discussion will be included in the EIR. \boxtimes iv) within proximity to land uses that have the potential for dangerous fire hazard?

would the project result in a safety hazard for people

43

No Impact. The Specific Plan area is not within proximity to land uses that have the potential for a dangerous fire hazard. The Specific Plan area is developed and is not in an area with light fuels or

	unpredictable weather conditions. Land uses consis-	t of residential, c	ommercial, in	dustrial, ope	en space,
	and public uses. These land uses would not gene	rate potential in	pacts related	to a danger	rous fire
	hazard, and no further discussion will be included in	the EIR.	-		
i)	Does the proposed use constitute a potentially dangerous fire hazard?				
	No Impact. The proposed Specific Plan would dev	elop and redevelo	op residential	and commer	cial land
	uses. None of the uses related to the proposed Spe	-	-		
	fire hazard, impacts would not occur, and no further	discussion will be	e included in t	the EIR.	

10. HYDROLOGY AND WATER QUALITY

Less Than

Would the project:	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Violate any water quality standards or waste discharge requirements?				
Potentially Significant Impact. Infill and redevelopment Plan would disturb soils and would utilize equipment an contained, could degrade surrounding water quality. Futur would expand residential, commercial and public uses that we concentration of persons within the area that could increase oils, and litter; all of which, if not properly contained, could be related to water quality standards and waste discharge required.	d hazardous re developm rould increas pollutants s legrade exist	s substances to ent within the se the number uch as pesticion to water qual-	hat, if not e Specific P of residents les, vehicle fity. Potential	properly Plan area and the Tuels and
b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level which would not support existing land uses or planned uses for which permits have been granted)?				
Potentially Significant Impact. The Specific Plan area regolden State Water Company. Infill and redevelopment to Specific Plan would result in population growth; thereby proposed project would add approximately 1,734 residential commercial space to the Specific Plan area, and is, therefore in accordance with State Senate Bill 610 to demonstrate that development of the uses proposed in the Specific Plan. The supplies needed for the proposed Specific Plan and an analy could result.	hat would or increasing of dwelling or required to an assured or EIR will in	demand on units and 2,63 develop a water supply is clude a quanti	plementation water suppli 0,306 square er supply ass available to fication of tl	n of the ies. The e feet of sessment support he water
c) Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner which would result in substantial erosion or siltation on- or off-site?				
Potentially Significant Impact. According to Federal Eme	rgency Mana	agement Agen	<u>cy's Fl</u> ood Ir	<u>nsur</u> ance

Rate Map No. 06037C1815F, the Specific Plan area is not located in a flood zone (FEMA, 2008), and no existing surface drainages or rivers are located in the Specific Plan area. The proposed Specific Plan would implement redevelopment and infill development within an already developed and mostly paved urban area. After implementation of the project development, runoff would continue to flow over either paved or

landscaped areas that would eventually be directed toward sto	orm arains.	Inererore, the	potentiai to	<u>r erosion</u>
to occur from implementation of the proposed Specific	c Plan wo	ould be extren	nely low. I	However,
construction of certain project components would expose	bare soil	that could be	subject to	erosion,
potentially resulting in a significant impact. This issue will be	further disc	cussed in the EI	<u>R.</u>	
d) Substantially alter the existing drainage pattern of			\boxtimes	
the site or area, including through the alteration of the				
course of a stream or river, or substantially increase				
the rate or amount of surface runoff in a manner which				
would result in flooding on- or off-site?				
Less Than Significant Impact. As stated previously, the p	proposed S	pecific Plan are	ea is not loc	cated in a
flood zone and does not contain any streams or rivers. The S	Specific Pla	n components i	include an e	xpansion
or reconfiguration of existing urban development in m	ostly pave	ed areas; there	fore, the	proposed
components would maintain existing drainage patterns, a	and would	not contribute	e to an inc	crease in
impervious surfaces in the Specific Plan area such that incre	eased runo	ff and flooding	on or offsi	ite would
result. Impacts related to flooding would be less than signific	cant, and fl	ooding will not	be further	<u>discussed</u>
in the EIR.				
e) Create or contribute runoff water which would				
exceed the capacity of existing or planned stormwater				
drainage systems or provide substantial additional				
sources of polluted runoff?				
_				

Potentially Significant Impact. As stated previously, the Specific Plan components include an expansion or reconfiguration of existing urban development in mostly paved areas; therefore, the proposed components would maintain existing drainage patterns, and would likely not contribute to an increase in impervious surfaces in the Specific Plan area such that increased runoff would exceed the capacity of drainage systems. During construction, existing drainage patterns may be altered temporarily and new sources of runoff could occur. Likewise, the proposed residential and commercial development may alter the amount of runoff that drains from concrete and other building materials, and this may contribute to an excess in stormwater runoff. Impacts related to an increase in runoff and the capacity of drainage systems are potentially significant and will be further discussed in the EIR.

f) Generate construction or post-construction runoff that would violate applicable stormwater NPDES permits or otherwise significantly affect surface water	\boxtimes			
or groundwater quality?				
Potentially Significant Impact. Development implemented by comply with the NPDES Construction General Permit (N Construction General Permit requires the development and in erosion, sediment, and non-structural BMPs that would be impacted to maintain water quality through development project required to maintain water quality through development and implans (WQMPs). During operation the development projects required to comply with the NPDES MS4 Permit (NPDES evaluate potential types and amounts of construction and or reduction of impacts that would occur through compliance with will be provided, if necessary, to reduce impacts related to water	PDES Or inplementate blemented is implementate implementate implementate Order No operation of the requirementate	to reduce connected by the Spanish to of Water of Water of the Spanish of R4-2012-0 related pollutary	9-0009-DWe PPP, which is struction im- pecific Plan w Quality Man ecific Plan w 0175). The I	Q). The dentifies pacts on would be agement would be EIR will and the
g) Conflict with the Los Angeles County Low Impact Development_Ordinance (L.A. County Code, Title 12, Ch. 12.84 and Title 22, Ch. 22.52)?				
No Impact. The LA County LID ordinance was designed to urban areas through the distribution of small, cost-effective. Such features include bio-retention/filtration landscape areas, landscaping and grading (DPW, 2014). The development projed develop and implement a WQMP as required by the NPDES and non-structural BMPs designed to reduce volume, velocit limit dry weather flows discharging from the site. The NPDES LID practices to prevent non-storm water discharges and enough degradation of water quality. Development within the Specific County's LID and would incorporate BMPs that are consistent the LID ordinance would not occur, and no further discussion to	landscape reduced in ects impler MS4 Permi y and poll MS4 Perm courage pro fic Plan are t with LIE	features throus preservious surplemented by the total that would in the utant loading not also require oper filtration as would compare the compare the total transfer oper filtration as would compare the total transfer operations as well as well as would compare the total transfer operations as well a	aghout projections and further specific Plancorporate second of storm were simplement of runoff to ply with Loss garding configures.	ect sites. unctional un would tructural ater and tation of o reduce Angeles
h) Result in point or nonpoint source pollutant discharges into State Water Resources Control Board-designated Areas of Special Biological Significance?				
No Impact. There are no Areas of Special Biological Sign proximity to the Specific Plan area. The closest ASBS is the approximately 30 miles northwest of the Specific Plan area. The in Southern California, with 24 miles of coastline and 11,842 as impacts associated with discharges into an ASBS would not on EIR.	he Laguna iis ASBS is cres of man	Point to La the largest of rine habitat (S'	tigo Point v the mainlar WRCB, 2014	which is nd ASBS 4). Thus,
i) Use onsite wastewater treatment systems in areas with known geological limitations (e.g. high groundwater) or in close proximity to surface water (including, but not limited to, streams, lakes, and drainage course)?				

No Impact. Wastewater produced in the project area is cur	, ,			•
Los Angeles sewer system (Los Angeles City, 2015). No was		•	1 1	
the Specific Plan area. The proposed Specific Plan would			<i>v</i> astewater ti	<u>reatment</u>
system and impacts would not occur and will not be discussed	<u>a turmer m</u>	me EIK.		
j) Otherwise substantially degrade water quality?				
Potentially Significant Impact. The potential water quality the proposed Specific Plan components will be analyzed in the				
k) Place housing within a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map, or within a floodway or floodplain?				
No Impact. The Specific Plan area is not within a 100-Emergency Management Agency's Flood Insurance Rate Manot located in a flood zone (FEMA, 2008), and no existing Specific Plan area. As a result, no adverse impacts related development of the proposed Specific Plan and this issue was 2015).	ap No. 0603 g surface dra d to floodin	37C1815F, the ainages or rive ag are expecte	Specific Pla ers are locate d as a resul	n area is ed in the lt of the
l) Place structures, which would impede or redirect flood flows, within a 100-year flood hazard area, floodway, or floodplain?				
No Impact. See explanation 10k above.				
m) Expose people or structures to a significant risk of loss, injury or death involving flooding, including flooding as a result of the failure of a levee or dam?				
Less Than Significant Impact. The Specific Plan area is no people or structures to risk (County of Los Angeles, 2015). further discussion is necessary in the EIR.				
n) Place structures in areas subject to inundation by seiche, tsunami, or mudflow?				
No Impact. The Specific Plan area is not subject to inundation 10.5 miles east of the Pacific Ocean. Seiches occur in semi-				

No Impact. The Specific Plan area is not subject to inundation by tsunami as it is located approximately 10.5 miles east of the Pacific Ocean. Seiches occur in semi- or fully enclosed bodies of water when strong winds and/or rapid changes in atmospheric pressure push water from one end of the body of water to the other, resulting in an oscillation back and forth of waves (NOAA, 2015). The dry, Mediterranean climate in the Specific Plan area is not prevalent to dramatic changes in pressure or strong winds such that a seiche would occur, bypassing holding walls and inundating the Specific Plan area. Mudflows are flowing masses of fine-grained earth material with a high degree of fluidity (USGS, 2015), and happen on slopes. The Specific Plan area is developed, relatively flat and does not have enough exposed soils or topography to be a risk of mudflow. Impacts would not occur; these issues will not be evaluated further in the EIR.

11. LAND USE AND PLANNING

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:	1	<i>T</i>	1	1
a) Physically divide an established community?				\boxtimes
No Impact. The proposed Specific Plan is located in an ur would provide for infill and redevelopment of parcels within physically divide an established community. The Specific Plan parts of Willowbrook so that the community is more controlled and pedestrian improvements that would be implessed provide improved circulation and cohesion, and do not include residences or otherwise physically divide the Willowbrook result of the proposed Specific Plan. b) Be inconsistent with the applicable County plans for the subject property including, but not limited to, the General Plan, specific plans, local coastal plans, area plans, and community/neighborhood plans?	the Willow in would connected; not emented by de any comp	brook communect activity of physically diversity the Specific I onents that we	nity. This we centers and orided. The plan are integraled displace	ould not different roposed nded to existing
Potentially Significant Impact. The proposed project is a Sland use plan and zoning designations. The proposed Specific redevelopment or infill development and proposes to rezone provide for the TOD envisioned by the Specific Plan. The print development intensity and changes in land uses that compolicy, or regulation that was adopted for the purpose of at The proposed Specific Plan's compatibility with applicable platthe EIR.	Plan identical land uses of roposed Speuld conflict voiding or response to the properties of the prope	fies sites that he feet specific parcecific Plan wou with an applinitigating an e	nave the pote els within the ald result in in acable land un environmenta	ential for e area to ncreases ase plan, al effect.
c) Be inconsistent with the County zoning ordinance as applicable to the subject property?				

Potentially Significant Impact. The proposed project is in the Los Angeles County General Plan Metro Planning Area, the geographic center of Los Angeles County in the unincorporated Willowbrook neighborhood. The proposed project is a Specific Plan that would result in changes to the land use plan and zoning designations. The Specific Plan area's existing zoning includes: C-2 (neighborhood commercial), C-3 (unlimited commercial), M-1 (light manufacturing), MXD (mixed use development), R-1 (Single-family residence), R-2 (two-family residence), and R-3 (limited multiple residence). The Willowbrook TOD Specific Plan establishes zoning for parcels within the Specific Plan boundary as identified in Figure 5, Proposed Zoning. The zones for the Specific Plan area include: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Table 1 in the project description shows the additional development that would occur from build out of the proposed Specific Plan. Table 2 in the project description shows the existing acreage, zoning and land uses that would be revised by implementation of the proposed Specific Plan. The proposed Specific Plan's impacts related to consistency with the County zoning ordinance will be assessed in the EIR.

d) Conflict with Hillside Management criteria, Significant Ecological Areas conformance criteria, or other applicable land use criteria?				
No Impact. The Specific Plan area is within the urban and	d developed	community of	of Willowbro	ok. The
Specific Plan area is not located within any habitat conserva		•		
plan. Therefore, no impact would occur. This issue will not be	e addressed	further in the	EIR.	

12. MINERAL RESOURCES

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
No Impact. No significant mineral deposits have been in 2014). As a result, the proposed Specific Plan would not carmineral resource recovery site delineated on a local general impacts to mineral resources are expected to occur.	use a loss o	<u>f availability o</u>	f a locally in	<u>nportant</u>
b) Result in the loss of availability of a locally- important mineral resource recovery site delineated on a local general plan, specific plan or other land use plan?				
No Impact. See explanation 12a above.				

13. NOISE

Would the project result in:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Exposure of persons to, or generation of, noise levels in excess of standards established in the County General Plan or noise ordinance (Los Angeles County Code, Title 12, Chapter 12.08), or applicable standards of other agencies?				
Potentially Significant Impact. Noise levels generated development within the Specific Plan area could result in the levels in excess of standards established in the County of I Noise ordinance. During construction of future development that are located nearby a construction site would be exposed. Once developed, operational noise levels generated by new (e.g., heating, ventilation, and air conditioning equipment) within the Specific Plan area. As construction and operational area could potentially exceed or violate County noise standard will be assessed in the EIR.	exposure of Los Angeles nt in the Spe to temporar development as well as rall noise level	f persons to on General Plan ecific Plan area y increases in a s would include mobile sources s associated w	Noise Element, sensitive reambient noise le stationary s (e.g., trafficith the Speci	of noise ent and eceptors e levels. sources e noise) fic Plan
b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?				
Potentially Significant Impact. During construction activity exposed to excessive groundborne vibration or groundborne equipment. These impacts would generally only occur for a suses may be subject to disturbance and/or annoyance by groundborne could occur and this issue will be evaluated in the EIR.	<u>rne noise lev</u> short duratio	vels from the on. However, b	operation of operation operation of operation operation operation operation of operation operat	f heavy ng land
The proposed Specific Plan would implement mixed use comproject area. These land uses that would be allowed by the pof uses that would involve any major sources (mobile or state large industrial facilities. Thus, once developed, the operation is not anticipated to generate vibration levels that would receptors. As a result, operational vibration impacts associates than significant and would not require further analysis in	roposed Specionary) of von the new adversely atted with the	cific Plan do r ibration, which land uses in the affect existing	not involve the are more ty he Specific Portion or future s	ne types pical of lan area ensitive
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from parking areas?				

Potentially Significant Impact. The proposed Specific Plan would allow for redevelopment at an increased intensity; taller buildings, expanded sidewalks, bicycle lanes and bicycle parking facilities, and alterations to the existing street intersections in order to provide a TOD land use pattern to the Specific

and would include a mix of residential, mixed-use, commercial, and public uses designed for pedestrian
while also accommodating vehicular traffic. Development within the Specific Plan area may result in
substantial permanent increase in ambient noise levels in the project vicinity above levels existing without
the project primarily from potential increases in traffic noise and operation of the development. Although
the Specific Plan's proximity to the Metro Station encourages transit use, development pursuant to the
proposed Specific Plan may generate an increase in vehicle trips. As a result, the total net increase in traffic
noise levels over existing conditions will be quantified and analyzed in the EIR.
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project, including noise from amplified sound systems?
Potentially Significant Impact. Development within the Specific Plan area may result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project during construction of new land use developments. The operation of construction equipment a development sites within the Specific Plan area would result in increased noise levels, which could adversel affect off-site sensitive receptors located nearby. In addition, construction traffic associated with new developments may also result in a temporary or periodic increase in noise levels on the local roadways in the Specific Plan area. As such, potential noise impacts on existing and future sensitive receptors (e.g., hospital and residential uses) from exposure to temporary construction noise levels will evaluated in the EIR.
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?
No Impact. The Specific Plan area is not located in the jurisdiction of an airport land use compatibility plan, nor is it in an airport approach zone (ALUC, 2015). The nearest public airport is approximately 2 miles south of the Specific Plan area (Compton/Woodley Airport); the Hawthorn Municipal Airport is approximately 5 miles west of the Specific Plan area and Los Angeles International Airport is approximately 10 miles west of the Specific Plan area. Therefore, the proposed Specific Plan would not expose people to excessive noise from an airport, and therefore, this issue area would not be further analyzed in the EIR.
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?

No Impact. See explanation 13e above.

14. POPULATION AND HOUSING

Less Than

	Potentially Significant Impact	Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project:				
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?				
Potentially Significant Impact. The proposed Specific redevelopment at an increased intensity; and would provid lanes and bicycle facilities, and alterations to the existing strelland use pattern to the Specific Plan area. Implementation population growth in the area by planning for 1,734 additing square feet of non-residential space within the Specific Plan further in the EIR.	e taller build eet intersection of the pro- onal residen	dings, expande ons in order to posed Specification units and	ed sidewalks o implement c Plan would 2,630,306 a	, bicycle a TOD d induce dditional
b) Displace substantial numbers of existing housing, especially affordable housing, necessitating the construction of replacement housing elsewhere?				
No Impact. The proposed Specific Plan would not result number of existing housing, nor would it result in the displation proposed Specific Plan provides for infill development residential, commercial, industrial, and public uses. Build additional residential units within the Specific Plan area. proposed Specific Plan may result in temporary displacement However, development projects would occur sporadically a displacement of persons residing on an infill or redevelopment would result in a greater number of residential units to he related to displacement of housing or persons that would recocur, and this issue will not be further evaluated in the EIR.	ncement of sand redevelout of the S Development of resident a parcel by the sand parcel we couse resident	opment would opecific Plan vent projects in ent projects in ents during controller or parcel project ould be short-to ts of the area	nbers of peod include a would provide mplemented onstruction a ct level, the term, and the Therefore,	mix of de 1,734 by the activities. potential e project impacts
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				
No Impact. See explanation for 14b above.				
d) Cumulatively exceed official regional or local population projections?				
Potentially Significant Impact. The Specific Plan would in	ncrease the n	umber of resid	dential units	with the

54

Specific Plan area. Thus, the maximum number of residents would increase with the proposed project; and the project could result in an exceedance of population projections. From 2013 to 2018, population growth

will average 0.8 percent per year in Los Angeles County and the employment growth rate is expected to average 1.6 percent per year (Caltrans, 2013). However, the development pursuant to the proposed Specific Plan would provide additional housing and employment opportunities, which could induce population growth that may cumulatively exceed official population projections. Therefore, impacts related to population projections may occur from implementation of the proposed Specific Plan and analysis will be included in the EIR.

15. PUBLIC SERVICES

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Would the project create capacity or service level problems, or result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities in order to maintain acceptable service ratios, response times or other performance objectives for any of the public services:	impuot		impuet.	impuot
Fire protection?	\boxtimes			
Potentially Significant impact. The proposed Specific development that would increase the residential and employed would result in incrementally increased demands for public the potential to result in a significant impact on the need for public facilities. As a result, the proposed Specific Plan's in EIR.	oyee populate services and or new or alte	ions in the Sp facilities and c red fire, police	oecific Plan a ould, therefore, recreation	rea that ore, have or other
Sheriff protection?	\boxtimes			
Potentially Significant impact. See explanation 15a above.	<u>.</u>			
Schools?				
Potentially Significant impact. See explanation 15a above.	<u>.</u>			
Parks?				
Potentially Significant impact. See explanation 15a above.	<u>.</u>			
Libraries?				
Potentially Significant impact. See explanation 15a above.	<u>.</u>			
Other public facilities?				
Potentially Significant impact. See explanation 15a above.	_			

16. RECREATION

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact	
a) Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?					
Potentially Significant Impact. Mona Park is located within the southeast Specific Plan area. An increase in population and population density from new proposed residential and commercial uses would increase the use of existing neighborhood and regional parks or other recreation facilities like Mona Park, which could require the construction or expansion of recreation facilities as compared to existing conditions. In addition, the proposed Specific Plan includes pedestrian and bicycle facilities that would be constructed, and as described throughout this Initial Study, could have an adverse effect on the environment. Construction and operation of the new recreational facilities that would be implemented by the proposed Specific Plan will be evaluated in the EIR.					
b) Does the project include neighborhood and regional parks or other recreational facilities or require the construction or expansion of such facilities which might have an adverse physical effect on the environment?					
Potentially Significant Impact. No new parks or recreational facilities are proposed as part of the Specific Plan project; however, due to the increase in population and population density from the proposed residential and commercial uses, Mona Park may be impacted. The open space strategy of the Specific Plan would improve the park/open space network by using streets and pedestrian connections, bringing these amenities within a reasonable walking and biking distance for the Specific Plan area residents. In addition, the Specific Plan includes generation of new open space and providing varied open spaces that would further improve open space in the Specific Plan area. These components of the Specific Plan may have an adverse physical effect on the environment; and therefore, will be analyzed in the EIR.					
c) Would the project interfere with regional open space connectivity?					
No Impact. The proposed Specific Plan would not interfer is very little open space in the Specific Plan area and the program encouraging new development to provide public open space Specific Plan from implementation of pedestrian connect courtyards, and public sidewalks. The open space provided by regional open space connectivity. Therefore, project impacts occur, and further discussion will not be included in the EIR.	ject would e e. Open space ions, comm y the Specifi s related to o	nhance open see connectivity on open space c Plan would n	pace connect would occur te areas, pla not interfere	r by the zas and with any	

17. TRANSPORTATION/TRAFFIC

Would the project:	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
would the project.				
a) Conflict with an applicable plan, ordinance, or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?				
Potentially Significant Impact. The proposed Specific Plantimprovements, reduced parking requirements, increased of potential to impact traffic patterns. Pedestrian improved circulation, by reducing the width of roadway for pedestrian and making pedestrian crossings more visible to both pegenerated by new uses and increased intensity of existing use could potentially have a significant impact on area roadway applicable plan, ordinance or policy establishing measures circulation system. Therefore, potential impacts related to pegapplicable policies and ordinances will be evaluated in the EI	development ements mea s to cross, p edestrians a ses associate ys, including of effective rformance o	, and road d sures would roviding addit- nd motorists. d with the pro- the potential eness for the	iets, which facilitate perional sidewal In addition posed Spector Conflict performance	has the edestrian k space, traffic fific Plan with an e of the
b) Conflict with an applicable congestion management program (CMP), including, but not limited to, level of service standards and travel demand measures, or other standards established by the CMP for designated roads or highways?				
Potentially Significant Impact. See explanation 17a above.				
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				
No Impact. The Specific Plan area is not located in the juplan, nor is it in an airport approach zone (ALUC, 2015). The south of the project area (Compton/Woodley Airport); the Imiles west of the project area and Los Angeles International project area. The proposed Specific Plan components would change in air traffic locations. Therefore, there would be included in the EIR.	e nearest pub Hawthorn M l Airport is a not result in	olic airport is a unicipal Airpo approximately a changes to air	pproximately rt is approxi 10 miles wes r traffic patte	2 miles mately 5 st of the erns or a
d) Substantially increase hazards due to a design			\boxtimes	

feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e.g., farm equipment)?

Less Than Significant Impact. The Specific Plan proposes to redesign some intersections and implement road diets that would generally result in lane reduction to add a bicycle lane. A Road Diet involves converting an existing four-lane undivided roadway segment to a three-lane segment consisting of two through lanes and a center two-way left-turn lane. The reduction of lanes allows the roadway cross section to be reallocated for other uses such as bike lanes, pedestrian refuge islands, transit stops, or parking (Department of Transportation, 2015). All development within the Specific Plan would be required meet LA County design standards in relation to protection of pedestrian and bicycle traffic. In addition, the proposed uses within the Specific Plan would be compatible with the surrounding mixed uses in the urban environment. As a result, less than significant impacts would occur from implementation of the proposed Specific Plan, and further discussion will not be included in the EIR.

e) Result in inadequate emergency access?				
Less Than Significant Impact. The Specific Plan propos	ses to redesign	some intersec	ctions and im	<u>iplement</u>
road diets. The number of traffic lanes and roadway lane	configurations	would genera	ally remain tl	he same,
except where road diets would be implemented. Roadwa	y diets, describ	ed above in	17d, would	generally
result in lane reduction to add a bicycle lane. The proposed	•			
of roadways and driveways to residential and commercia	1			_
construction equipment and materials adjacent to roadwa	1 1	-		
newly configured roadways and development sites to pro-	•	-		_
roadway patterns and driveways within the Specific Plan a	_	_ ,		_
County's Public Works Department, which would not al	1			
impacts related to emergency access. As a result, impacts w				
			_	-
f) Conflict with adopted policies, plans, or programs				\boxtimes
regarding public transit, bicycle, or pedestrian				
facilities, or otherwise decrease the performance or				
safety of such facilities?				

No Impact. The proposed Specific Plan itself is based on the encouragement of TOD. Therefore, the development of the proposed components within the would support alternative transportation, and would be consistent with and further adopted policies, plans, and programs supporting alternative transportation (e.g., taking the Metro, bus turnouts, bicycle racks). A number of pedestrian oriented intersection improvements would be implemented throughout the Specific Plan area. These would be based on a menu of improvements that includes adding high visibility crosswalks at intersections; adding passive pedestrian detection and pedestrian push buttons for crosswalks at traffic signals at intersections; adding countdown pedestrian signals and audio signals to crosswalks at intersections; adding advance stop bars to intersection approaches; adding sidewalk bulb-outs and extensions, or reducing curb returns, on intersection corners where feasible; adding median nose/crossing islands where advantageous and feasible. These measures would facilitate pedestrian circulation, by reducing the width of roadway for pedestrians to cross, providing additional sidewalk space, and making pedestrian crossings more visible to both pedestrians and motorists. Impacts would be less than significant, and this issue requires no further analysis in the EIR

18. UTILITIES AND SERVICE SYSTEMS

Want da a mai a str	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
Would the project: a) Exceed wastewater treatment requirements of either the Los Angeles or Lahontan Regional Water Quality Control Boards?				
Potentially Significant Impact. The proposed Specific Pladevelopment that would increase demand for utilities. This is wastewater treatment requirements of the applicable Regional expansion of water or wastewater treatment facilities, may drainage facilities, and may impact water supplies from existing in the Specific Plan area of utilities and service systems environment. As a result, impacts related to utilities and service.	ncrease in d l Water Qua require the ng entitleme is may resu	emand has the lity Control Bo construction nts and resour llt in significa	e potential to pard, may reco of new storn ces. Any def ant impacts	exceed quire the n water iciencies on the
b) Create water or wastewater system capacity problems, or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
Potentially Significant Impact. See explanation 18a above. c) Create drainage system capacity problems, or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
Potentially Significant Impact. See explanation 18a above. d) Have sufficient reliable water supplies available to serve the project demands from existing entitlements and resources, considering existing and projected water demands from other land uses?				
Potentially Significant Impact. See explanation 18a above. e) Create energy utility (electricity, natural gas, propane) system capacity problems, or result in the construction of new energy facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				

60

Potentially Significant Impact. See explanation 18a above.

f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?		
Potentially Significant Impact. See explanation 18a above.		
g) Comply with federal, state, and local statutes and regulations related to solid waste?		

Potentially Significant Impact. See explanation 18a above.

19. MANDATORY FINDINGS OF SIGNIFICANCE

	Potentially Significant Impact	Less Than Significant Impact with Mitigation Incorporated	Less Than Significant Impact	No Impact
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, substantially reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?				
Potentially Significant Impact. Based on evaluations and	discussions	contained in t	his Initial St	udy, the
proposed Specific Plan may have a significant potential to depotential impacts to air quality, land use, population and required to determine whether the proposed Specific Plenvironment.	housing, and	l traffic. Addit	tional inforn	nation is
b) Does the project have the potential to achieve short-term environmental goals to the disadvantage of long-term environmental goals?				
Less Than Significant Impact. The Specific Plan is design environmental goals by implementing sustainable design structures that are designed, constructed, renovated, operate impacts. The buildings would be sited and designed to max savings, and respect the solar access of adjacent buildings incorporate protective courtyards, recessed windows and dethe east and west walls of the buildings would be shaded with deciduous trees. Walks stormwater where feasible.	guidelines. ed and demo ximize the us . Buildings v pors, and inse	For example, lished with mine of sunlight a would be clust ulated walls. To trees to reduce	green build nimal enviro and shade fo tered for sha o reduce end te summer h	ings are onmental or energy ade, and ergy use, eat gain.
To reduce water use and maintenance costs, the majority of and require relatively low maintenance. Arcades, covered incorporated to provide sheltered areas for pedestrian circular energy usage. In addition, the Specific Plan would comply protect both short and long-term environmental goals. The disadvantage to long-term environmental goals.	d walkways, ulation as we with Count	trellises and ll as shade the y regulations	passages w buildings to that are pro	ould be o reduce vided to
c) Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects,				

the effects of other current projects, and the effects of probable future projects)?				
Potentially Significant Impact. The proposed Specific Pl the quality of the environment due to multiple potential envir	<u>ronmental</u>	impacts. In com	bination wi	th effects
of past projects, current projects, and probable future p cumulatively considerable. Therefore, cumulative potential in topic analyzed in the EIR.	, .	1		,
d) Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?				
Potentially Significant Impact. See explanation 19a above.				

Initial Study References

Project Description

- <u>City of Los Angeles, 2015. Work Source Center Website, Accessed at http://ewddlacity.com/index.php/employment-services/adults-age-24-and-older/worksource-centers on September 18, 2015.</u>
- Los Angeles County (LA County). 2015. Willowbrook TOD Specific Plan Screencheck Draft, May 2015.
- Los Angeles County General Plan (DRP). 2014. General Plan 2035: Zoning. Accessed at http://planning.lacounty.gov/generalplan/zoning, accessed on September 18, 2015.
- Los Angeles County Department of Public Works, Willowbrook Area Access Improvements Website: https://dpw.lacounty.gov/pdd/proj/WillowBrookArea/, accessed on September 27, 2015.
- Metro, 2015. Willowbrook/Rosa Parks Station Improvement Project, Accessed at http://www.metro.net/projects/blue-line-upgrades/willowbrook-rosa-parks-station-improvement-project/ on September 27, 2015.

Aesthetics

- Los Angeles County (LA County). 2015. Department of Parks and Recreation Trails, County of Los

 Angeles. Accessed at https://trails.lacounty.gov/Trail/178/Los-Angeles-River-Trail on September 18, 2015.
- <u>Cal Trans. 2015. Officially Designated State Scenic Highways Accessed at http://www.dot.ca.gov/hq/LandArch/16 livability/scenic highways/schwy.htm on September 18, 2015.</u>

Agriculture/Forest

- <u>California Department of Conservation (CDOC). 2010. "Los Angeles County Important Farmland 2010"</u>
 (Map). Division of Land Resource Protection. Accessed at

 ftp://ftp.consrv.ca.gov/pub/dlrp/FMMP/pdf/2010/los10.pdf on September 18, 2015.
- California Department of Conservation (CDOC). 2013. "Los Angeles County Williamson Act Fy 2012/2013" (Map). Division of Land Resources and Protection. Accessed at ftp://ftp.consrv.ca.gov/pub/dlrp/wa/LA 12 13 WA.pdf on September 18, 2015.

Air Quality

- South Coast Air Quality Management District (SCAQMD). 2013. Final 2012 Air Quality Management Plan. September 17, 2015.
- <u>California Air Resources Board (CARB). 2014. Area Designation Maps/State and National. Accessed at www.arb.ca.gov/desig/adm/adm.htm/ on September 17, 2015.</u>
- <u>California Air Resources Board (CARB). 2015. South Coast Air Quality Management Plans. Accessed at http://www.arb.ca.gov/planning/sip/planarea/scabsip/scabsip.htm#2015 on September 18, 2015.</u>
- <u>United States Environmental Protection Agency (USEPA). 2013. The Greenbook Nonattainment Areas for Criteria Pollutants. Accessed at http://www.epa.gov/air/oaqps/greenbk/index.html on September 17, 2015.</u>

Biological Resources

- County of Los Angeles. 2014. County of Los Angeles General Plan: Significant Ecological Areas and Coastal Resource Areas. Draft. April, 2014. Accessed at http://planning.lacounty.gov/assets/upl/sea/SEA adopted proposed 2014.pdf on September 18, 2015.
- <u>California Natural Diversity Database (CNDD). 2015. Accessed at https://www.dfg.ca.gov/biogeodata/cnddb/mapsanddata.asp on September 18, 2015.</u>
- <u>United States Army corps of Engineers. 1987. Wetlands Delineation Manual . Accessed at http://www.bwsr.state.mn.us/wetlands/publications/corpsmanual.pdf on Septemebr 17, 2015.</u>
- Environmental Protection Agency. 2015. Clean Water Act. Accessed at http://www2.epa.gov/laws-regulations/summary-clean-water-act on September 18, 2015.

Cultural Resources

- Department of Conservation, Division of Mines and Geology (CDOC). 1998. Seismic Hazard Zone Report for the South Gate 7.5-Minute Quadrangle, Los Angeles County, California. Accessed at http://gmw.consrv.ca.gov/shmp/download/quad/SOUTH-GATE/reports/sgate-eval.pdf 1998 on September 18, 2015.
- Public Resources Code 21074. 2015. Legal Information: California Codes. Accessed at http://www.leginfo.ca.gov/cgi-bin/displaycode?section=prc&group=21001-22000&file=21060-21074 on September 18, 2015.

Geology and Soils

- National Resources Conservation Service (NRCS). 2014. Web Soil Survey. Accessed at http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx on September 18, 2015.
- <u>California Department of Conservation (CDOC). 2015. Cities and Counties Affected by Alquist-Priolo. Accessed at http://www.conservation.ca.gov/cgs/rghm/ap/Pages/affected.aspx on September 18, 2015.</u>
- County of Los Angeles. 2014. County of Los Angeles General Plan Seismic and Geotechnical Hazard Zones

 Policy Map. April, 2014. Accessed at http://planning.lacounty.gov/generalplan/figures2015 on
 September 22, 2015.
- <u>United States Geological Survey (USGS). 2015. Earthquake Faults. Accessed at http://earthquake.usgs.gov/hazards/qfaults/map/ on September 18, 2015.</u>
- State Water Resources Control Board (SWRCB). 2005. Los Angeles Regional Water Quality Control Board:

 Depth to Ground Water Database. Accessed at

 http://www.swrcb.ca.gov/losangeles/water_issues/programs/ust/groundwater_database.shtml on
 September 18, 2015.
- American Legal Publishing Corporation (ALPC). 2014. California: Los Angeles City Codes. Accessed at http://www.amlegal.com/nxt/gateway.dll?f=templates&fn=default.htm&vid=amlegal:la_all_mc_on_September 18, 2015.

Greenhouse Gas

- California Air Pollution Control Officers Association (CAPCOA). 2008. CEQA & Climate Change, Evaluating and Addressing Greenhouse Gas Emissions from Projects Subject to the California Environmental Quality Act.

 Accessed at http://www.capcoa.org/wp-content/uploads/2012/03/CAPCOA-White-Paper.pdf on September 18, 2015.
- <u>CA Resources Board (ARB). 2008. Climate Change Scoping Plan: A Framework for Change. Accessed at http://www.arb.ca.gov/cc/scopingplan/scopingplan.htm on September 18, 2015.</u>

Hazards and Hazardous Materials

- Los Angeles County (LA County). 2015. Health Hazardous Materials Division: Los Angeles County

 Certified Unified Program Agency (CUPA). Accessed at http://www.fire.lacounty.gov/hhmd/on-September 18, 2015.
- Cal Fire. 2012. Los Angeles County: Very High Fire Hazard Severity Zones in LRA as Recommended by Cal Fire (Map). Recommended, May 2012. Accessed at http://www.fire.ca.gov/fire-prevention/fire-prevention-wildland-zones-maps.php-on-September 18, 2015.
- Los Angeles City. 2010. LA City Planning: Fire Protection and Emergency Medical Services. Accessed at http://www.planning.lacity.org/eir/LoyolaMarymountUniv/DEIR/IV%20J%202%20Fire.pdf on September 18, 2015.
- Los Angeles County Department of Regional Planning. Airport Land Use Commission (ALUC) Website accessed at http://planning.lacounty.gov/aluc/airports on September 22, 2015.

Hydrology and Water Quality

- Federal Emergency Management Agency (FEMA). 2008. Flood Insurance Rate Map No. 06037C1815F.

 Accessed at

 http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=cbe088e7c8704464aa0fc34eb9
 9e7f30&extent=-118.28493607958981,33.89915139151828,118.2251979204102,33.93476456745606 on September 18, 2015.
- National Oceanic and Atmospheric Association (NOAA). 2014. "What is a seiche?" Revised July 25, 2014. Accessed at http://oceanservice.noaa.gov/facts/seiche.html on September 18, 2015.
- <u>United States Geological Survey (USGS)</u>. 2014. Glossary. Page last modified September 15, 2014. Accessed at http://landslides.usgs.gov/learn/glossary.php on September 18, 2015.
- State Water Resources Control Board (SWRCB). 2013. California Areas of Special Biological Significance.

 Accessed at http://www.waterboards.ca.gov/water_issues/programs/ocean/asbs_map.shtml on September 18, 2015.
- <u>City of Los Angeles (Los Angeles). 2015. LA Sewers: About the City's Sewer Systems. Accessed at http://www.lacitysan.org/lasewers/sewers/about/index.htm on September 18, 2015.</u>
- <u>State Water Resources Control Board (SWRCB). List of Impaired Waterbodies. Accessed at http://www.waterboards.ca.gov/water_issues/programs/tmdl/integrated2010.shtml on September 18, 2015.</u>
- <u>City of Los Angeles Department of Public Works (DPW).2014. Low Impact Development (LID): Standards Manual. Accessed at</u>

- http://dpw.lacounty.gov/ldd/lib/fp/Hydrology/Low%20Impact%20Development%20Standards%20Manual.pdf on September 18, 2015.
- <u>Department of Water Resources (DWR). 2015. Best Available Maps: 100 Year Flood. Accessed at http://gis.bam.water.ca.gov/bam/ on September 18, 2015.</u>
- County of Los Angeles. Dams & Reservoirs Website Accessed at http://dpw.lacounty.gov/wrd/Reservoir/index.cfm on September 18, 2015.
- SWRCB. 2015. DWQ: Construction Permits. Accessed at http://www.waterboards.ca.gov/water issues/programs/stormwater/constpermits.shtml on September 18. 2015.

Land Use and Planning

- Los Angeles General Plan (DRP). 2014. General Plan 2035: Zoning. Accessed at http://planning.lacounty.gov/generalplan/zoning on September 18, 2015.
- County of Los Angeles. 2010. Martin Luther King, Jr. Medical Center Campus Redevelopment Draft Environmental Impact Report. August 31, 2010.
- County of Los Angeles. 2011. Martin Luther King, Jr. Medical Center Campus Redevelopment Final Environmental Impact Report. February 2011.

Mineral Resources

<u>United States Geological Survey (USGS). 2014. Mineral Resources Data System. Page last updated September 3, 2014. Accessed at http://mrdata.usgs.gov/mineral-resources/mrds-us.html on September 18, 2015.</u>

Noise

- Los Angeles General Plan (DRP). 2014. General Plan 2035: Zoning. Accessed at http://planning.lacounty.gov/generalplan/zoning on September 18, 2015.
- Los Angeles City. General Plan: Safety Element. Accessed at http://planning.lacity.org/cwd/gnlpln/NoiseElt.pdf on September 18, 2015.
- Los Angeles County Department of Regional Planning. Airport Land Use Commission (ALUC) Website accessed at http://planning.lacounty.gov/aluc/airports on September 22, 2015.

Population and Housing

Caltrans, 2013. California County-Level Economic Forecast 2013 – 2040.

Transportation and Traffic

Federal Highway Adminstration, 2014. Road Diet Informational Guide, November 2014. Accessed online at: http://safety.fhwa.dot.gov/road_diets/info_guide/rdig.pdf on September 28, 2015.

A-3 Scoping Comments

November 6, 2015

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, CA 90012

Notice of Preparation of a CEQA Document for the Willowbrook Transit Oriented District Specific Plan

The South Coast Air Quality Management District (SCAQMD) staff appreciates the opportunity to comment on the above-mentioned document. The SCAQMD staff's comments are recommendations regarding the analysis of potential air quality impacts from the proposed project that should be included in the draft CEQA document. Please send the SCAQMD a copy of the CEQA document upon its completion. Note that copies of the Draft EIR that are submitted to the State Clearinghouse are not forwarded to the SCAQMD. Please forward a copy of the Draft EIR directly to SCAQMD at the address in our letterhead. In addition, please send with the draft EIR all appendices or technical documents related to the air quality and greenhouse gas analyses and electronic versions of all air quality modeling and health risk assessment files. These include original emission calculation spreadsheets and modeling files (not Adobe PDF files). Without all files and supporting air quality documentation, the SCAQMD will be unable to complete its review of the air quality analysis in a timely manner. Any delays in providing all supporting air quality documentation will require additional time for review beyond the end of the comment period.

Air Quality Analysis

The SCAQMD adopted its California Environmental Quality Act (CEQA) Air Quality Handbook in 1993 to assist other public agencies with the preparation of air quality analyses. The SCAQMD recommends that the Lead Agency use this Handbook as guidance when preparing its air quality analysis. Copies of the Handbook are available from the SCAQMD's Subscription Services Department by calling (909) 396-3720. More recent guidance developed since this Handbook was published is also available on SCAQMD's website here: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/ceqa-air-quality-handbook-(1993). SCAQMD staff also recommends that the lead agency use the CalEEMod land use emissions software. This software has recently been updated to incorporate up-to-date state and locally approved emission factors and methodologies for estimating pollutant emissions from typical land use development. CalEEMod is the only software model maintained by the California Air Pollution Control Officers Association (CAPCOA) and replaces the now outdated URBEMIS. This model is available free of charge at: www.caleemod.com.

The Lead Agency should identify any potential adverse air quality impacts that could occur from all phases of the project and all air pollutant sources related to the project. Air quality impacts from both construction (including demolition, if any) and operations should be calculated. Construction-related air quality impacts typically include, but are not limited to, emissions from the use of heavy-duty equipment from grading, earth-loading/unloading, paving, architectural coatings, off-road mobile sources (e.g., heavy-duty construction equipment) and on-road mobile sources (e.g., construction worker vehicle trips, material transport trips). Operation-related air quality impacts may include, but are not limited to, emissions from stationary sources (e.g., boilers), area sources (e.g., solvents and coatings), and vehicular trips (e.g., on- and off-road tailpipe emissions and entrained dust). Air quality impacts from indirect sources, that is, sources that generate or attract vehicular trips should be included in the analysis.

The SCAQMD has also developed both regional and localized significance thresholds. The SCAQMD staff requests that the lead agency quantify criteria pollutant emissions and compare the results to the recommended regional significance thresholds found here: http://www.aqmd.gov/docs/default-source/ceqa/handbook/scaqmd-air-quality-significance-thresholds.pdf?sfvrsn=2. In addition to analyzing regional air quality impacts, the SCAQMD staff recommends calculating localized air quality impacts and comparing the results to localized significance thresholds (LSTs). LSTs can be used in addition to the recommended regional significance thresholds as a second indication of air quality impacts

when preparing a CEQA document. Therefore, when preparing the air quality analysis for the proposed project, it is recommended that the lead agency perform a localized analysis by either using the LSTs developed by the SCAQMD or performing dispersion modeling as necessary. Guidance for performing a localized air quality analysis can be found at: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/localized-significance-thresholds.

In the event that the proposed project generates or attracts vehicular trips, especially heavy-duty diesel-fueled vehicles, it is recommended that the lead agency perform a mobile source health risk assessment. Guidance for performing a mobile source health risk assessment ("Health Risk Assessment Guidance for Analyzing Cancer Risk from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis") can be found at: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mobile-source-toxics-analysis. An analysis of all toxic air contaminant impacts due to the use of equipment potentially generating such air pollutants should also be included.

In addition, guidance on siting incompatible land uses (such as placing homes near freeways) can be found in the California Air Resources Board's *Air Quality and Land Use Handbook: A Community Perspective*, which can be found at the following internet address: http://www.arb.ca.gov/ch/handbook.pdf. CARB's Land Use Handbook is a general reference guide for evaluating and reducing air pollution impacts associated with new projects that go through the land use decision-making process.

Mitigation Measures

In the event that the project generates significant adverse air quality impacts, CEQA requires that all feasible mitigation measures that go beyond what is required by law be utilized during project construction and operation to minimize or eliminate these impacts. Pursuant to CEQA Guidelines §15126.4 (a)(1)(D), any impacts resulting from mitigation measures must also be discussed. Several resources are available to assist the Lead Agency with identifying possible mitigation measures for the project, including:

- Chapter 11 of the SCAQMD CEQA Air Quality Handbook
- SCAQMD's CEQA web pages at: http://www.aqmd.gov/home/regulations/ceqa/air-quality-analysis-handbook/mitigation-measures-and-control-efficiencies.
- CAPCOA's Quantifying Greenhouse Gas Mitigation Measures available here: http://www.capcoa.org/wp-content/uploads/2010/11/CAPCOA-Quantification-Report-9-14-Final.pdf.
- SCAQMD's Rule 403 Fugitive Dust, and the Implementation Handbook for controlling construction-related emissions
- Other measures to reduce air quality impacts from land use projects can be found in the SCAQMD's Guidance Document for Addressing Air Quality Issues in General Plans and Local Planning. This document can be found at the following internet address: http://www.aqmd.gov/docs/default-source/planning/air-quality-guidance/complete-guidance-document.pdf?sfyrsn=4.

Data Sources

SCAQMD rules and relevant air quality reports and data are available by calling the SCAQMD's Public Information Center at (909) 396-2039. Much of the information available through the Public Information Center is also available via the SCAQMD's webpage (http://www.aqmd.gov).

The SCAQMD staff is available to work with the Lead Agency to ensure that project emissions are accurately evaluated and mitigated where feasible. If you have any questions regarding this letter, please contact me at jwong1@aqmd.gov or call me at (909) 396-3176.

Sincerely,

Jillian Wong

Jillian Wong, Ph.D.
Program Supervisor
Planning, Rule Development & Area Sources

LAC151103-01 Control Number

DEPARTMENT OF TRANSPORTATION

DISTRICT 7-OFFICE OF TRANSPORTATION PLANNING 100 S. MAIN STREET, MS 16 LOS ANGELES, CA 90012 PHONE (213) 897-9140 FAX (213) 897-1337 www.dot.ca.gov

November 30, 2015

Ms. Connie Chung Los Angeles County 320 West Temple Street Los Angeles, CA 90012

RE: Willowbrook TOD Specific Plan

Vic. LA-10 PM R8.899 to R10.296

SCH # 2015101106

IGR/CEQA No. 151108AL-NOP

Dear Ms. Chung:

Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the above referenced project. The Willowbrook TOD Specific Plan would encourage transit oriented development; promote active transportation and improve quality of life for residents; reduce vehicles miles traveled; create community benefits with improvements to the public realm; improve economic vitality and employment opportunities; and streamline the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood serving retail uses. Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use. Any net traffic trips from the Specific Plan would contribute traffic impact to the State facilities.

This letter is a follow up to a phone conversation on November 24, 2015 between yourself and Mr. Alan Lin, Caltrans Project Coordinator. Both agencies agree that a Formal Scoping Meeting to discuss the preparation of the traffic analysis, potential traffic impacts, and proposed mitigation on the State facilities is necessary.

Caltrans understands that the current General Plan and new transportation performance measures and CEQA thresholds have not being updated to VMT (Vehicle Miles Traveled) at the time. Caltrans is concerned that when traffic generated by the project, along with cumulative traffic is expected to use an off-ramp that is operating at or near capacity, the additional traffic may potentially exceed the off-ramps capacity and back up onto the mainline freeway.

To assist in evaluating the impacts of this project on State transportation facilities, a traffic study should be prepared prior to preparing the Draft Environmental Impact Report (DEIR). Please refer the project's traffic consultant to Caltrans' traffic study guide Website:

http://www.dot.ca.gov/hq/tpp/offices/ocp/igr ceqa files/tisguide.pdf

Listed below are some elements of what is generally expected in the traffic study:

- 1. Presentations of assumptions and methods used to develop trip generation, trip distribution, choice of travel mode, and assignments of trips to I-105 and all off ramps within the project vicinity including but not limit to westbound (WB) I-105 on/off ramps to/from Imperial Highway, eastbound (EB) I-105 to/from Wilmington Ave., and EB/WB I-105 to/from S Central Ave. The traffic consultant should work with Caltrans to identify and confirm off-ramp study locations and freeway segments prior to the preparation of the traffic study. The traffic study should also analyze the storage for left-turn pocket at on-ramps.
- 2. An off-ramp queuing analysis should be conducted utilizing the Highway Capacity Manual (HCM). The capacity of the off-ramp should be calculated by the actual length of the off-ramp between the terminuses to the gore point (30 feet per car preferred) with some safety factor or referenced to Highway Design Manual at 23' point (Figure 504.2A Single Lane Freeway Entrance) or any other justified methods approved in advance by Caltrans. The existing queue length should be calculated from the traffic counts and the percent of truck assignments (data from Caltrans) to the ramp with a passenger car equivalent factor of 3.0 (worst case scenario). The analyzed result may need to be calibrated with actual signal timing when necessary. It is also recommended that the Lead Agency determine whether the existing, existing plus project, and project-related plus cumulative traffic are expected to cause long queues on the on and off-ramps. Please include mitigation measures if forecasted vehicle queues are expected to exceed available storage capacity with some safety factor.
- 3. Project travel modeling should be consistent with other regional and local modeling forecasts and travel data. Caltrans uses the indices to verify the results and any differences or inconsistencies must be thoroughly explained. Please submit modeling assumptions for Caltrans review and comment.
- 4. Trip generation rates for the project should be based on the nationally recognized recommendations contained in "Trip Generation" manual, 9th edition, published by the Institute of Transportation Engineers (ITE).
- 5. Analysis of ADT, AM and PM peak-hour volumes for both the existing and future conditions in the affected area with and without project. Utilization of transit lines and vehicles, and of all facilities, should be realistically estimated. Future conditions should include build-out of all projects and any plan-horizon years.
- 6. The analysis should include existing traffic, traffic generated by the project, cumulative traffic generated from all specific approved developments in the area, and traffic growth other than from the project and developments.
- 7. A discussion of mitigation measures appropriate to alleviate anticipated traffic impacts should also be included. Any mitigation involving transit or Transportation Demand Management (TDM) should be justified and the results conservatively estimated.

Ms. Connie Chung November 25, 2015 Page 3

8. A fair share contribution toward pre-established or future improvements on the State Highway System is considered acceptable mitigation. (Please see Appendix "B" of the Guide for more information). Please note that for purposes of determining project share of costs, the number of trips from the project on each traveling segment or element is estimated in the context of forecasted traffic volumes, which include build-out of all approved and not yet approved projects and other sources of growth.

Caltrans encourages the Lead Agency to work with neighboring developing cities such as, the City of Los Angeles, City of Lynwood, and the City of Compton, to resolve cumulative significant traffic impacts on the State facilities. A plan to work with the neighboring cities should be discussed in the Specific Plan or a new Resolution/Policy should be passed such as but not limit to the following suggested policy languages:

- The Lead Agency will work with neighboring cities to address cumulative significant traffic impact on freeway I-105, I-110, and I-710, and on/off ramps as a result of build out of the Specific Plan.
- The Lead Agency will continue to work with Caltrans to identify potential cumulative traffic impact and mitigation measures.
- The Lead Agency will form a fair share fee program working with neighboring cities to improve the State facilities.
- The Lead Agency's existing traffic impact fees will include any State facility improvement as part of the cumulative traffic impact. Procuring funds toward freeway segments, freeway interchanges, freeway on/off-ramps, as well as for bus and rail transit facilities will be in the goals of the Lead Agency.

Although we expect to receive the DEIR from the State Clearinghouse, if you would like to expedite the review process or receive early feedback, please feel free to send a copy of the DEIR directly to our office.

If you have any questions, please feel free to contact Mr. Alan Lin the project coordinator at (213) 897-8391 and refer to IGR/CEQA No. 151108AL.

Sincerely,

DIANNA WATSON IGR/CEQA Branch Chief

Diluna Gaton

cc: email to Scott Morgan, State Clearinghouse

City of LYNWOOD A City Meeting Challenges

11330 BULLIS ROAD LYNWOOD, CALIFORNIA 90262 (310) 603-0220

November 30, 2015

Connie Chung County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, CA 90012

Dear Ms. Chung:

COMMENTS TO THE WILLOWBROOK TOD SPECIFIC PLAN

The City of Lynwood Public Works Department appreciates the opportunity to comment on the scope and content of the environmental analysis to be included in the Environmental Impact Report (EIR). The City of Lynwood, whose westernmost border is less than 1 mile from the planned Willowbrook Transit Oriented District Specific Plan, submits the following comments on impacts that we hope will be addressed in the EIR:

- City's Feeder Line to the Willowbrook Blue Line Station Currently one of the
 City's bus routes is a feeder line to the Willowbrook Blue Line Station. The City has
 operated this bus route for over fifteen years to transport Lynwood residents to
 the Willowbrook Blue Line station along Imperial Highway. The City would like to
 continue operating this line without interruption or amending its current route.
- Traffic Congestion The City is concerned with increased traffic volume on Imperial Highway, Mona Boulevard, Industry Way, Lynwood Road, Alameda Street, and State Street. The increased traffic volume could significantly impact vehicular and pedestrian traffic operations. In addition to any other intersections that may be studied, impacts to these intersections should be studied and mitigated: Imperial Highway and State Street; Fernwood Avenue and State Street; and Lynwood Road and State Street.
- Air Quality The Willowbrook TOD should address the impacts of increased emissions to the City.
- Public Safety Services The Willowbrook TOD will result in an increase of visitors, residents and employees to the project site and surrounding areas, thereby resulting in an increase in demand for police services. The Willowbrook TOD

should address adequate level of police services to avoid impacts to surrounding areas.

We look forward to reviewing the EIR document and your responses to our comments. Should you have any questions regarding this letter, please call Lorry Hempe of my staff at 310-603-0220, ext. 500 or email her at lhempe@lynwood.ca.us.

Sincerely,

Raul Godinez II, P.E

Director of Public Works/City Engineer

Cc:

Erika Ramirez, Interim Director of Development Services J. Arnoldo Beltrán, City Manager

Los Angeles County Department of Regional Planning

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

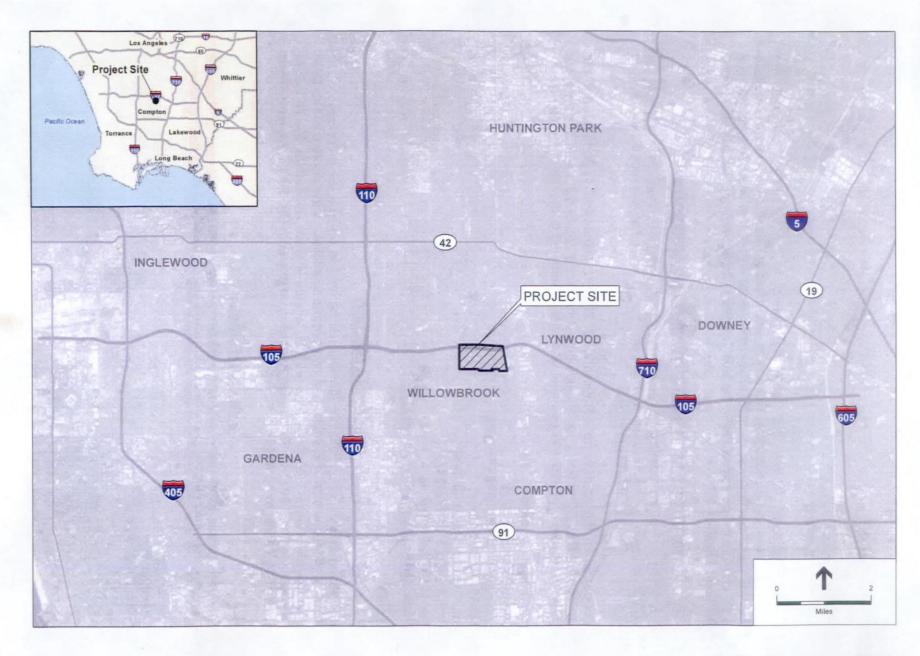
The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015, from 10:00 am to 12:00 pm.**

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

SOURCE: ESRI

Willowbrook TOD Specific Plan . 130631 Figure 1 Regional Location

Los Angeles County Metropolitan Transportation Authority

One Gateway Plaza Los Angeles, CA 90012-2952 213.922.2000 Tel metro.net

December 1, 2015

Connie Chung County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, CA 90012

Email: cchung@planning.lacounty.gov

RE: Willowbrook Transit Oriented District Specific Plan- Unincorporated Community of Willowbrook/County of Los Angeles-Notice of Preparation of Draft Environmental Impact Report

Dear Ms. Chung:

Thank you for the opportunity to comment on the Notice of Preparation of a Draft Environmental Impact Report for the proposed Willowbrook Transit Oriented District Specific Plan (Specific Plan) located in the unincorporated community of Willowbrook within Los Angeles County. The proposed project consists of a Specific Plan that will introduce Transit Oriented Development patterns to the area. The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. This letter conveys recommendations from the Los Angeles County Metropolitan Transportation Authority (Metro) concerning issues that are germane to our agency's statutory responsibility in relation to our facilities and services that may be affected by the proposed project.

Several Metro bus lines operate within the Specific Plan area (120, 202, 205, 612, 55/202/355) Metro has standard language that relates to construction activity adjacent to bus transit facilities. Metro recommends that the Specific Plan include language that informs future development activity within the Specific Plan area of Metro's notification procedures and considerations for projects located in close proximity to a Metro facility that may impact Metro bus operations.

The Metro Blue and Green light rail currently operate weekday peak service as often as every five minutes in both directions and that trains may operate, in and out of revenue service, 24 hours a day, seven days a week, in the ROW proximate to the proposed project. Metro has development guidelines that describe the Metro's development project review process and considerations for project siting as it relates to Metro facilities. Metro suggests that the project sponsor include policy language or guidance in the Specific Plan that clearly denotes that development occurring within 100 feet of a Metro facility will require Metro review and approval and compliance with Metro's Development Guidelines. In particular, because of the proximity to the Metro Blue Line, increased traffic at railroad grade crossings must be considered specifically in the Specific Plan. Provisions for transit priority treatments should be considered to make the development welcoming to transit access.

Willowbrook Transit Oriented District Specific Plan NOP Metro Comments December 1, 2015

In addition, the Specific Plan has various policies in place that support active transportation and multi-modalism. Metro looks forward to continuing to collaborate with the County to effectuate policies and implementation activities that promote transit supportive communities and reduce pedestrian/bike and bus conflicts. Please continue to collaborate with Metro as such plans are effectuated, including the proposed Willowbrook Avenue West bike path.

In addition, Metro would like to take this opportunity to provide the following specific comments and additional information about improvements planned for the Willowbrook/Rosa Parks station:

- Page 24: Please remove the reference to the cost of the Metro Willowbrook/Rosa Parks Improvement Project. The cost is not accurate and because of ongoing activity related to advancing design and the overall project, the cost should not be memorialized in the Specific Plan.
- Page 24: the renderings included in the plan for the station area are not accurate and do not reflect Metro's current design. Please use images provided below.

- Page 24: The addition of a southern at-grade crossing to the Blue Line is currently being evaluated. Please revise the second paragraph under Specific Plan Strategy as follows: "Another at-grade crossing is planned at the south end of the Blue Line platform, but only across the western tracks. If this crossing could extend eastward across the tracks, it would further enhance connectivity for residents to the east."
- Page87: Please revise reference of the Metro bike station to a Metro Bike Mobility Hub.
 Additionally, if bike stations are referenced in other contexts in the Plan, consider defining "bike station" to clarify what it entails (storage, valet, rental)
- Page 87: Please note that a shuttle stop may not be provided due to feedback from shuttle
 operators and a crosswalk to Willowbrook East will not be provided. Please consider replacing
 the second sentence under "4.6 Transit Circulation" to "These are expected to include
 expansion of station facilities and the Blue Line platform, a bicycle mobility hub, and
 improvements to station access."

Thank you for the opportunity to comment on the NOP of the DEIR for the Willowbrook Transit Oriented District Specific Plan. If you have any questions regarding this response, please contact Elizabeth Carvajal at 213-922-3084 or by email at DevReview@metro.net. Metro looks forward to reviewing the Draft EIR. Please send it to the following address:

Willowbrook Transit Oriented District Specific Plan NOP Metro Comments December 1, 2015

Metro Development Review One Gateway Plaza MS 99-23-4 Los Angeles, CA 90012-2952

Sincerely,

Elizabeth Carvajal Transportation Planning Manager

Main Office

818 West 7th Street 12th Floor Los Angeles, California 90017-3435

t (213) 236-1800

f (213) 236-1825

www.scag.ca.gov

Officers

President Cheryl Viegas-Walker, El Centro

First Vice President Michele Martinez, Santa Ana

Second Vice President Margaret Finlay, Duarte

Immediate Past President Carl Morehouse, San Buenaventura

Executive/Administration Committee Chair

Cheryl Viegas-Walker, El Centro

Policy Committee Chairs

Community, Economic and Human Development Bill Jahn, Big Bear Lake

Energy & Environment Deborah Robertson, Rialto

Transportation
Alan Wapner, San Bernardino
Associated Governments

December 1, 2015

Ms. Connie Chung, AICP County of Los Angeles, Department of Regional Planning 320 West Temple Street Los Angeles, California 90012 Phone: (213) 974-6417

E-mail: cchung@planning.lacounty.gov

RE: SCAG Comments on the Notice of Preparation of a Draft Environmental Impact Report for the Willowbrook Transit Oriented District Specific Plan [SCAG NO. IGR8658]

Dear Ms. Chung,

Thank you for submitting the Notice of Preparation of a Draft Environmental Impact Report for the Willowbrook Transit Oriented District Specific Plan ("proposed project") to the Southern California Association of Governments (SCAG) for review and comment. SCAG is the authorized regional agency for Inter-Governmental Review (IGR) of programs proposed for federal financial assistance and direct development activities, pursuant to Presidential Executive Order 12372. Additionally, SCAG reviews the Environmental Impact Reports of projects of regional significance for consistency with regional plans pursuant to the California Environmental Quality Act (CEQA) and CEQA Guidelines.

SCAG is also the designated Regional Transportation Planning Agency under state law, and is responsible for preparation of the Regional Transportation Plan (RTP) including its Sustainable Communities Strategy (SCS) component pursuant to SB 375. As the clearinghouse for regionally significant projects per Executive Order 12372, SCAG reviews the consistency of local plans, projects, and programs with regional plans. Guidance provided by these reviews is intended to assist local agencies and project sponsors to take actions that contribute to the attainment of the regional goals and policies in the RTP/SCS.

SCAG staff has reviewed the Notice of Preparation of a Draft Environmental Impact Report for the Willowbrook Transit Oriented District Specific Plan in Los Angeles County. The proposed project is a Specific Plan that introduces a transit oriented development (TOD) pattern into the area. The Specific Plan accommodates an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use on 312 acres.

When available, please send environmental documentation to SCAG's office in Los Angeles or by email to sunl@scag.ca.gov providing, at a minimum, the full public comment period for review. If you have any questions regarding the attached comments, please contact the Inter-Governmental Review (IGR) Program, attn.: Lijin Sun, Esq., Senior Regional Planner, at (213) 236-1882 or sunl@scag.ca.gov. Thank you.

Sincerely,

Ping Chang

Program Manager II, Land Use and Environmental Planning

¹ SB 375 amends CEQA to add Chapter 4.2 Implementation of the Sustainable Communities Strategy, which allows for certain CEQA streamlining for projects consistent with the RTP/SCS. Lead agencies (including local jurisdictions) maintain the discretion and will be solely responsible for determining "consistency" of any future project with the SCS. Any "consistency" finding by SCAG pursuant to the IGR process should not be construed as a finding of consistency under SB 375 for purposes of CEQA streamlining.

COMMENTS ON THE NOTICE OF PREPARATION OF A DRAFT ENVIRONMENTAL IMPACT REPORT FOR THE WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN [SCAG NO. IGR8658]

CONSISTENCY WITH RTP/SCS

SCAG reviews environmental documents for regionally significant projects for their consistency with the adopted RTP/SCS.

2012 RTP/SCS GOALS

The SCAG Regional Council adopted the 2012 RTP/SCS in April 2012. The 2012 RTP/SCS links the goal of sustaining mobility with the goals of fostering economic development, enhancing the environment, reducing energy consumption, promoting transportation-friendly development patterns, and encouraging fair and equitable access to residents affected by socio-economic, geographic and commercial limitations (see http://rtpscs.scag.ca.gov). The goals included in the 2012 RTP/SCS may be pertinent to the proposed project. These goals are meant to provide guidance for considering the proposed project within the context of regional goals and policies. Among the relevant goals of the 2012 RTP/SCS are the following:

	SCAG 2012 RTP/SCS GOALS
RTP/SCS G1:	Align the plan investments and policies with improving regional economic development and competitiveness
RTP/SCS G2:	Maximize mobility and accessibility for all people and goods in the region
RTP/SCS G3:	Ensure travel safety and reliability for all people and goods in the region
RTP/SCS G4:	Preserve and ensure a sustainable regional transportation system
RTP/SCS G5:	Maximize the productivity of our transportation system
RTP/SCS G6:	Protect the environment and health for our residents by improving air quality and encouraging active transportation (non-motorized transportation, such as bicycling and walking)
RTP/SCS G7:	Actively encourage and create incentives for energy efficiency, where possible
RTP/SCS G8:	Encourage land use and growth patterns that facilitate transit and non-motorized transportation
RTP/SCS G9:	Maximize the security of the regional transportation system through improved system monitoring, rapid recovery planning, and coordination with other security agencies

For ease of review, we encourage the use of a side-by-side comparison of SCAG goals with discussions of the consistency, non-consistency or non-applicability of the policy and supportive analysis in a table format. Suggested format is as follows:

SCAG 2012 RTP/SCS GOALS				
	Goal	Analysis		
RTP/SCS G1:	Align the plan investments and policies with improving regional economic development and competitiveness	Consistent: Statement as to why; Not-Consistent: Statement as to why;		
		Or		
		Not Applicable: Statement as to why; DEIR page number reference		
RTP/SCS G2:	Maximize mobility and accessibility for all people and goods in the region			
		Not Applicable: Statement as to why; DEIR page number reference		
etc.		etc.		

RTP/SCS STRATEGIES

To achieve the goals of the 2012 RTP/SCS, a wide range of strategies are included in SCS Chapter (starting on page 152) of the RTP/SCS focusing on four key areas: 1) Land Use Actions and Strategies; 2) Transportation Network Actions and Strategies; 3) Transportation Demand Management (TDM) Actions and Strategies and; 4) Transportation System Management (TSM) Actions and Strategies. If applicable to the proposed project, please refer to these strategies as guidance for considering the proposed project within the context of regional goals and policies. To access a listing of the strategies, please visit http://rtpscs.scag.ca.gov/Documents/2012/final/f2012RTPSCS.pdf (Tables 4.3 – 4.7, beginning on page 152).

REGIONAL GROWTH FORECASTS

At the time of this letter, the most recently adopted SCAG forecasts, at the jurisdictional level, consists of the 2020 and 2035 RTP/SCS population, household and employment forecasts. To view them, please visit http://scag.ca.gov/Documents/2012AdoptedGrowthForecastPDF.pdf. The forecasts for the region and applicable jurisdictions are below.

	Adopted SCAG Reg	gion Wide Forecasts	Adopted County of Los Ange Forecasts	
	Year 2020	Year 2035	Year 2020	Year 2035
Population	19,663,000	22,091,000	10,404,000	11,353,000
Households	6,458,000	7,325,000	3,513,000	3,852,000
Employment	8,414,000	9,441,000	4,558,000	4,827,000

MITIGATION

SCAG staff recommends that you review the SCAG 2012 RTP/SCS Final Program EIR Mitigation Measures for guidance, as appropriate. See Chapter 6 (beginning on page 143) at: http://rtpscs.scag.ca.gov/Documents/peir/2012/final/Final2012PEIR.pdf

As referenced in Chapter 6, a comprehensive list of example mitigation measures that may be considered as appropriate is included in Appendix G: Examples of Measures that Could Reduce Impacts from Planning, Development and Transportation Projects. Appendix G can be accessed at:

http://rtpscs.scag.ca.gov/Documents/peir/2012/final/2012fPEIR AppendixG ExampleMeasures.pdf

Need to fix streets, bus stop, etc. first. Would like to see short-term community improvements.

Homeless issue – [need a] homeless shelter [and] more affordable housing locally [with] short-term strategies for elderly.

What types of shops will come in to the plaza? A dollar store? [Specific] Plan sets the policy for future community [development].

[Regarding] trailers parked on streets, can we designate an area [within the TOD] for trailer [/RV] parking? Answer: Homelessness is a countywide issue and the county is working on the issue from many directions [through many different initiatives]. For the specific plan, areas are identified for new housing.

Railroad tracks [can the plan address the poor condition of railroad crossings]

Need more local jobs, a job training center and more job training.

[Prevent the] displacement of current residents.

Use of renewable energy?

Level of affordability [of new housing] / [Are] Income level restrictions [proposed] (\$1500-\$2000 per month [would be] too high [for most current residents])

Any community benefits (equity) included?

Have information (maps, etc) available in hard copy.

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Lead Agency Contact:

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417 Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Comments: _	Please	WORK With the Community
		\mathcal{J}
- 1		
Please include for review. W	de your contact/ma /e will also notify yo	illing information. We will notify you when the draft EIR is completed and available out of public hearings related to this project.
	Name:	Ruby Kiwanuka
	Address:	\$ 1920 E. Elseaund AD+ (0)
	Address.	STREGOTION MP
	City/State/ZIP:	Compton Ca. 90222
		Compton Ca. 90222

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Tel: (213) 974-6417 Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Comments	I like the	idea of	jobs (Omin	1 to +	he c	'ommonity
	and hope	the jobs	S will	DD (C	Sered	+0	Residents
Please incl	ude your contact/mai	 ling information. V	Ve will notify y	ou when th	 e draft EIR is	complet	 ted and available
for review.	We will also notify yo Name:	u of public hearing	s related to th	nis project.			
	Address:					_	
	City/State/ZIP:					_	
	Email:	<u> </u>					
Lead Agend	cy Contact:						

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form a	allows you to make c	omments on what you believe should be addressed in the Environmental Impact
Report (Ell	R) for the above proje	ect. You may submit your written comments at this scoping meeting or by mail to below. Written comments on the Notice of Preparation (NOP) for the EIR will be
accepted u	intil December 1, 201	5.
Comments	: I thin	k it would be good that the
	Commy-	ty bus should Pick upout
	street	s) where sénior's and disable
	people	can be pick up and taken
	to pla	ices arounda them
Please inclifor review.	ude your contact/mail We will also notify you	ing information. We will notify you when the draft EIR is completed and available u of public hearings related to this project.
	Name:	Gwendoly H Taschal
	Address:	2019 E 122 St #229
	City/State/ZIP:	Compton, Ca. 90222
	Email:	Gwendolyn Paschal @ gm Ail. Com
Lead Agend	cv Contact:	

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Comments:
Conments.
Esta Patostos Se Para vien
Le la comodidat Para Mi
Todos 100 Prollector son
Escelen Te
Tee los de enos de donde vivma
agan a Rel 05 en 94 no
105 cobyen Tanta Rinta
Please include your contact/mailing information. We will notify you when the draft EIR is completed and available for review. We will also notify you of public hearings related to this project.
Name: EUA 6 yillen
Address: M916 Wilow6-100 FAL
City/State/ZIP: 103 ANGILLES C.A
Email: 96059
323-811-8800
Lead Agency Contact: Ms. Connie Chung
County of Los Angeles, Department of Regional Planning 320 W. Temple Street

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Tel: (213) 974-6417 Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Comments:	<u> </u>	
	mi Oregi	
	(vando ba)	a q comenger el Cambio
	para 9 no	9 90040 neces, tan
	Pro Yesto	Olvida da
Please inclu for review. V	ide your contact/mailing Ve will also notify you of	information. We will notify you when the draft EIR is completed and available public hearings related to this project.
	Name:	Rosa Dadel Rio
	Address:	12049 S. Willow Groot AU
	City/State/ZIP:	# 2 campton Gal
	Email:	90222
Lead Agend	-	annia Chura
	County	onnie Chung v of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Tel: (213) 974-6417 Fax: (213) 626-0434

Comments:

Public Input Form Scoping Meeting Willowbrook TOD Specific Plan

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

tand es que mi pirceción es 1662

WillowBrook	Muy cerca de los nuevos projectos
gu MNG	e recicios yo tambien yo de bajor
MCONFOS,	pero judo por el bien de mi
cominida	ed, estoy emocionada y Avidos
for ver com	o se va a ver y tugo gavos de
trabagar	Muy de area en estos moye
tos mi non	who is Martha Epeda (323/5/27 28-31
Please include your contact/mailing for review. We will also notify you of	information. We will notify you when the draft EIR is completed and availab public hearings related to this project.
Name:	Martha Terreda
Address:	1682 willowBrook Ace
City/State/ZIP:	Los Angeles CAG-90089
Email:	
Lead Agency Contact:	

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

Comments:	nos As	e falta un semaforo Oun
	paso pa	ional en el nue vo parque
	Hoper	es tapor 19 y monei por que
	para x	pasa niños para la Escuela
	y pas	an caros capidos y parte
	Mona	the den bouer bourd dro batine
	Aser t	=90 SiSiO Maquinas Para
Please inclusion review.	ude your contact/n We will also notify	nailing information. We will notify you when the draft EIR is completed and available you of public hearings related to this project.
	Name:	Sugaring Chiego
	Address:	
	City/State/ZIP:	<u> </u>
	Email:	
Lead Agend		Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015.**

mments: I think that they are doing the with all
the progress all efforts are goin pretti
well. and the Securities are excellent. I Tracks needs to be done. Pot hors everywhere Jobs in the Community.
ease include your contact/mailing information. We will notify you when the draft EIR is completed and available review. We will also notify you of public hearings related to this project.
Name: Sharon Steward
Address: 2404 6-El Segundo Blud.
City/State/ZIP: COMPton CH, 90222
Email:
ad Agency Contact: Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417 Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until December 1, 2015.

Comments:	To whom	it May coreern i Lizit Zeside in zomplen
	fer mony y	rs; notice alot of homeless people long
Ď.	on bus stop	Elaying ungrounds and stuck. It sadden
	Me . We need	a place for the community that's homeless
2	i see it even	where even laying an compten count grounds
-5	tents and st	ift of that matters , think personally may
sold sold	Should mal	e tille houses. Con the hemeless i seen on
70		ney put little house in locations somethings
Please inclufor review.	reeds to be a truck that the source of the s	information. We will notify you when the draft EIR is completed and available f public hearings related to this project.
	Name:	hazit Carrett
	Address:	2024 West Reeve 87
	City/State/ZIP:	compten to 90220
	Email:	LAZIT Garrett @ smail-com
Lead Agenc		

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417 Fax: (213) 626-0434

County Project Number: R2015-02007 Environmental Review Number: RENVT201500136

November 21, 2015

This form allows you to make comments on what you believe should be addressed in the Environmental Impact Report (EIR) for the above project. You may submit your written comments at this scoping meeting or by mail to the Lead Agency Contact listed below. Written comments on the Notice of Preparation (NOP) for the EIR will be accepted until **December 1, 2015**.

Comments: My name is Sucundo Ryder I live at 120235.
willowbrook and Boach House, I worked at Porte Aid
in aux shaping Center for almost 15 years or longer
and home just found out the one very sich
With Canon of Bladdy & Colon and Connot
work considered aft at app le regnolymon doctor
Jegym Shon st am at house a of find myself
eval trob I sa, emit diltta, emanle an ities.
food alot of the time, and I go to the church t
Please include your contact/mailing information. We will notify you when the draft EIR is completed and available for review. We will also notify you of public hearings related to this project.
Name:
Address:
City/State/ZIP:
Email:
Lead Agency Contact:

Ms. Connie Chung

County of Los Angeles, Department of Regional Planning

320 W. Temple Street Los Angeles, CA 90012 Tel: (213) 974-6417

Fax: (213) 626-0434

joint free food and I find myself not eating become I can't walk down the street to recove it, Becouse it don't have a Can on family taget so like now it don't eat And keep loseing weight I have one sometho work here at this hospalal his mana is Wayne Fathenas. and Il was wondering if there is some war for me to Obtains this food other then coming down because I hust so very bodat stimes and I m down to 56 yourds now and Doctors are wall trying to find out the reasons for this, eldent mean alet of bear tose a but of help In app trying to get my S.S. Bet it takes. time for this to kappen So I'm just asking for a little Bit of help till than or make all get well enough to go Backto work. thank you Son Very much. Lucinda Ryder

an add your Help.

Appendix B **Air Quality and Greenhouse Gas Emissions Data Worksheets**

Willowbrook Specific Plan

Appendix B, Air Quality Worksheets and Greenhouse Gas Emissions Data Worksheets

Construction Emissions

- CalEEMod Construction Model Input Assumptions
- CalEEMod Output (Summer)- Non-Residenitial
- CalEEMod Output (Winter)- Non-Residenitial
- CalEEMod Output (Annual)- Non-Residenitial
- CalEEMod Output (Summer)- Residential
- CalEEMod Output (Winter)- Residential
- CalEEMod Output (Annual)- Residential

Operational Emissions

- CalEEMod Output (Summer)
- CalEEMod Output (Winter)
- CalEEMod Output (Annual)
- CalEEMod Output (Summer)- Hospital LST
- CalEEMod Output (Winter)- Hospital LST
- CalEEMod Title 24 Conversion

Appendix B, Air Quality Worksheets and Greenhouse Gas Emissions Data Worksheets

Construction Emissions

- CalEEMod Construction Model Input Assumptions
- CalEEMod Output (Summer)- Non-Residenitial
- CalEEMod Output (Winter)- Non-Residential
- CalEEMod Output (Annual)- Non-Residential
- CalEEMod Output (Summer)- Residential
- CalEEMod Output (Winter)- Residential
- CalEEMod Output (Annual)- Residential

last updated: 2/8/2017

Modeling Assumption for Air Quality Construction Emissions- Maximum Day Assumptions

Land Use	CalEEMod Land Use Type		Units	
Residential	Mid-Rise Apartment	105 DU	105,000 sf	
Non-residential	General Office Building	172.0 KSF	172,000 sf	

CalEEMod Construction Phase	Start Date	End Date	No. Work Days	No. of Simultaneou s Projects	Demo (KSF)
Demolition	1/2/2018	1/2/2018	1	5	20
Grading	1/2/2018	2/12/2018	30	5	
Building Construction- Residential	1/2/2017	6/18/2017	120	10	
Paving	1/2/2017	1/29/2017	20	10	
Architectural Coating	1/2/2017	1/29/2017	20	10	
Building Construction- Non- Residential	1/2/2017	9/10/2017	180	4	
Paving	1/2/2017	2/10/2017	30	4	
Architectural Coating	1/2/2017	2/10/2017	30	4	

Modeling Assumption for Construction Greenhouse Gas Emissions- Maximum Annual Assumptions

Land Use	CalEEMod Land Use Type	Units		
Residential	Mid-Rise Apartment	420 DU	420,000 sf	
Non-Residential	General Office Building	227.0 KSF	227,000 sf	

CalEEMod Construction Phase	Start Date	End Date	No. Work Days	No. of Simultaneou s Projects	Demo (KSF)
Demolition	1/2/2018	12/31/2018	260	2	227
Grading	1/2/2018	12/31/2018	260	2	
Building Construction- Residential	1/2/2018	12/31/2018	260	10	
Paving	1/2/2017	5/21/2018	100	10	
Architectural Coating	1/2/2017	1/2/2018	260	10	
Building Construction- Non- Residential	1/2/2018	9/10/2018	260	4	
Paving	1/2/2018	2/12/2018	200	4	
Architectural Coating	1/2/2018	2/10/2018	260	4	

Willowbrook Specific Plan- Non-Residential- South Coast AQMD Air District, Summer

Willowbrook Specific Plan- Non- Residential South Coast AQMD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	172.00	1000sqft	3.95	172,000.00	0

1.2 Other Project Characteristics

UrbanizationUrbanWind Speed (m/s)2.2Precipitation Freq (Days)31Climate Zone9Operational Year2019

Utility Company Los Angeles Department of Water & Power

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Commercial

Construction Phase - Maximum Emission Scenario

Off-road Equipment - 4 projects

Off-road Equipment - 4 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 4 Projects

Demolition - 20,000 square foot demolished max day.

Grading - 10 acres graded max day

Construction Off-road Equipment Mitigation -

Date: 12/9/2016 1:58 PM

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	18.00	30.00
tblConstructionPhase	NumDays	230.00	180.00
tblConstructionPhase	NumDays	18.00	30.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	80.00	20.00

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	ay							lb/c	lay		
2018	71.3387	163.3822	132.6317	0.2131	1.1405	9.9821	11.1226	0.3065	9.3597	9.6663	0.0000	20,928.62 17	20,928.621 7	5.0332	0.0000	21,054.45 29
Maximum	71.3387	163.3822	132.6317	0.2131	1.1405	9.9821	11.1226	0.3065	9.3597	9.6663	0.0000	20,928.62 17	20,928.621 7	5.0332	0.0000	21,054.45 29

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	lay							lb/d	ay		
2018	71.3387	163.3822	132.6317	0.2131	1.1405	9.9821	11.1226	0.3065	9.3597	9.6663	0.0000	20,928.62 17	20,928.621 7	5.0332	0.0000	21,054.45 29
Maximum	71.3387	163.3822	132.6317	0.2131	1.1405	9.9821	11.1226	0.3065	9.3597	9.6663	0.0000	20,928.62 17	20,928.621 7	5.0332	0.0000	21,054.45 29

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Building Construction	Building Construction	1/2/2018	9/10/2018	5	180	
2	Paving	Paving	1/2/2018	2/12/2018	5	30	
3	Architectural Coating	Architectural Coating	1/2/2018	2/12/2018	5	30	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 258,000; Non-Residential Outdoor: 86,000; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Building Construction	Cranes	4	7.00	231	0.29
Building Construction	Forklifts	12	8.00	89	0.20
Building Construction	Generator Sets	4	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	12	7.00	97	0.37
Building Construction	Welders	4	8.00	46	0.45
Paving	Cement and Mortar Mixers	8	6.00	9	0.56
Paving	Pavers	4	8.00	130	0.42
Paving	Paving Equipment	8	6.00	132	0.36
Paving	Rollers	8	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Architectural Coating	Air Compressors	4	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Building Construction	36	55.00	28.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	32	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	4	11.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/c	lay		
Off-Road	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397		10,483.74 05	10,483.740 5	2.5685		10,547.95 31
Total	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397		10,483.74 05	10,483.740 5	2.5685		10,547.95 31

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1191	3.3932	0.8450	7.3300e- 003	0.1792	0.0248	0.2040	0.0516	0.0237	0.0753		780.2425	780.2425	0.0531		781.5701
Worker	0.2964	0.2125	2.7597	6.7400e- 003	0.6148	4.9000e- 003	0.6197	0.1630	4.5200e- 003	0.1676		670.6434	670.6434	0.0229		671.2151
Total	0.4155	3.6056	3.6047	0.0141	0.7940	0.0297	0.8237	0.2146	0.0282	0.2429		1,450.885 9	1,450.8859	0.0760		1,452.785 2

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397	0.0000	10,483.74 05	10,483.740 5	2.5685		10,547.95 31
Total	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397	0.0000	10,483.74 05	10,483.740 5	2.5685		10,547.95 31

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1191	3.3932	0.8450	7.3300e- 003	0.1792	0.0248	0.2040	0.0516	0.0237	0.0753		780.2425	780.2425	0.0531		781.5701
Worker	0.2964	0.2125	2.7597	6.7400e- 003	0.6148	4.9000e- 003	0.6197	0.1630	4.5200e- 003	0.1676		670.6434	670.6434	0.0229		671.2151
Total	0.4155	3.6056	3.6047	0.0141	0.7940	0.0297	0.8237	0.2146	0.0282	0.2429		1,450.885 9	1,450.8859	0.0760		1,452.785 2

3.3 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Off-Road	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		7,490.202 1	7,490.2021	2.2689		7,546.924 9
Paving	0.0000		4			0.0000	0.0000		0.0000	0.0000		0	0.0000			0.0000
Total	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		7,490.202 1	7,490.2021	2.2689		7,546.924 9

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1078	0.0773	1.0035	2.4500e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		243.8703	243.8703			244.0782
Total	0.1078	0.0773	1.0035	2.4500e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		243.8703	243.8703	8.3200e- 003		244.0782

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Off-Road	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		1	7,490.2021			7,546.924 9
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871	0.0000	7,490.202 1	7,490.2021	2.2689		7,546.924 9

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1078	0.0773	1.0035	2.4500e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609				8.3200e- 003		244.0782
Total	0.1078	0.0773	1.0035	2.4500e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		243.8703	243.8703	8.3200e- 003		244.0782

3.4 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Archit. Coating	53.1480					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	1.1945	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022		1,125.794 2	1,125.7942	0.1070		1,128.468 5
Total	54.3425	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022		1,125.794 2	1,125.7942	0.1070		1,128.468 5

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0593	0.0425	0.5519	1.3500e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		134.1287	134.1287	4.5700e- 003		134.2430
Total	0.0593	0.0425	0.5519	1.3500e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		134.1287	134.1287	4.5700e- 003		134.2430

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Archit. Coating	53.1480					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	1.1945	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022	0.0000	1,125.794 2	1,125.7942	0.1070		1,128.468 5
Total	54.3425	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022	0.0000	1,125.794 2	1,125.7942	0.1070		1,128.468 5

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0593	0.0425	0.5519	1.3500e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		134.1287	134.1287	4.5700e- 003		134.2430
Total	0.0593	0.0425	0.5519	1.3500e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		134.1287	134.1287	4.5700e- 003		134.2430

Willowbrook Specific Plan- Non-Residential- South Coast AQMD Air District, Winter

Willowbrook Specific Plan- Non- Residential South Coast AQMD Air District, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	172.00	1000sqft	3.95	172,000.00	0

1.2 Other Project Characteristics

 Urbanization
 Urban
 Wind Speed (m/s)
 2.2
 Precipitation Freq (Days)
 31

 Climate Zone
 9
 Operational Year
 2019

 Utility Company
 Los Angeles Department of Water & Power

 CO2 Intensity
 1227.89
 CH4 Intensity
 0.029
 N2O Intensity
 0.006

 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)
 (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Commercial

Construction Phase - Maximum Emission Scenario

Off-road Equipment - 4 projects

Off-road Equipment - 4 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 4 Projects

Demolition - 20,000 square foot demolished max day.

Grading - 10 acres graded max day

Construction Off-road Equipment Mitigation -

Date: 12/9/2016 2:02 PM

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	18.00	30.00
tblConstructionPhase	NumDays	230.00	180.00
tblConstructionPhase	NumDays	18.00	30.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	80.00	20.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	ay							lb/c	lay		
2018	71.3844	163.4196	132.3148	0.2122	1.1405	9.9825	11.1229	0.3065	9.3601	9.6666	0.0000	20,838.83 89	20,838.838 9	5.0349	0.0000	20,964.71 17
Maximum	71.3844	163.4196	132.3148	0.2122	1.1405	9.9825	11.1229	0.3065	9.3601	9.6666	0.0000	20,838.83 89	20,838.838 9	5.0349	0.0000	20,964.71 17

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	? Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/	day		
2018	71.3844	163.4196	132.3148	0.2122	1.1405	9.9825	11.1229	0.3065	9.3601	9.6666	0.0000	20,838.83 89	20,838.838 9	5.0349	0.0000	20,964.71 17
Maximum	71.3844	163.4196	132.3148	0.2122	1.1405	9.9825	11.1229	0.3065	9.3601	9.6666	0.0000	20,838.83 89	20,838.838 9	5.0349	0.0000	20,964.71 17
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Building Construction	Building Construction	1/2/2018	9/10/2018	5	180	
2	Paving	Paving	1/2/2018	2/12/2018	5	30	
3	Architectural Coating	Architectural Coating	1/2/2018	2/12/2018	5	30	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 258,000; Non-Residential Outdoor: 86,000; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Building Construction	Cranes	4	7.00	231	0.29
Building Construction	Forklifts	12	8.00	89	0.20
Building Construction	Generator Sets	4	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	12	7.00	97	0.37
Building Construction	Welders	4	8.00	46	0.45
Paving	Cement and Mortar Mixers	8	6.00	9	0.56
Paving	Pavers	4	8.00	130	0.42
Paving	Paving Equipment	8	6.00	132	0.36
Paving	Rollers	8	6.00	80	0.38
Paving	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Architectural Coating	Air Compressors	4	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle	Vehicle
									Class	Class
Building Construction	36	55.00	28.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	32	20.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	4	11.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Off-Road	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397		10,483.74 05	10,483.740 5	2.5685		10,547.95 31
Total	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397		10,483.74 05	10,483.740 5	2.5685		10,547.95 31

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1244	3.3988	0.9380	7.1200e- 003	0.1792	0.0252	0.2044	0.0516	0.0241	0.0757		758.1180	758.1180	0.0571		759.5443
Worker	0.3222	0.2328	2.4975	6.3000e- 003	0.6148	4.9000e- 003	0.6197	0.1630	4.5200e- 003	0.1676		627.3736	627.3736	0.0214		627.9088
Total	0.4466	3.6316	3.4356	0.0134	0.7940	0.0301	0.8241	0.2146	0.0286	0.2432		1,385.491 6	1,385.4916	0.0785		1,387.453 0

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397	0.0000	10,483.74 05	10,483.740 5	2.5685		10,547.95 31
Total	10.7180	93.5601	70.3217	0.1077		5.9995	5.9995		5.6397	5.6397	0.0000	10,483.74 05	10,483.740 5	2.5685		10,547.95 31

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1244	3.3988	0.9380	7.1200e- 003	0.1792	0.0252	0.2044	0.0516	0.0241	0.0757		758.1180	758.1180	0.0571		759.5443
Worker	0.3222	0.2328	2.4975	6.3000e- 003	0.6148	4.9000e- 003	0.6197	0.1630	4.5200e- 003	0.1676		627.3736	627.3736	0.0214		627.9088
Total	0.4466	3.6316	3.4356	0.0134	0.7940	0.0301	0.8241	0.2146	0.0286	0.2432		1,385.491 6	1,385.4916	0.0785		1,387.453 0

3.3 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Off-Road	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		7,490.202 1	7,490.2021	2.2689		7,546.924 9
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		7,490.202 1	7,490.2021	2.2689		7,546.924 9

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1172	0.0846	0.9082	2.2900e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		228.1358	228.1358	7.7800e- 003		228.3305
Total	0.1172	0.0846	0.9082	2.2900e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		228.1358	228.1358	7.7800e- 003		228.3305

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Off-Road	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871		1	7,490.2021			7,546.924 9
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	5.6957	58.0738	49.7330	0.0757		3.3479	3.3479		3.0871	3.0871	0.0000	7,490.202 1	7,490.2021	2.2689		7,546.924 9

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.1172	0.0846	0.9082	2.2900e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		228.1358	228.1358	7.7800e- 003		228.3305
Total	0.1172	0.0846	0.9082	2.2900e- 003	0.2236	1.7800e- 003	0.2253	0.0593	1.6400e- 003	0.0609		228.1358	228.1358	7.7800e- 003		228.3305

3.4 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Archit. Coating	53.1480					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	1.1945	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022		1,125.794 2	1,125.7942	0.1070		1,128.468 5
Total	54.3425	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022		1,125.794 2	1,125.7942	0.1070		1,128.468 5

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0644	0.0466	0.4995	1.2600e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		125.4747	125.4747	4.2800e- 003		125.5818
Total	0.0644	0.0466	0.4995	1.2600e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		125.4747	125.4747	4.2800e- 003		125.5818

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Archit. Coating	53.1480					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	1.1945	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022	0.0000	1,125.794 2	1,125.7942	0.1070		1,128.468 5
Total	54.3425	8.0230	7.4168	0.0119		0.6022	0.6022		0.6022	0.6022	0.0000	1,125.794 2	1,125.7942	0.1070		1,128.468 5

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0644	0.0466	0.4995	1.2600e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		125.4747	125.4747	4.2800e- 003		125.5818
Total	0.0644	0.0466	0.4995	1.2600e- 003	0.1230	9.8000e- 004	0.1239	0.0326	9.0000e- 004	0.0335		125.4747	125.4747	4.2800e- 003		125.5818

Willowbrook Specific Plan- Non-Residential GHG - South Coast AQMD Air District, Annual

Willowbrook Specific Plan- Non-Residential GHG South Coast AQMD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	227.00	1000sqft	5.21	227,000.00	0

1.2 Other Project Characteristics

Urbanization Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 31 **Climate Zone Operational Year** 2018 **Utility Company** Los Angeles Department of Water & Power CO2 Intensity **CH4 Intensity** 1227.89 0.029 **N2O Intensity** 0.006 (lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Defaults

Construction Phase - Max case scenario

Off-road Equipment -

Off-road Equipment - 4 projects per day

Off-road Equipment - 4 projects per day

Off-road Equipment - 4 projects per day

Grading - 50 acres Graded

Demolition -

Architectural Coating -

Construction Off-road Equipment Mitigation -

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_EF_Parking	100	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	260.00
tblConstructionPhase	NumDays	230.00	260.00
tblConstructionPhase	NumDays	20.00	200.00
tblConstructionPhase	PhaseEndDate	2/16/2023	12/31/2018
tblConstructionPhase	PhaseEndDate	9/30/2021	12/31/2018
tblConstructionPhase	PhaseEndDate	2/17/2022	10/8/2018
tblConstructionPhase	PhaseStartDate	2/18/2022	1/2/2018
tblConstructionPhase	PhaseStartDate	10/2/2020	1/2/2018
tblConstructionPhase	PhaseStartDate	10/1/2021	1/2/2018
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	12.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	8.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	4.00
tblTripsAndVMT	WorkerTripNumber	60.00	15.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	:/yr							MT	/yr		
2018	3.3479	20.8651	16.7817	0.0274	0.1723	1.2461	1.4184	0.0465	1.1685	1.2149	0.0000	2,457.963 8	2,457.9638	0.5879	0.0000	2,472.661 0
Maximum	3.3479	20.8651	16.7817	0.0274	0.1723	1.2461	1.4184	0.0465	1.1685	1.2149	0.0000	2,457.963 8	2,457.9638	0.5879	0.0000	2,472.661 0

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							MT	/yr		
2018	3.3479	20.8651	16.7817	0.0274	0.1723	1.2461	1.4184	0.0465	1.1685	1.2149	0.0000	2,457.961 2	2,457.9612	0.5879	0.0000	2,472.658 3
Maximum	3.3479	20.8651	16.7817	0.0274	0.1723	1.2461	1.4184	0.0465	1.1685	1.2149	0.0000	2,457.961 2	2,457.9612	0.5879	0.0000	2,472.658 3

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
		Highest		

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Building Construction	Building Construction	1/2/2018	12/31/2018	5	260	
2	Paving	Paving	1/2/2018	10/8/2018	5	200	
3	Architectural Coating	Architectural Coating	1/2/2018	12/31/2018	5	260	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 340,500; Non-Residential Outdoor: 113,500; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	4	6.00	78	0.48
Building Construction	Cranes	4	7.00	231	0.29
Building Construction	Forklifts	12	8.00	89	0.20
Paving	Pavers	8	8.00	130	0.42
Paving	Rollers	8	8.00	80	0.38
Building Construction	Tractors/Loaders/Backhoes	12	7.00	97	0.37
Building Construction	Generator Sets	4	8.00	84	0.74
Paving	Paving Equipment	8	8.00	132	0.36
Building Construction	Welders	4	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Architectural Coating	4	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	36	73.00	37.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	24	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

3.2 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	1.3933	12.1628	9.1418	0.0140		0.7799	0.7799		0.7332	0.7332	0.0000	1,236.389 6	1,236.3896	0.3029	0.0000	1,243.962 5
Total	1.3933	12.1628	9.1418	0.0140		0.7799	0.7799		0.7332	0.7332	0.0000	1,236.389 6	1,236.3896	0.3029	0.0000	1,243.962 5

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0208	0.5947	0.1532	1.2400e- 003	0.0303	4.2900e- 003	0.0346	8.7500e- 003	4.1000e- 003	0.0129	0.0000	120.1460	120.1460	8.5500e- 003	0.0000	120.3598
Worker	0.0504	0.0413	0.4429	1.1100e- 003	0.1041	8.5000e- 004	0.1050	0.0277	7.8000e- 004	0.0284	0.0000	99.8825	99.8825	3.4100e- 003	0.0000	99.9677
Total	0.0713	0.6360	0.5961	2.3500e- 003	0.1344	5.1400e- 003	0.1396	0.0364	4.8800e- 003	0.0413	0.0000	220.0285	220.0285	0.0120	0.0000	220.3275

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	1.3933	12.1628	9.1418	0.0140		0.7799	0.7799		0.7332	0.7332	0.0000	1,236.388 2	1,236.3882	0.3029	0.0000	1,243.961 0
Total	1.3933	12.1628	9.1418	0.0140		0.7799	0.7799		0.7332	0.7332	0.0000	1,236.388 2	1,236.3882	0.3029	0.0000	1,243.961 0

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0208	0.5947	0.1532	1.2400e- 003	0.0303	4.2900e- 003	0.0346	8.7500e- 003	4.1000e- 003	0.0129	0.0000	120.1460	120.1460	8.5500e- 003	0.0000	120.3598
Worker	0.0504	0.0413	0.4429	1.1100e- 003	0.1041	8.5000e- 004	0.1050	0.0277	7.8000e- 004	0.0284	0.0000	99.8825	99.8825	3.4100e- 003	0.0000	99.9677
Total	0.0713	0.6360	0.5961	2.3500e- 003	0.1344	5.1400e- 003	0.1396	0.0364	4.8800e- 003	0.0413	0.0000	220.0285	220.0285	0.0120	0.0000	220.3275

3.3 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.6575	7.0084	5.9186	9.1200e- 003		0.3825	0.3825		0.3519	0.3519	0.0000	832.4649	832.4649	0.2592	0.0000	838.9439
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.6575	7.0084	5.9186	9.1200e- 003		0.3825	0.3825		0.3519	0.3519	0.0000	832.4649	832.4649	0.2592	0.0000	838.9439

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.9700e- 003	6.5200e- 003	0.0700	1.7000e- 004	0.0165	1.3000e- 004	0.0166	4.3700e- 003	1.2000e- 004	4.4900e- 003	0.0000	15.7875	15.7875	5.4000e- 004	0.0000	15.8010
Total	7.9700e- 003	6.5200e- 003	0.0700	1.7000e- 004	0.0165	1.3000e- 004	0.0166	4.3700e- 003	1.2000e- 004	4.4900e- 003	0.0000	15.7875	15.7875	5.4000e- 004	0.0000	15.8010

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.6575	7.0084	5.9186	9.1200e- 003		0.3825	0.3825		0.3519	0.3519	0.0000	832.4639	832.4639	0.2592	0.0000	838.9429
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.6575	7.0084	5.9186	9.1200e- 003		0.3825	0.3825		0.3519	0.3519	0.0000	832.4639	832.4639	0.2592	0.0000	838.9429

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	7.9700e- 003	6.5200e- 003	0.0700	1.7000e- 004	0.0165	1.3000e- 004	0.0166	4.3700e- 003	1.2000e- 004	4.4900e- 003	0.0000	15.7875	15.7875	5.4000e- 004	0.0000	15.8010
Total	7.9700e- 003	6.5200e- 003	0.0700	1.7000e- 004	0.0165	1.3000e- 004	0.0166	4.3700e- 003	1.2000e- 004	4.4900e- 003	0.0000	15.7875	15.7875	5.4000e- 004	0.0000	15.8010

3.4 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	1.0522					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1553	1.0430	0.9642	1.5500e- 003		0.0783	0.0783		0.0783	0.0783	0.0000	132.7694	132.7694	0.0126	0.0000	133.0848
Total	1.2074	1.0430	0.9642	1.5500e- 003		0.0783	0.0783		0.0783	0.0783	0.0000	132.7694	132.7694	0.0126	0.0000	133.0848

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0104	8.4800e- 003	0.0910	2.3000e- 004	0.0214	1.7000e- 004	0.0216	5.6800e- 003	1.6000e- 004	5.8400e- 003	0.0000	20.5238	20.5238	7.0000e- 004	0.0000	20.5413
Total	0.0104	8.4800e- 003	0.0910	2.3000e- 004	0.0214	1.7000e- 004	0.0216	5.6800e- 003	1.6000e- 004	5.8400e- 003	0.0000	20.5238	20.5238	7.0000e- 004	0.0000	20.5413

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	1.0522					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.1553	1.0430	0.9642	1.5500e- 003		0.0783	0.0783		0.0783	0.0783	0.0000	132.7693	132.7693	0.0126	0.0000	133.0847
Total	1.2074	1.0430	0.9642	1.5500e- 003		0.0783	0.0783		0.0783	0.0783	0.0000	132.7693	132.7693	0.0126	0.0000	133.0847

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0104	8.4800e- 003	0.0910	2.3000e- 004	0.0214	1.7000e- 004	0.0216	5.6800e- 003	1.6000e- 004	5.8400e- 003	0.0000	20.5238	20.5238	7.0000e- 004	0.0000	20.5413
Total	0.0104	8.4800e- 003	0.0910	2.3000e- 004	0.0214	1.7000e- 004	0.0216	5.6800e- 003	1.6000e- 004	5.8400e- 003	0.0000	20.5238	20.5238	7.0000e- 004	0.0000	20.5413

Willowbrook Specific Plan- Demolition, Grading, and Residential - South Coast AQMD Air District, Summer

Willowbrook Specific Plan- Demolition, Grading, and Residential South Coast AQMD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Apartments Mid Rise	105.00	Dwelling Unit	2.76	105,000.00	300

(lb/MWhr)

1.2 Other Project Characteristics

Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 31 Urbanization **Climate Zone** 9 **Operational Year** 2019 **Utility Company** Los Angeles Department of Water & Power 1227.89 0.029 0.006 **CO2 Intensity CH4 Intensity N2O Intensity**

(lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

(lb/MWhr)

Construction Phase - Maximum Emission Scenario

Off-road Equipment - 10 projects

Off-road Equipment - 10 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 10 Projects

Demolition - 20,000 square foot demolished max day.

Grading - 10 acres graded max day

Construction Off-road Equipment Mitigation -

Date: 12/9/2016 2:09 PM

Table Name	Column Name	Default Value	New Value		
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0		
tblConstructionPhase	NumDays	10.00	20.00		
tblConstructionPhase	NumDays	220.00	120.00		
tblConstructionPhase	NumDays	20.00	1.00		
tblConstructionPhase	NumDays	6.00	30.00		
tblConstructionPhase	NumDays	10.00	20.00		
tblConstructionPhase	PhaseEndDate	11/3/2017	1/29/2018		
tblConstructionPhase	PhaseEndDate	9/8/2017	6/18/2018		
tblConstructionPhase	PhaseEndDate	2/10/2017	1/2/2018		
tblConstructionPhase	PhaseEndDate	3/24/2017	2/12/2018		
tblConstructionPhase	PhaseEndDate	10/6/2017	1/29/2018		
tblConstructionPhase	PhaseStartDate	10/7/2017	1/2/2018		
tblConstructionPhase	PhaseStartDate	3/25/2017	1/2/2018		
tblConstructionPhase	PhaseStartDate	1/2/2017	1/2/2018		
tblConstructionPhase	PhaseStartDate	2/11/2017	1/2/2018		
tblConstructionPhase	PhaseStartDate	9/9/2017	1/2/2018		
tblGrading	AcresOfGrading	75.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00		
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00		

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	15.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	30.00
tblProjectCharacteristics	OperationalYear	2018	2019

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	ay							lb/c	lay		
2018	104.9297	643.6393	446.2509	0.8005	55.7685	35.7575	91.5260	21.0756	33.6222	54.6978	0.0000	78,617.61 98	78,617.619 8	17.6689	0.0000	79,059.34 30
Maximum	104.9297	643.6393	446.2509	0.8005	55.7685	35.7575	91.5260	21.0756	33.6222	54.6978	0.0000	78,617.61 98	78,617.619 8	17.6689	0.0000	79,059.34 30

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	! Total CO2	CH4	N2O	CO2e
Year					lb/c	day							lb/d	day		
2018	104.9297	643.6393	446.2509	0.8005	25.1764	35.7575	60.9339	9.1378	33.6222	42.7600	0.0000	78,617.61 98	78,617.619 8	17.6689	0.0000	79,059.34 30
Maximum	104.9297	643.6393	446.2509	0.8005	25.1764	35.7575	60.9339	9.1378	33.6222	42.7600	0.0000	78,617.61 98	78,617.619 8	17.6689	0.0000	79,059.34 30
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.86	0.00	33.42	56.64	0.00	21.82	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/2/2018	1/2/2018	5	1	
2	Grading	Grading	1/2/2018	2/12/2018	5	30	
3	Building Construction	Building Construction	1/2/2018	6/18/2018	5	120	
4	Paving	Paving	1/2/2018	1/29/2018	5	20	
5	Architectural Coating	Architectural Coating	1/2/2018	1/29/2018	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 0

Residential Indoor: 212,625; Residential Outdoor: 70,875; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	5	8.00	81	0.73
Demolition	Rubber Tired Dozers	5	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	15	8.00	97	0.37
Grading	Graders	5	8.00	187	0.41
Grading	Rubber Tired Dozers	5	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	10	7.00	97	0.37
Building Construction	Cranes	10	8.00	231	0.29
Building Construction	Forklifts	20	7.00	89	0.20
Building Construction	Generator Sets	10	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	10	6.00	97	0.37
Building Construction	Welders	30	8.00	46	0.45
Paving	Cement and Mortar Mixers	10	8.00	9	0.56
Paving	Pavers	10	8.00	130	0.42
Paving	Paving Equipment	10	8.00	132	0.36
Paving	Rollers	20	8.00	80	0.38
Paving	Tractors/Loaders/Backhoes	10	8.00	97	0.37
Architectural Coating	Air Compressors	10	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	25	63.00	0.00	91.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	20	50.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	80	76.00	11.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	60	150.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	10	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 **Demolition - 2018**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					19.6871	0.0000	19.6871	2.9808	0.0000	2.9808			0.0000			0.0000
Off-Road	12.4188	121.8204	75.5537	0.1206		7.1822	7.1822		6.7145	6.7145		11,955.82 93	11,955.829 3	3.0289		12,031.55 23
Total	12.4188	121.8204	75.5537	0.1206	19.6871	7.1822	26.8693	2.9808	6.7145	9.6953		11,955.82 93	11,955.829 3	3.0289		12,031.55 23

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2 N	lBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.7890	28.0189	5.1885	0.0723	1.5902	0.1077	1.6980	0.4358	0.1031	0.5389	7	7,796.754 4	7,796.7544	0.5333		7,810.085 6
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.3395	0.2434	3.1611	7.7200e- 003	0.7042	5.6100e- 003	0.7098	0.1868	5.1700e- 003	0.1919	7	768.1915	768.1915	0.0262		768.8464
Total	1.1284	28.2623	8.3496	0.0800	2.2944	0.1133	2.4078	0.6226	0.1082	0.7308	8	3,564.945 9	8,564.9459	0.5594		8,578.932 0

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Fugitive Dust					7.6780	0.0000	7.6780	1.1625	0.0000	1.1625			0.0000			0.0000
Off-Road	12.4188	121.8204	75.5537	0.1206		7.1822	7.1822		6.7145	6.7145	0.0000	11,955.82 93	11,955.829 3	3.0289		12,031.55 23
Total	12.4188	121.8204	75.5537	0.1206	7.6780	7.1822	14.8602	1.1625	6.7145	7.8770	0.0000	11,955.82 93	11,955.829 3	3.0289		12,031.55 23

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.7890	28.0189	5.1885	0.0723	1.5902	0.1077	1.6980	0.4358	0.1031	0.5389		7,796.754 4	7,796.7544	0.5333		7,810.085 6
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.3395	0.2434	3.1611	7.7200e- 003	0.7042	5.6100e- 003	0.7098	0.1868	5.1700e- 003	0.1919		768.1915	768.1915	0.0262		768.8464
Total	1.1284	28.2623	8.3496	0.0800	2.2944	0.1133	2.4078	0.6226	0.1082	0.7308		8,564.945 9	8,564.9459	0.5594		8,578.932 0

3.3 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Fugitive Dust					30.4639	0.0000	30.4639	16.5893	0.0000	16.5893			0.0000			0.0000
Off-Road	10.7574	121.4474	51.9021	0.1031		5.8415	5.8415		5.3742	5.3742		10,387.33 30	10,387.333 0	3.2337		10,468.17 59
Total	10.7574	121.4474	51.9021	0.1031	30.4639	5.8415	36.3054	16.5893	5.3742	21.9635		10,387.33 30	10,387.333 0	3.2337		10,468.17 59

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2694	0.1932	2.5088	6.1300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		609.6758	609.6758	0.0208	Danamananananananananananananananananana	610.1955
Total	0.2694	0.1932	2.5088	6.1300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		609.6758	609.6758	0.0208		610.1955

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Fugitive Dust					11.8809	0.0000	11.8809	6.4698	0.0000	6.4698			0.0000			0.0000
Off-Road	10.7574	121.4474	51.9021	0.1031		5.8415	5.8415		5.3742	5.3742	0.0000	10,387.33 30	10,387.333 0	3.2337		10,468.17 59
Total	10.7574	121.4474	51.9021	0.1031	11.8809	5.8415	17.7224	6.4698	5.3742	11.8440	0.0000	10,387.33 30	10,387.333 0	3.2337		10,468.17 59

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2694	0.1932	2.5088	6.1300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		609.6758	609.6758	0.0208		610.1955
Total	0.2694	0.1932	2.5088	6.1300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		609.6758	609.6758	0.0208		610.1955

3.4 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Off-Road	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509		23,297.75 92	23,297.759 2	5.0189		23,423.23 21
Total	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509		23,297.75 92	23,297.759 2	5.0189		23,423.23 21

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0468	1.3330	0.3320	2.8800e- 003	0.0704	9.7400e- 003	0.0801	0.0203	9.3200e- 003	0.0296		306.5238	306.5238	0.0209		307.0454
Worker	0.4095	0.2936	3.8134	9.3100e- 003	0.8495	6.7700e- 003	0.8563	0.2253	6.2400e- 003	0.2315		926.7073	926.7073	0.0316		927.4972
Total	0.4563	1.6266	4.1453	0.0122	0.9199	0.0165	0.9364	0.2456	0.0156	0.2611		1,233.231 1	1,233.2311	0.0525		1,234.542 6

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/c	lay		
Off-Road	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509	0.0000	23,297.75 91	23,297.759 1	5.0189		23,423.23 21
Total	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509	0.0000	23,297.75 91	23,297.759 1	5.0189		23,423.23 21

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0468	1.3330	0.3320	2.8800e- 003	0.0704	9.7400e- 003	0.0801	0.0203	9.3200e- 003	0.0296		306.5238	306.5238	0.0209		307.0454
Worker	0.4095	0.2936	3.8134	9.3100e- 003	0.8495	6.7700e- 003	0.8563	0.2253	6.2400e- 003	0.2315		926.7073	926.7073	0.0316		927.4972
Total	0.4563	1.6266	4.1453	0.0122	0.9199	0.0165	0.9364	0.2456	0.0156	0.2611		1,233.231 1	1,233.2311	0.0525		1,234.542 6

3.5 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357		17,742.42 99	17,742.429 9	5.4186		17,877.89 60
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357		17,742.42 99	17,742.429 9	5.4186		17,877.89 60

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.8082	0.5795	7.5264	0.0184	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,829.027 5	1,829.0275	0.0624		1,830.586 6
Total	0.8082	0.5795	7.5264	0.0184	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,829.027 5	1,829.0275	0.0624		1,830.586 6

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Off-Road	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357	0.0000	17,742.42 99	17,742.429 9			17,877.89 59
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357	0.0000	17,742.42 99	17,742.429 9	5.4186		17,877.89 59

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.8082	0.5795	7.5264	0.0184	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,829.027 5	1,829.0275	0.0624		1,830.586 6
Total	0.8082	0.5795	7.5264	0.0184	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,829.027 5	1,829.0275	0.0624		1,830.586 6

3.6 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Archit. Coating	32.8506					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	2.9863	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056		2,814.485 4	2,814.4854	0.2674		2,821.171 3
Total	35.8369	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056		2,814.485 4	2,814.4854	0.2674		2,821.171 3

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0808	0.0580	0.7526	1.8400e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		182.9028	182.9028	6.2400e- 003		183.0587
Total	0.0808	0.0580	0.7526	1.8400e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		182.9028	182.9028	6.2400e- 003		183.0587

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Archit. Coating	32.8506					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	2.9863	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056	0.0000	2,814.485 4	2,814.4854	0.2674		2,821.171 3
Total	35.8369	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056	0.0000	2,814.485 4	2,814.4854	0.2674		2,821.171 3

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0808	0.0580	0.7526	1.8400e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		182.9028	182.9028	6.2400e- 003		183.0587
Total	0.0808	0.0580	0.7526	1.8400e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		182.9028	182.9028	6.2400e- 003		183.0587

Willowbrook Specific Plan- Demolition, Grading, and Residential - South Coast AQMD Air District, Winter

Willowbrook Specific Plan- Demolition, Grading, and Residential South Coast AQMD Air District, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Apartments Mid Rise	105.00	Dwelling Unit	2.76	105,000.00	300

1.2 Other Project Characteristics

Urban 2.2 Urbanization Wind Speed (m/s) Precipitation Freq (Days) 31 **Climate Zone Operational Year** 2019 **Utility Company** Los Angeles Department of Water & Power CO2 Intensity 0.029 0.006 1227.89 **CH4 Intensity N2O Intensity** (lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Maximum Emission Scenario

Off-road Equipment - 10 projects

Off-road Equipment - 10 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 5 Projects

Off-road Equipment - 10 Projects

Demolition - 20,000 square foot demolished max day.

Grading - 10 acres graded max day

Construction Off-road Equipment Mitigation -

1 of 12 2/3/2017 11:12 AM

Date: 12/9/2016 2:10 PM

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	10.00	20.00
tblConstructionPhase	NumDays	220.00	120.00
tblConstructionPhase	NumDays	20.00	1.00
tblConstructionPhase	NumDays	6.00	30.00
tblConstructionPhase	NumDays	10.00	20.00
tblConstructionPhase	PhaseEndDate	11/3/2017	1/29/2018
tblConstructionPhase	PhaseEndDate	9/8/2017	6/18/2018
tblConstructionPhase	PhaseEndDate	2/10/2017	1/2/2018
tblConstructionPhase	PhaseEndDate	3/24/2017	2/12/2018
tblConstructionPhase	PhaseEndDate	10/6/2017	1/29/2018
tblConstructionPhase	PhaseStartDate	10/7/2017	1/2/2018
tblConstructionPhase	PhaseStartDate	3/25/2017	1/2/2018
tblConstructionPhase	PhaseStartDate	1/2/2017	1/2/2018
tblConstructionPhase	PhaseStartDate	2/11/2017	1/2/2018
tblConstructionPhase	PhaseStartDate	9/9/2017	1/2/2018
tblGrading	AcresOfGrading	75.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	5.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	15.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	30.00
tblProjectCharacteristics	OperationalYear	2018	2019

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	ay							lb/c	lay		
2018	105.1216	644.1633	445.0385	0.7963	55.7685	35.7598	91.5283	21.0756	33.6244	54.7000	0.0000	78,190.57 05	78,190.570 5	17.6857	0.0000	78,632.71 31
Maximum	105.1216	644.1633	445.0385	0.7963	55.7685	35.7598	91.5283	21.0756	33.6244	54.7000	0.0000	78,190.57 05	78,190.570 5	17.6857	0.0000	78,632.71 31

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/c	lay							lb/d	day		
2018	105.1216	644.1633	445.0385	0.7963	25.1764	35.7598	60.9362	9.1378	33.6244	42.7622	0.0000	78,190.57 05	78,190.570 5	17.6857	0.0000	78,632.7 30
Maximum	105.1216	644.1633	445.0385	0.7963	25.1764	35.7598	60.9362	9.1378	33.6244	42.7622	0.0000	78,190.57 05	78,190.570 5	17.6857	0.0000	78,632.7 ⁻ 30
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	54.86	0.00	33.42	56.64	0.00	21.82	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/2/2018	1/2/2018	5	1	
2	Grading	Grading	1/2/2018	2/12/2018	5	30	
3	Building Construction	Building Construction	1/2/2018	6/18/2018	5	120	
4	Paving	Paving	1/2/2018	1/29/2018	5	20	
5	Architectural Coating	Architectural Coating	1/2/2018	1/29/2018	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 10

Acres of Paving: 0

Residential Indoor: 212,625; Residential Outdoor: 70,875; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	5	8.00	81	0.73
Demolition	Rubber Tired Dozers	5	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	15	8.00	97	0.37
Grading	Graders	5	8.00	187	0.41
Grading	Rubber Tired Dozers	5	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	10	7.00	97	0.37
Building Construction	Cranes	10	8.00	231	0.29
Building Construction	Forklifts	20	7.00	89	0.20
Building Construction	Generator Sets	10	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	10	6.00	97	0.37
Building Construction	Welders	30	8.00	46	0.45

Paving	Cement and Mortar Mixers	10	8.00	9	0.56
Paving	Pavers	10	8.00	130	0.42
Paving	Paving Equipment	10	8.00	132	0.36
Paving	Rollers	20	8.00	80	0.38
Paving	Tractors/Loaders/Backhoes	10	8.00	97	0.37
Architectural Coating	Air Compressors	10	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	25	63.00	0.00	91.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	20	50.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	80	76.00	11.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	60	150.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	10	15.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

3.2 **Demolition - 2018**

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Fugitive Dust					19.6871	0.0000	19.6871	2.9808	0.0000	2.9808			0.0000			0.0000
Off-Road	12.4188	121.8204	75.5537	0.1206		7.1822	7.1822		6.7145	6.7145		11,955.82 93	11,955.829 3			12,031.55 23
Total	12.4188	121.8204	75.5537	0.1206	19.6871	7.1822	26.8693	2.9808	6.7145	9.6953		11,955.82 93	11,955.829 3	3.0289		12,031.55 23

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.8124	28.4101	5.6269	0.0710	1.5902	0.1098	1.7001	0.4358	0.1051	0.5409		7,656.897 3	7,656.8973	0.5579		7,670.843 9
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.3691	0.2666	2.8608	7.2200e- 003	0.7042	5.6100e- 003	0.7098	0.1868	5.1700e- 003	0.1919		718.6279	718.6279	0.0245		719.2410
Total	1.1815	28.6767	8.4877	0.0782	2.2944	0.1154	2.4099	0.6226	0.1102	0.7328		8,375.525 2	8,375.5252	0.5824		8,390.084 9

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Fugitive Dust					7.6780	0.0000	7.6780	1.1625	0.0000	1.1625			0.0000			0.0000
Off-Road	12.4188	121.8204	75.5537	0.1206		7.1822	7.1822		6.7145	6.7145	0.0000	11,955.82 93	11,955.829 3	3.0289		12,031.55 23
Total	12.4188	121.8204	75.5537	0.1206	7.6780	7.1822	14.8602	1.1625	6.7145	7.8770	0.0000	11,955.82 93	11,955.829 3	3.0289		12,031.55 23

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Hauling	0.8124	28.4101	5.6269	0.0710	1.5902	0.1098	1.7001	0.4358	0.1051	0.5409		7,656.897 3	7,656.8973	0.5579		7,670.843 9
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.3691	0.2666	2.8608	7.2200e- 003	0.7042	5.6100e- 003	0.7098	0.1868	5.1700e- 003	0.1919		718.6279	718.6279	0.0245		719.2410
Total	1.1815	28.6767	8.4877	0.0782	2.2944	0.1154	2.4099	0.6226	0.1102	0.7328		8,375.525 2	8,375.5252	0.5824		8,390.084 9

3.3 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Fugitive Dust					30.4639	0.0000	30.4639	16.5893	0.0000	16.5893			0.0000			0.0000
Off-Road	10.7574	121.4474	51.9021	0.1031		5.8415	5.8415		5.3742	5.3742		10,387.33 30	10,387.333 0	3.2337		10,468.17 59
Total	10.7574	121.4474	51.9021	0.1031	30.4639	5.8415	36.3054	16.5893	5.3742	21.9635		10,387.33 30	10,387.333 0	3.2337		10,468.17 59

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2929	0.2116	2.2705	5.7300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		570.3396	570.3396	0.0195		570.8262
Total	0.2929	0.2116	2.2705	5.7300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		570.3396	570.3396	0.0195		570.8262

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Fugitive Dust					11.8809	0.0000	11.8809	6.4698	0.0000	6.4698			0.0000			0.0000
Off-Road	10.7574	121.4474	51.9021	0.1031		5.8415	5.8415		5.3742	5.3742	0.0000	10,387.33 30	10,387.333 0	3.2337		10,468.17 59
Total	10.7574	121.4474	51.9021	0.1031	11.8809	5.8415	17.7224	6.4698	5.3742	11.8440	0.0000	10,387.33 30	10,387.333 0	3.2337		10,468.17 59

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.2929	0.2116	2.2705	5.7300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		570.3396	570.3396	0.0195		570.8262
Total	0.2929	0.2116	2.2705	5.7300e- 003	0.5589	4.4500e- 003	0.5633	0.1482	4.1100e- 003	0.1523		570.3396	570.3396	0.0195		570.8262

3.4 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Off-Road	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509		23,297.75 92	23,297.759 2	5.0189		23,423.23 21
Total	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509		23,297.75 92	23,297.759 2	5.0189		23,423.23 21

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0489	1.3353	0.3685	2.8000e- 003	0.0704	9.8900e- 003	0.0803	0.0203	9.4600e- 003	0.0297		297.8321	297.8321	0.0224		298.3924
Worker	0.4453	0.3216	3.4511	8.7100e- 003	0.8495	6.7700e- 003	0.8563	0.2253	6.2400e- 003	0.2315		866.9162	866.9162	0.0296		867.6558
Total	0.4941	1.6569	3.8196	0.0115	0.9199	0.0167	0.9366	0.2456	0.0157	0.2613		1,164.748 3	1,164.7483	0.0520		1,166.048 1

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Off-Road	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748		12.0509	12.0509	0.0000	23,297.75 91	23,297.759 1	5.0189		23,423.23 21
Total	29.1272	207.0767	157.1830	0.2501		12.5748	12.5748	_	12.0509	12.0509	0.0000	23,297.75 91	23,297.759 1	5.0189		23,423.23 21

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0489	1.3353	0.3685	2.8000e- 003	0.0704	9.8900e- 003	0.0803	0.0203	9.4600e- 003	0.0297		297.8321	297.8321	0.0224		298.3924
Worker	0.4453	0.3216	3.4511	8.7100e- 003	0.8495	6.7700e- 003	0.8563	0.2253	6.2400e- 003	0.2315		866.9162	866.9162	0.0296		867.6558
Total	0.4941	1.6569	3.8196	0.0115	0.9199	0.0167	0.9366	0.2456	0.0157	0.2613		1,164.748 3	1,164.7483	0.0520		1,166.048 1

3.5 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Off-Road	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357		17,742.42 99	17,742.429 9	5.4186		17,877.89 60
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357		17,742.42 99	17,742.429 9	5.4186		17,877.89 60

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.8788	0.6348	6.8114	0.0172	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,711.018 8	1,711.0188	0.0584		1,712.478 5
Total	0.8788	0.6348	6.8114	0.0172	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,711.018 8	1,711.0188	0.0584		1,712.478 5

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/d	lay		
Off-Road	14.0462		119.7874			8.5045	8.5045		7.8357	7.8357	0.0000	17,742.42 99	17,742.429 9			17,877.89 59
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	14.0462	142.5179	119.7874	0.1784		8.5045	8.5045		7.8357	7.8357	0.0000	17,742.42 99	17,742.429 9	5.4186		17,877.89 59

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.8788	0.6348	6.8114	0.0172	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,711.018 8	1,711.0188	0.0584		1,712.478 5
Total	0.8788	0.6348	6.8114	0.0172	1.6767	0.0134	1.6900	0.4447	0.0123	0.4570		1,711.018 8	1,711.0188	0.0584		1,712.478 5

3.6 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/c	ay		
Archit. Coating	32.8506					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	2.9863	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056		2,814.485 4	2,814.4854	0.2674		2,821.171 3
Total	35.8369	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056		2,814.485 4	2,814.4854	0.2674		2,821.171 3

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0879	0.0635	0.6811	1.7200e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		171.1019	171.1019	5.8400e- 003		171.2479
Total	0.0879	0.0635	0.6811	1.7200e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		171.1019	171.1019	5.8400e- 003		171.2479

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Archit. Coating	32.8506					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	2.9863	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056	0.0000	2,814.485 4	2,814.4854	0.2674		2,821.171 3
Total	35.8369	20.0575	18.5420	0.0297		1.5056	1.5056		1.5056	1.5056	0.0000	2,814.485 4	2,814.4854	0.2674		2,821.171 3

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0879	0.0635	0.6811	1.7200e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		171.1019	171.1019	5.8400e- 003		171.2479
Total	0.0879	0.0635	0.6811	1.7200e- 003	0.1677	1.3400e- 003	0.1690	0.0445	1.2300e- 003	0.0457		171.1019	171.1019	5.8400e- 003		171.2479

Willowbrook Specific Plan- Demolition, Grading, and Residential GHG - South Coast AQMD Air District, Annual

Willowbrook Specific Plan- Demolition, Grading, and Residential GHG South Coast AQMD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Apartments Mid Rise	420.00	Dwelling Unit	11.05	420,000.00	1201

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	9			Operational Year	2020
Utility Company	Los Angeles Dep	artment of Water & Power			
CO2 Intensity (lb/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase - Max case scenario

Off-road Equipment -

Off-road Equipment - 10 projects per day

Off-road Equipment - 10 projects per day

Off-road Equipment - 2 Projects Per day

Off-road Equipment - 2 Projects Per day

Off-road Equipment - 10 Projects per Day

Grading - 50 acres Graded

Demolition Architectural Coating Construction Off-road Equipment Mitigation -

Table Name	Column Name	Default Value	New Value
tblAreaCoating	Area_EF_Parking	100	0
tblAreaCoating	Area_Residential_Exterior	283500	0
tblAreaCoating	Area_Residential_Interior	850500	0
tblAreaMitigation	UseLowVOCPaintNonresidentialExterio	100	0
tblAreaMitigation	rValue UseLowVOCPaintNonresidentialInterior	100	0
tblAreaMitigation	Value UseLowVOCPaintResidentialExteriorVa	50	0
tblAreaMitigation	UseLowVOCPaintResidentialInteriorVal	50	0
tblConstDustMitigation	<u>ue</u> WaterUnpavedRoadVehicleSpeed	40	0
tblConstructionPhase	NumDays	20.00	260.00
tblConstructionPhase	NumDays	300.00	260.00
tblConstructionPhase	NumDays	20.00	260.00
tblConstructionPhase	NumDays	30.00	260.00
tblConstructionPhase	NumDays	20.00	100.00
tblConstructionPhase	PhaseEndDate	10/4/2018	12/31/2018
tblConstructionPhase	PhaseEndDate	10/4/2018	12/31/2018
tblConstructionPhase	PhaseEndDate	10/4/2018	12/31/2018
tblConstructionPhase	PhaseEndDate	10/4/2018	12/31/2018
tblConstructionPhase	PhaseEndDate	10/4/2018	5/21/2018
tblConstructionPhase	PhaseStartDate	10/5/2018	1/2/2018
tblConstructionPhase	PhaseStartDate	10/5/2018	1/2/2018
tblConstructionPhase	PhaseStartDate	10/5/2018	1/2/2018
tblConstructionPhase	PhaseStartDate	10/5/2018	1/2/2018
tblConstructionPhase	PhaseStartDate	10/5/2018	1/2/2018
tblGrading	AcresOfGrading	1,300.00	50.00

tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	30.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	30.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	3.00	6.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	20.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	4.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	10.00
tblProjectCharacteristics	OperationalYear	2018	2020

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tons	s/yr							MT	/yr		
2018	8.6660	68.3786	50.7735	0.0858	2.4482	3.8239	6.2721	1.0790	3.5785	4.6575	0.0000	7,705.517 3	7,705.5173	1.8590	0.0000	7,751.991 2
Maximum	8.6660	68.3786	50.7735	0.0858	2.4482	3.8239	6.2721	1.0790	3.5785	4.6575	0.0000	7,705.517 3	7,705.5173	1.8590	0.0000	7,751.991 2

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2018	8.6660	68.3785	50.7734	0.0858	1.4087	3.8239	5.2327	0.5419	3.5785	4.1204	0.0000	7,705.509 1	7,705.5091	1.8590	0.0000	7,751.983 0
Maximum	8.6660	68.3785	50.7734	0.0858	1.4087	3.8239	5.2327	0.5419	3.5785	4.1204	0.0000	7,705.509 1	7,705.5091	1.8590	0.0000	7,751.983 0
	ROG	NOx	CO	SO2	Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5	Bio- CO2 I	NBio-CO2	Total CO2	CH4	N20	CO2e
					PM10	PM10	Total	PM2.5	PM2.5	Total						
Percent Reduction	0.00	0.00	0.00	0.00	PM10 42.46	PM10 0.00	Total 16.57	PM2.5 49.77	PM2.5 0.00	Total 11.53	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Architectural Coating	Architectural Coating	1/2/2018	12/31/2018	5	260	
2	Building Construction	Building Construction	1/2/2018	12/31/2018	5	260	
3	Demolition	Demolition	1/2/2018	12/31/2018	5	260	
4	Grading	Grading	1/2/2018	12/31/2018	5	260	
5	Paving	Paving	1/2/2018	5/21/2018	5	100	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 50

Acres of Paving: 0

Residential Indoor: 850,500; Residential Outdoor: 283,500; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area:

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Architectural Coating	Air Compressors	10	6.00	78	0.48
Demolition	Concrete/Industrial Saws	2	8.00	81	0.73
Building Construction	Cranes	10	7.00	231	0.29
Building Construction	Forklifts	30	8.00	89	0.20
Demolition	Excavators	6	8.00	158	0.38
Paving	Pavers	20	8.00	130	0.42
Paving	Rollers	20	8.00	80	0.38
Demolition	Rubber Tired Dozers	4	8.00	247	0.40
Grading	Rubber Tired Dozers	2	8.00	247	0.40
Building Construction	Tractors/Loaders/Backhoes	30	7.00	97	0.37
Grading	Tractors/Loaders/Backhoes	4	8.00	97	0.37
Grading	Excavators	4	8.00	158	0.38
Building Construction	Generator Sets	10	8.00	84	0.74
Grading	Graders	2	8.00	187	0.41
Paving	Paving Equipment	20	8.00	132	0.36
Grading	Scrapers	4	8.00	367	0.48
Building Construction	Welders	10	8.00	46	0.45

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Architectural Coating	10	60.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	90	302.00	45.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Demolition	12	30.00	0.00	1,032.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Grading	16	40.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT
Paving	60	150.00	0.00	0.00	14.70	6.90	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Water Exposed Area

Clean Paved Roads

3.2 Architectural Coating - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	1.3140					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.3882	2.6075	2.4105	3.8600e- 003		0.1957	0.1957		0.1957	0.1957	0.0000	331.9236	331.9236	0.0315	0.0000	332.7121
Total	1.7022	2.6075	2.4105	3.8600e- 003		0.1957	0.1957		0.1957	0.1957	0.0000	331.9236	331.9236	0.0315	0.0000	332.7121

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0415	0.0339	0.3640	9.1000e- 004	0.0856	6.9000e- 004	0.0863	0.0227	6.4000e- 004	0.0234	0.0000	82.0952	82.0952	2.8000e- 003	0.0000	82.1653
Total	0.0415	0.0339	0.3640	9.1000e- 004	0.0856	6.9000e- 004	0.0863	0.0227	6.4000e- 004	0.0234	0.0000	82.0952	82.0952	2.8000e- 003	0.0000	82.1653

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Archit. Coating	1.3140					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.3882	2.6075	2.4105	3.8600e- 003		0.1957	0.1957		0.1957	0.1957	0.0000	331.9232	331.9232	0.0315	0.0000	332.7117
Total	1.7022	2.6075	2.4105	3.8600e- 003		0.1957	0.1957		0.1957	0.1957	0.0000	331.9232	331.9232	0.0315	0.0000	332.7117

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0415	0.0339	0.3640	9.1000e- 004	0.0856	6.9000e- 004	0.0863	0.0227	6.4000e- 004	0.0234	0.0000	82.0952	82.0952	2.8000e- 003	0.0000	82.1653
Total	0.0415	0.0339	0.3640	9.1000e- 004	0.0856	6.9000e- 004	0.0863	0.0227	6.4000e- 004	0.0234	0.0000	82.0952	82.0952	2.8000e- 003	0.0000	82.1653

3.3 Building Construction - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	/yr		
Off-Road	3.4833	30.4070	22.8546	0.0350		1.9498	1.9498		1.8329	1.8329	0.0000	3,090.974 1	3,090.9741	0.7573	0.0000	3,109.906 2
Total	3.4833	30.4070	22.8546	0.0350		1.9498	1.9498		1.8329	1.8329	0.0000	3,090.974 1	3,090.9741	0.7573	0.0000	3,109.906 2

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0254	0.7233	0.1864	1.5100e- 003	0.0369	5.2100e- 003	0.0421	0.0106	4.9900e- 003	0.0156	0.0000	146.1235	146.1235	0.0104	0.0000	146.3835
Worker	0.2087	0.1707	1.8323	4.5800e- 003	0.4307	3.5000e- 003	0.4342	0.1144	3.2200e- 003	0.1176	0.0000	413.2127	413.2127	0.0141	0.0000	413.5652
Total	0.2340	0.8940	2.0187	6.0900e- 003	0.4676	8.7100e- 003	0.4763	0.1250	8.2100e- 003	0.1333	0.0000	559.3362	559.3362	0.0245	0.0000	559.9487

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	/yr							MT	/yr		
Off-Road	3.4833	30.4070	22.8545	0.0350		1.9498	1.9498		1.8329	1.8329	0.0000	3,090.970 4	3,090.9704	0.7573	0.0000	3,109.902 5
Total	3.4833	30.4070	22.8545	0.0350		1.9498	1.9498		1.8329	1.8329	0.0000	3,090.970 4	3,090.9704	0.7573	0.0000	3,109.902 5

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0254	0.7233	0.1864	1.5100e- 003	0.0369	5.2100e- 003	0.0421	0.0106	4.9900e- 003	0.0156	0.0000	146.1235	146.1235	0.0104	0.0000	146.3835
Worker	0.2087	0.1707	1.8323	4.5800e- 003	0.4307	3.5000e- 003	0.4342	0.1144	3.2200e- 003	0.1176	0.0000	413.2127	413.2127	0.0141	0.0000	413.5652
Total	0.2340	0.8940	2.0187	6.0900e- 003	0.4676	8.7100e- 003	0.4763	0.1250	8.2100e- 003	0.1333	0.0000	559.3362	559.3362	0.0245	0.0000	559.9487

3.4 **Demolition - 2018**

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					0.1117	0.0000	0.1117	0.0169	0.0000	0.0169	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.9669	9.9639	5.7991	0.0101		0.5040	0.5040		0.4693	0.4693	0.0000	913.2260	913.2260	0.2516	0.0000	919.5161
Total	0.9669	9.9639	5.7991	0.0101	0.1117	0.5040	0.6157	0.0169	0.4693	0.4862	0.0000	913.2260	913.2260	0.2516	0.0000	919.5161

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	4.5300e- 003	0.1640	0.0305	4.1000e- 004	8.8700e- 003	6.2000e- 004	9.4900e- 003	2.4400e- 003	5.9000e- 004	3.0200e- 003	0.0000	39.8046	39.8046	2.8000e- 003	0.0000	39.8746
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0207	0.0170	0.1820	4.5000e- 004	0.0428	3.5000e- 004	0.0431	0.0114	3.2000e- 004	0.0117	0.0000	41.0476	41.0476	1.4000e- 003	0.0000	41.0826
Total	0.0253	0.1810	0.2125	8.6000e- 004	0.0517	9.7000e- 004	0.0526	0.0138	9.1000e- 004	0.0147	0.0000	80.8523	80.8523	4.2000e- 003	0.0000	80.9572

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					0.0436	0.0000	0.0436	6.6000e- 003	0.0000	6.6000e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.9669	9.9638	5.7990	0.0101		0.5040	0.5040		0.4693	0.4693	0.0000	913.2249	913.2249	0.2516		919.5150
Total	0.9669	9.9638	5.7990	0.0101	0.0436	0.5040	0.5476	6.6000e- 003	0.4693	0.4759	0.0000	913.2249	913.2249	0.2516	0.0000	919.5150

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	4.5300e- 003	0.1640	0.0305	4.1000e- 004	8.8700e- 003	6.2000e- 004	9.4900e- 003	2.4400e- 003	5.9000e- 004	3.0200e- 003	0.0000	39.8046	39.8046	2.8000e- 003	0.0000	39.8746
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0207	0.0170	0.1820	4.5000e- 004	0.0428	3.5000e- 004	0.0431	0.0114	3.2000e- 004	0.0117	0.0000	41.0476	41.0476	1.4000e- 003	0.0000	41.0826
Total	0.0253	0.1810	0.2125	8.6000e- 004	0.0517	9.7000e- 004	0.0526	0.0138	9.1000e- 004	0.0147	0.0000	80.8523	80.8523	4.2000e- 003	0.0000	80.9572

3.5 Grading - 2018

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					1.5923	0.0000	1.5923	0.8635	0.0000	0.8635	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.3234	15.4757	9.1232	0.0161		0.6848	0.6848		0.6300	0.6300	0.0000	1,472.861 0	1,472.8610	0.4585	0.0000	1,484.324 1
Total	1.3234	15.4757	9.1232	0.0161	1.5923	0.6848	2.2770	0.8635	0.6300	1.4935	0.0000	1,472.861 0	1,472.8610	0.4585	0.0000	1,484.324 1

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	-/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0276	0.0226	0.2427	6.1000e- 004	0.0571	4.6000e- 004	0.0575	0.0152	4.3000e- 004	0.0156	0.0000	54.7302	54.7302	1.8700e- 003	0.0000	54.7768
Total	0.0276	0.0226	0.2427	6.1000e- 004	0.0571	4.6000e- 004	0.0575	0.0152	4.3000e- 004	0.0156	0.0000	54.7302	54.7302	1.8700e- 003	0.0000	54.7768

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Fugitive Dust					0.6210	0.0000	0.6210	0.3368	0.0000	0.3368	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.3234	15.4757	9.1232	0.0161		0.6848	0.6848		0.6300	0.6300	0.0000	1,472.859 3	1,472.8593	0.4585	0.0000	1,484.322 3
Total	1.3234	15.4757	9.1232	0.0161	0.6210	0.6848	1.3058	0.3368	0.6300	0.9668	0.0000	1,472.859 3	1,472.8593	0.4585	0.0000	1,484.322 3

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0276	0.0226	0.2427	6.1000e- 004	0.0571	4.6000e- 004	0.0575	0.0152	4.3000e- 004	0.0156	0.0000	54.7302	54.7302	1.8700e- 003	0.0000	54.7768
Total	0.0276	0.0226	0.2427	6.1000e- 004	0.0571	4.6000e- 004	0.0575	0.0152	4.3000e- 004	0.0156	0.0000	54.7302	54.7302	1.8700e- 003	0.0000	54.7768

3.6 Paving - 2018

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Off-Road	0.8219	8.7605	7.3982	0.0114		0.4781	0.4781		0.4398	0.4398	0.0000	1,040.581 1	1,040.5811	0.3240	0.0000	1,048.679 8
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.8219	8.7605	7.3982	0.0114		0.4781	0.4781		0.4398	0.4398	0.0000	1,040.581 1	1,040.5811	0.3240	0.0000	1,048.679 8

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0399	0.0326	0.3500	8.7000e- 004	0.0823	6.7000e- 004	0.0830	0.0219	6.2000e- 004	0.0225	0.0000	78.9377	78.9377	2.6900e- 003	0.0000	79.0051
Total	0.0399	0.0326	0.3500	8.7000e- 004	0.0823	6.7000e- 004	0.0830	0.0219	6.2000e- 004	0.0225	0.0000	78.9377	78.9377	2.6900e- 003	0.0000	79.0051

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Off-Road	0.8219	8.7604	7.3982	0.0114		0.4781	0.4781		0.4398	0.4398	0.0000	1,040.579 9	1,040.5799	0.3240	0.0000	1,048.678 6
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.8219	8.7604	7.3982	0.0114		0.4781	0.4781		0.4398	0.4398	0.0000	1,040.579 9	1,040.5799	0.3240	0.0000	1,048.678 6

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	tons/yr									MT/yr						
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0399	0.0326	0.3500	8.7000e- 004	0.0823	6.7000e- 004	0.0830	0.0219	6.2000e- 004	0.0225	0.0000	78.9377	78.9377	2.6900e- 003	0.0000	79.0051
Total	0.0399	0.0326	0.3500	8.7000e- 004	0.0823	6.7000e- 004	0.0830	0.0219	6.2000e- 004	0.0225	0.0000	78.9377	78.9377	2.6900e- 003	0.0000	79.0051

Appendix B, Air Quality Worksheets and Greenhouse Gas Emissions Data Worksheets

Operational Emissions

- CalEEMod Output (Summer)
- CalEEMod Output (Winter)
- CalEEMod Output (Annual)
- CalEEMod Output (Summer)- Hospital LST
- CalEEMod Output (Winter)- Hospital LST

Page 1 of 1 Date: 1/17/2017 3:06 PM

Willowbrook Specific Plan- Demolition, Grading, and Residential - South Coast AQMD Air District, Summer

Willowbrook Specific Plan- Demolition, Grading, and Residential South Coast AQMD Air District, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	385.34	1000sqft	8.85	385,337.00	0
Hospital	1.12	1000sqft	0.03	1,118.00	0
Medical Office Building	3.74	1000sqft	0.09	3,736.00	0
Medical Office Building	35.43	1000sqft	0.81	35,427.00	0
Office Park	224.32	1000sqft	5.15	224,317.00	0
Research & Development	98.51	1000sqft	2.26	98,506.00	0
User Defined Commercial	295.15	User Defined Unit	0.00	295,148.00	0
Library	8.94	1000sqft	0.21	8,939.00	0
Place of Worship	26.43	1000sqft	0.61	26,428.00	0
University/College (4Yr)	825.00	Student	3.48	151,632.91	0
General Light Industry	2.21	1000sqft	0.05	2,215.00	0
Enclosed Parking with Elevator	225.93	1000sqft	5.19	225,926.00	0
Fast Food Restaurant with Drive Thru	2.70	1000sqft	0.06	2,696.00	0
High Turnover (Sit Down Restaurant)	7.09	1000sqft	0.16	7,086.00	0
Apartments Mid Rise	1,585.00	Dwelling Unit	41.71	1,585,000.00	4533
Apartments Mid Rise	105.00	Dwelling Unit	2.76	105,000.00	300
Single Family Housing	262.00	Dwelling Unit	85.06	471,600.00	749
Regional Shopping Center	30.83	1000sqft	0.71	30,830.00	0
Strip Mall	81.57	1000sqft	1.87	81,572.00	0

1.2 Other Project Characteristics

Urbanization Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days) 31

Climate Zone 9 Operational Year 2025

Utility Company Los Angeles Department of Water & Power

CO2 Intensity 1227.89 **CH4 Intensity** 0.029 **N20 Intensity** 0.006

(lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Energy Use - Title 24 Conversion to 2016 Standards

Water And Wastewater - User Defined Commercial= Institution

Solid Waste - User Defined Commercial= Institution

Construction Off-road Equipment Mitigation -

Area Mitigation - Default

Table Name	Column Name	Default Value	New Value
tblAreaMitigation	UseLowVOCPaintNonresidentialExterio rValue	100	0
tblAreaMitigation	UseLowVOCPaintNonresidentialInterior	100	0
tblAreaMitigation	UseLowVOCPaintResidentialExteriorVa	50	0
tblAreaMitigation	lue UseLowVOCPaintResidentialInteriorVal	50	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblEnergyUse	LightingElect	741.44	533.84
tblEnergyUse	LightingElect	2.63	2.50
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	3.88	3.69
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	5.44	5.17
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	3.88	3.69

tblEnergyUse	LightingElect	3.84	3.65
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	6.43	6.11
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	1,608.84	1,158.36
tblEnergyUse	LightingElect	6.43	6.11
tblEnergyUse	LightingElect	3.48	3.31
tblEnergyUse	LightingElect	0.00	3.04
tblEnergyUse	NT24E	0.00	5.75
tblEnergyUse	NT24NG	0.00	4.45
tblEnergyUse	T24E	297.91	214.50
tblEnergyUse	T24E	3.92	3.72
tblEnergyUse	T24E	8.50	8.08
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.82	4.58
tblEnergyUse	T24E	8.50	8.08
tblEnergyUse	T24E	10.44	9.92
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.82	4.58
tblEnergyUse	T24E	5.89	5.60
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.20	3.99
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	502.24	361.61
tblEnergyUse	T24E	4.20	3.99
tblEnergyUse	T24E	3.18	3.02
tblEnergyUse	T24E	0.00	2.24
tblEnergyUse	T24NG	10,118.57	7,285.37
tblEnergyUse	T24NG	0.00	9.57

tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse	T24NG	55.22	52.46
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse	T24NG	9.65	9.17
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	1.16	1.10
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	26,696.95	19,221.80
tblEnergyUse	T24NG	1.16	1.10
tblEnergyUse	T24NG	26.63	25.30
tblEnergyUse	T24NG	0.00	13.02
tblFleetMix	FleetMixLandUseSubType	General Office Building	Apartments Mid Rise
tblFleetMix	FleetMixLandUseSubType	Hospital	Apartments Mid Rise
tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Enclosed Parking with Elevator
tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Fast Food Restaurant with Drive
tblFleetMix	FleetMixLandUseSubType	Office Park	Thru General Light Industry
tblFleetMix	FleetMixLandUseSubType	Research & Development	General Office Building
tblFleetMix	FleetMixLandUseSubType	User Defined Commercial	High Turnover (Sit Down Restaurant)
tblFleetMix	FleetMixLandUseSubType	Library	Hospital
tblFleetMix	FleetMixLandUseSubType	Place of Worship	Library
tblFleetMix	FleetMixLandUseSubType	University/College (4Yr)	Medical Office Building
tblFleetMix	FleetMixLandUseSubType	General Light Industry	Medical Office Building
tblFleetMix	FleetMixLandUseSubType	Enclosed Parking with Elevator	Office Park
tblFleetMix	FleetMixLandUseSubType	Fast Food Restaurant with Drive Thru	Place of Worship

tblFleetMix	FleetMixLandUseSubType	High Turnover (Sit Down Restaurant)	Regional Shopping Center
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Research & Development
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Single Family Housing
tblFleetMix	FleetMixLandUseSubType	Single Family Housing	Strip Mall
tblFleetMix	FleetMixLandUseSubType	Regional Shopping Center	University/College (4Yr)
tblFleetMix	FleetMixLandUseSubType	Strip Mall	User Defined Commercial
tblLandUse	BuildingSpaceSquareFeet	385,340.00	385,337.00
tblLandUse	BuildingSpaceSquareFeet	1,120.00	1,118.00
tblLandUse	BuildingSpaceSquareFeet	3,740.00	3,736.00
tblLandUse	BuildingSpaceSquareFeet	35,430.00	35,427.00
tblLandUse	BuildingSpaceSquareFeet	224,320.00	224,317.00
tblLandUse	BuildingSpaceSquareFeet	98,510.00	98,506.00
tblLandUse	BuildingSpaceSquareFeet	0.00	295,148.00
tblLandUse	BuildingSpaceSquareFeet	8,940.00	8,939.00
tblLandUse	BuildingSpaceSquareFeet	26,430.00	26,428.00
tblLandUse	BuildingSpaceSquareFeet	2,210.00	2,215.00
tblLandUse	BuildingSpaceSquareFeet	225,930.00	225,926.00
tblLandUse	BuildingSpaceSquareFeet	2,700.00	2,696.00
tblLandUse	BuildingSpaceSquareFeet	7,090.00	7,086.00
tblLandUse	BuildingSpaceSquareFeet	81,570.00	81,572.00
tblLandUse	LandUseSquareFeet	385,340.00	385,337.00
tblLandUse	LandUseSquareFeet	1,120.00	1,118.00
tblLandUse	LandUseSquareFeet	3,740.00	3,736.00
tblLandUse	LandUseSquareFeet	35,430.00	35,427.00
tblLandUse	LandUseSquareFeet	224,320.00	224,317.00
tblLandUse	LandUseSquareFeet	98,510.00	98,506.00
tblLandUse	LandUseSquareFeet	0.00	295,148.00
tblLandUse	LandUseSquareFeet	8,940.00	8,939.00
tblLandUse	LandUseSquareFeet	26,430.00	26,428.00

tblLandUse	LandUseSquareFeet	2,210.00	2,215.00
tblLandUse	LandUseSquareFeet	225,930.00	225,926.00
tblLandUse	LandUseSquareFeet	2,700.00	2,696.00
tblLandUse	LandUseSquareFeet	7,090.00	7,086.00
tblLandUse	LandUseSquareFeet	81,570.00	81,572.00
tblProjectCharacteristics	OperationalYear	2018	2025
tblSolidWaste	SolidWasteGenerationRate	0.00	7.49
tblVehicleTrips	ST_TR	6.39	4.70
tblVehicleTrips	ST_TR	722.03	207.00
tblVehicleTrips	ST_TR	1.32	0.00
tblVehicleTrips	ST_TR	2.46	8.82
tblVehicleTrips	ST_TR	158.37	81.27
tblVehicleTrips	ST_TR	10.18	0.00
tblVehicleTrips	ST_TR	46.55	42.20
tblVehicleTrips	ST_TR	8.96	25.80
tblVehicleTrips	ST_TR	1.64	10.04
tblVehicleTrips	ST_TR	10.37	6.83
tblVehicleTrips	ST_TR	49.97	26.88
tblVehicleTrips	ST_TR	1.90	6.51
tblVehicleTrips	ST_TR	9.91	5.56
tblVehicleTrips	ST_TR	42.04	17.71
tblVehicleTrips	ST_TR	1.30	1.45
tblVehicleTrips	SU_TR	5.86	4.70
tblVehicleTrips	SU_TR	542.72	207.00
tblVehicleTrips	SU_TR	0.68	0.00
tblVehicleTrips	SU_TR	1.05	8.82
tblVehicleTrips	SU_TR	131.84	81.27
tblVehicleTrips	SU_TR	8.91	0.00
tblVehicleTrips	SU_TR	25.49	42.20

tblVehicleTrips	SU_TR	1.55	25.80
tblVehicleTrips	SU_TR	0.76	10.04
tblVehicleTrips	SU_TR	36.63	6.83
tblVehicleTrips	SU_TR	25.24	26.88
tblVehicleTrips	SU_TR	1.11	6.51
tblVehicleTrips	SU_TR	8.62	5.56
tblVehicleTrips	SU_TR	20.43	17.71
tblVehicleTrips	SU_TR	0.00	1.45
tblVehicleTrips	WD_TR	6.65	4.70
tblVehicleTrips	WD_TR	496.12	207.00
tblVehicleTrips	WD_TR	6.97	0.00
tblVehicleTrips	WD_TR	11.03	8.82
tblVehicleTrips	WD_TR	127.15	81.27
tblVehicleTrips	WD_TR	13.22	0.00
tblVehicleTrips	WD_TR	56.24	42.20
tblVehicleTrips	WD_TR	36.13	25.80
tblVehicleTrips	WD_TR	11.42	10.04
tblVehicleTrips	WD_TR	9.11	6.83
tblVehicleTrips	WD_TR	42.70	26.88
tblVehicleTrips	WD_TR	8.11	6.51
tblVehicleTrips	WD_TR	9.52	5.56
tblVehicleTrips	WD_TR	44.32	17.71
tblVehicleTrips	WD_TR	1.71	1.45
tblWater	IndoorWaterUseRate	0.00	48,436,770.74

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day												lb/c	ay		
Area	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460
Energy	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
Mobile	42.5780	194.5746	545.2927	2.2843	150.1971	1.5786	151.7757	41.3712	1.4662	42.8374		233,181.8 548	233,181.85 48	9.8307		233,427.6 228
Total	1,080.1812	285.5481	2,566.822 8	7.1020	150.1971	281.7450	431.9421	41.3712	281.6325	323.0037	34,114.31 68	315,868.2 031	349,982.51 99	112.1679	2.6242	353,568.7 207

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
Area	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460
Energy	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
Mobile	42.5780	194.5746	545.2927	2.2843	150.1971	1.5786	151.7757	41.3712	1.4662	42.8374		233,181.8 548	233,181.85 48	9.8307		233,427.6 228
Total	1,080.1812	285.5481	2,566.822 8	7.1020	150.1971	281.7450	431.9421	41.3712	281.6325	323.0037	34,114.31 68	315,868.2 031	349,982.51 99	112.1679	2.6242	353,568.7 207

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Mitigated	42.5780	194.5746	545.2927	2.2843	150.1971	1.5786	151.7757	41.3712	1.4662	42.8374		233,181.8 548	233,181.85 48	9.8307		233,427.6 228
Unmitigated	42.5780	194.5746	545.2927	2.2843	150.1971	1.5786	151.7757	41.3712	1.4662	42.8374		233,181.8 548	233,181.85 48	9.8307		233,427.6 228

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	7,449.50	7,449.50	7449.50	25,456,073	25,456,073
Apartments Mid Rise	493.50	493.50	493.50	1,686,364	1,686,364
Enclosed Parking with Elevator	0.00	0.00	0.00		
Fast Food Restaurant with Drive Thru	558.90	558.90	558.90	588,179	588,179
General Light Industry	0.00	0.00	0.00		
General Office Building	3,398.70	3,398.70	3398.70	10,948,776	10,948,776
High Turnover (Sit Down Restaurant)	576.20	576.20	576.20	785,269	785,269
Hospital	0.00	0.00	0.00		
Library	377.27	377.27	377.27	952,483	952,483
Medical Office Building	96.49	96.49	96.49	250,287	250,287
Medical Office Building	914.09	914.09	914.09	2,371,031	2,371,031
Office Park	2,252.17	2,252.17	2252.17	7,609,305	7,609,305
Place of Worship	180.52	180.52	180.52	385,005	385,005
Regional Shopping Center	828.71	828.71	828.71	1,792,371	1,792,371
Research & Development	641.30	641.30	641.30	2,166,729	2,166,729
Single Family Housing	1,456.72	1,456.72	1456.72	4,977,834	4,977,834
Strip Mall	1,444.60	1,444.60	1444.60	2,748,498	2,748,498
University/College (4Yr)	1,196.25	1,196.25	1196.25	3,593,401	3,593,401
User Defined Commercial	0.00	0.00	0.00		
Total	21,864.93	21,864.93	21,864.93	66,311,604	66,311,604

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Fast Food Restaurant with Drive	16.60	8.40	6.90	2.20	78.80	19.00	29	21	50
General Light Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hospital	16.60	8.40	6.90	64.90	16.10	19.00	73	25	2
Library	16.60	8.40	6.90	52.00	43.00	5.00	44	44	12
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Office Park	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Place of Worship	16.60	8.40	6.90	0.00	95.00	5.00	64	25	11
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Research & Development	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
University/College (4Yr)	16.60	8.40	6.90	6.40	88.60	5.00	91	9	0
User Defined Commercial	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Enclosed Parking with Elevator	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Fast Food Restaurant with Drive	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
General Light Industry	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
General Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
High Turnover (Sit Down Restaurant)	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Hospital	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Library	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Office Park	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Place of Worship	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Regional Shopping Center	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Research & Development	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Single Family Housing	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Strip Mall	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
University/College (4Yr)	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
User Defined Commercial	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
NaturalGas Mitigated	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
NaturalGas Unmitigated	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/d	day		
Apartments Mid Rise	3932.28	0.0424	0.3624	0.1542	2.3100e- 003		0.0293	0.0293		0.0293	0.0293		462.6217	462.6217	8.8700e- 003	8.4800e- 003	465.3708
Apartments Mid Rise	59358.8	0.6401	5.4703	2.3278	0.0349		0.4423	0.4423		0.4423	0.4423		6,983.3848	6,983.384 8	0.1339	0.1280	7,024.8836
Enclosed Parking with Elevator	5923.59	0.0639	0.5807	0.4878	3.4800e- 003		0.0441	0.0441		0.0441	0.0441		696.8934	696.8934	0.0134	0.0128	701.0347
Fast Food Restaurant with	1690.06	0.0182	0.1657	0.1392	9.9000e- 004		0.0126	0.0126		0.0126	0.0126		198.8305	198.8305	3.8100e- 003	3.6500e- 003	200.0121
General Light Industry	106.017	1.1400e- 003	0.0104	8.7300e- 003	6.0000e- 005		7.9000e- 004	7.9000e- 004	0	7.9000e- 004	7.9000e- 004		12.4725	12.4725	2.4000e- 004	2.3000e- 004	12.5467
General Office Building	10514.9	0.1134	1.0309	0.8659	6.1900e- 003		0.0784	0.0784		0.0784	0.0784		1,237.0529	1,237.052 9	0.0237	0.0227	1,244.4041
High Turnover (Sit Down Restaurant)	4442.05	0.0479	0.4355	0.3658	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.5939	522.5939	0.0100	9.5800e- 003	525.6994
Hospital	190.764	2.0600e- 003	0.0187	0.0157	1.1000e- 004		1.4200e- 003	1.4200e- 003		1.4200e- 003	1.4200e- 003		22.4429	22.4429	4.3000e- 004	4.1000e- 004	22.5763
Library	427.847	4.6100e- 003	0.0420	0.0352	2.5000e- 004		3.1900e- 003	3.1900e- 003		3.1900e- 003	3.1900e- 003		50.3350	50.3350	9.6000e- 004	9.2000e- 004	50.6341
Medical Office Building	101.947	1.1000e- 003	9.9900e- 003	8.4000e- 003	6.0000e- 005		7.6000e- 004	7.6000e- 004		7.6000e- 004	7.6000e- 004		11.9937	11.9937	2.3000e- 004	2.2000e- 004	12.0650

Medical Office Building	966.72	0.0104	0.0948	0.0796	5.7000e- 004	7.2000e- 003	7.2000e- 003		7.2000e- 003	7.2000e- 003	 113.7318	113.7318	2.1800e- 003	2.0900e- 003	114.4077
Office Park	5752.35	0.0620	0.5640	0.4737	3.3800e- 003	0.0429	0.0429		0.0429	0.0429	 676.7469	676.7469	0.0130	0.0124	680.7684
Place of Worship	1264.92	0.0136	0.1240	0.1042	7.4000e- 004	9.4200e- 003	9.4200e- 003		9.4200e- 003	9.4200e- 003	 148.8146	148.8146	2.8500e- 003	2.7300e- 003	149.6989
Regional Shopping Center	134.301	1.4500e- 003	0.0132	0.0111	8.0000e- 005	1.0000e- 003	1.0000e- 003	A	1.0000e- 003	1.0000e- 003	15.8001	15.8001	3.0000e- 004	2.9000e- 004	15.8940
Research & Development	4714.79	0.0509	0.4622	0.3883	2.7700e- 003	0.0351	0.0351		0.0351	0.0351	554.6817	554.6817	0.0106	0.0102	557.9779
Single Family Housing	18380.1	0.1982	1.6939	0.7208	0.0108	0.1370	0.1370		0.1370	0.1370	 2,162.3593	2,162.359 3	0.0415	0.0396	2,175.2091
Strip Mall	355.341	3.8300e- 003	0.0348	0.0293	2.1000e- 004	2.6500e- 003	2.6500e- 003		2.6500e- 003	2.6500e- 003	 41.8048	41.8048	8.0000e- 004	7.7000e- 004	42.0533
University/College (4Yr)	10755.6	0.1160	1.0545	0.8858	6.3300e- 003	0.0801	0.0801		0.0801	0.0801	 1,265.3589	1,265.358 9	0.0243	0.0232	1,272.8783
User Defined Commercial	14126.7	0.1524	1.3850	1.1634	8.3100e- 003	0.1053	0.1053	Ō	0.1053	0.1053	 1,661.9615	1,661.961 5	0.0319	0.0305	1,671.8377
Total		1.5437	13.5528	8.2649	0.0842	1.0665	1.0665		1.0665	1.0665	16,839.880 9	16,839.88 09	0.3228	0.3088	16,939.951 9

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Apartments Mid Rise	3.93228	0.0424	0.3624	0.1542	2.3100e- 003		0.0293	0.0293		0.0293	0.0293		462.6217	462.6217	8.8700e- 003	8.4800e- 003	465.3708
Apartments Mid Rise	59.3588	0.6401	5.4703	2.3278	0.0349		0.4423	0.4423		0.4423	0.4423		6,983.3848	6,983.384 8	0.1339	0.1280	7,024.8836
Enclosed Parking with Elevator	5.92359	0.0639	0.5807	0.4878	3.4800e- 003		0.0441	0.0441		0.0441	0.0441		696.8934	696.8934	0.0134	0.0128	701.0347
Fast Food Restaurant with	1.69006	0.0182	0.1657	0.1392	9.9000e- 004		0.0126	0.0126		0.0126	0.0126		198.8305	198.8305	3.8100e- 003	3.6500e- 003	200.0121
General Light Industry	0.106017	1.1400e- 003	0.0104	8.7300e- 003	6.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		12.4725	12.4725	2.4000e- 004	2.3000e- 004	12.5467
General Office Building	10.5149	0.1134	1.0309	0.8659	6.1900e- 003		0.0784	0.0784		0.0784	0.0784		1,237.0529	1,237.052 9	0.0237	0.0227	1,244.4041
High Turnover (Sit Down Restaurant)	4.44205	0.0479	0.4355	0.3658	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.5939	522.5939	0.0100	9.5800e- 003	525.6994
Hospital	0.190764	2.0600e- 003	0.0187	0.0157	1.1000e- 004		1.4200e- 003	1.4200e- 003		1.4200e- 003	1.4200e- 003		22.4429	22.4429	4.3000e- 004	4.1000e- 004	22.5763

Library	0.427847	4.6100e- 003	0.0420	0.0352	2.5000e- 004	,	3.1900e- 003	3.1900e- 003	3.1900e- 003	3.1900e- 003	50.3350	50.3350	9.6000e- 004	9.2000e- 004	50.6341
Medical Office Building	0.101947	1.1000e- 003	9.9900e- 003	8.4000e- 003	6.0000e- 005		7.6000e- 004	7.6000e- 004	7.6000e- 004	7.6000e- 004	11.9937	11.9937	2.3000e- 004	2.2000e- 004	12.0650
Medical Office Building	0.96672	0.0104	0.0948	0.0796	5.7000e- 004		7.2000e- 003	7.2000e- 003	7.2000e- 003	7.2000e- 003	113.7318	113.7318	2.1800e- 003	2.0900e- 003	114.4077
Office Park	5.75235	0.0620	0.5640	0.4737	3.3800e- 003		0.0429	0.0429	0.0429	0.0429	676.7469	676.7469	0.0130	0.0124	680.7684
Place of Worship	1.26492	0.0136	0.1240	0.1042	7.4000e- 004		9.4200e- 003	9.4200e- 003	9.4200e- 003	9.4200e- 003	148.8146	148.8146	2.8500e- 003	2.7300e- 003	149.6989
Regional Shopping Center	0.134301	1.4500e- 003	0.0132	0.0111	8.0000e- 005		1.0000e- 003	1.0000e- 003	1.0000e- 003	1.0000e- 003	15.8001	15.8001	3.0000e- 004	2.9000e- 004	15.8940
Research & Development	4.71479	0.0509	0.4622	0.3883	2.7700e- 003		0.0351	0.0351	0.0351	0.0351	554.6817	554.6817	0.0106	0.0102	557.9779
Single Family Housing	18.3801	0.1982	1.6939	0.7208	0.0108)	0.1370	0.1370	0.1370	0.1370	2,162.3593	2,162.359 3	0.0415	0.0396	2,175.2091
Strip Mall	0.355341	3.8300e- 003	0.0348	0.0293	2.1000e- 004		2.6500e- 003	2.6500e- 003	2.6500e- 003	2.6500e- 003	41.8048	41.8048	8.0000e- 004	7.7000e- 004	42.0533
University/College (4Yr)	10.7556	0.1160	1.0545	0.8858	6.3300e- 003		0.0801	0.0801	0.0801	0.0801	1,265.3589	1,265.358 9	0.0243	0.0232	1,272.8783
User Defined Commercial	14.1267	0.1524	1.3850	1.1634	8.3100e- 003		0.1053	0.1053	0.1053	0.1053	1,661.9615	1,661.961 5	0.0319	0.0305	1,671.8377
Total		1.5437	13.5528	8.2649	0.0842		1.0665	1.0665	1.0665	1.0665	16,839.880 9	16,839.88 09	0.3228	0.3088	16,939.951 9

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/c	lay		
Mitigated	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460
Unmitigated	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	7.1642					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	69.7085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	954.3351	75.5654	1,852.145 8	4.7250		278.2063	278.2063		278.2063	278.2063	34,114.31 68	65,556.00 00	99,670.316 8	101.7355	2.3154	102,903.7 044
Landscaping	4.8518	1.8553	161.1195	8.5200e- 003		0.8936	0.8936		0.8936	0.8936		290.4675	290.4675	0.2790		297.4416
Total	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	7.1642					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	69.7085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	954.3351	75.5654	1,852.145 8	4.7250		278.2063	278.2063		278.2063	278.2063	34,114.31 68	65,556.00 00	99,670.316 8	101.7355	2.3154	102,903.7 044
Landscaping	4.8518	1.8553	161.1195	8.5200e- 003		0.8936	0.8936		0.8936	0.8936		290.4675	290.4675	0.2790		297.4416
Total	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

Willowbrook Specific Plan- Demolition, Grading, and Residential - South Coast AQMD Air District, Winter

Willowbrook Specific Plan- Demolition, Grading, and Residential South Coast AQMD Air District, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	385.34	1000sqft	8.85	385,337.00	0
Hospital	1.12	1000sqft	0.03	1,118.00	0
Medical Office Building	3.74	1000sqft	0.09	3,736.00	0
Medical Office Building	35.43	1000sqft	0.81	35,427.00	0
Office Park	224.32	1000sqft	5.15	224,317.00	0
Research & Development	98.51	1000sqft	2.26	98,506.00	0
User Defined Commercial	295.15	User Defined Unit	0.00	295,148.00	0
Library	8.94	1000sqft	0.21	8,939.00	0
Place of Worship	26.43	1000sqft	0.61	26,428.00	0
University/College (4Yr)	825.00	Student	3.48	151,632.91	0
General Light Industry	2.21	1000sqft	0.05	2,215.00	0
Enclosed Parking with Elevator	225.93	1000sqft	5.19	225,926.00	0
Fast Food Restaurant with Drive Thru	2.70	1000sqft	0.06	2,696.00	0
High Turnover (Sit Down Restaurant)	7.09	1000sqft	0.16	7,086.00	0
Apartments Mid Rise	1,585.00	Dwelling Unit	41.71	1,585,000.00	4533
Apartments Mid Rise	105.00	Dwelling Unit	2.76	105,000.00	300
Single Family Housing	262.00	Dwelling Unit	85.06	471,600.00	749
Regional Shopping Center	30.83	1000sqft	0.71	30,830.00	0
Strip Mall	81.57	1000sqft	1.87	81,572.00	0

1 of 15 2/3/2017 1:28 PM

Date: 1/17/2017 3:08 PM

1.2 Other Project Characteristics

Urbanization Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days)

Climate Zone 9 Operational Year 2025

Utility Company Los Angeles Department of Water & Power

CO2 Intensity 1227.89 **CH4 Intensity** 0.029 **N20 Intensity** 0.006

(lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Energy Use - Title 24 Conversion to 2016 Standards

Water And Wastewater - User Defined Commercial= Institution

Solid Waste - User Defined Commercial= Institution

Construction Off-road Equipment Mitigation -

Area Mitigation - Default

Table Name	Column Name	Default Value	New Value
tblAreaMitigation	UseLowVOCPaintNonresidentialExterio	100	0
tblAreaMitigation	UseLowVOCPaintNonresidentialInterior Value	100	0
tblAreaMitigation	UseLowVOCPaintResidentialExteriorVa	50	0
tblAreaMitigation	UseLowVOCPaintResidentialInteriorVal	50	0
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	40	0
tblEnergyUse	LightingElect	741.44	533.84
tblEnergyUse	LightingElect	2.63	2.50
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	3.88	3.69
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	5.44	5.17
tblEnergyUse	LightingElect	3.20	3.04

2 of 15 2/3/2017 1:28 PM

31

tblEnergyUse	LightingElect	3.88	3.69			
tblEnergyUse	LightingElect	3.84	3.65			
tblEnergyUse	LightingElect	3.20	3.04			
tblEnergyUse	LightingElect	6.43	6.11			
tblEnergyUse	LightingElect	3.20	3.04			
tblEnergyUse	LightingElect	1,608.84	1,158.36			
tblEnergyUse	LightingElect	6.43	6.11			
tblEnergyUse	LightingElect	3.48	3.31			
tblEnergyUse	LightingElect	0.00	3.04			
tblEnergyUse	NT24E	0.00	5.75			
tblEnergyUse	NT24NG	0.00	4.45			
tblEnergyUse	T24E	297.91	214.50			
tblEnergyUse	T24E	3.92	3.72			
tblEnergyUse	T24E	8.50	8.08			
tblEnergyUse	T24E	2.36	2.24			
tblEnergyUse	T24E	4.82	4.58			
tblEnergyUse	T24E	8.50	8.08			
tblEnergyUse	T24E	10.44	9.92			
tblEnergyUse	T24E	2.36	2.24			
tblEnergyUse	T24E	4.82	4.58			
tblEnergyUse	T24E	5.89	5.60			
tblEnergyUse	T24E	2.36	2.24			
tblEnergyUse	T24E	4.20	3.99			
tblEnergyUse	T24E	2.36	2.24			
tblEnergyUse	T24E	502.24	361.61			
tblEnergyUse	T24E	4.20	3.99			
tblEnergyUse	T24E	3.18	3.02			
tblEnergyUse	T24E	0.00	2.24			
tblEnergyUse	T24NG	10,118.57	7,285.37			

tblEnergyUse	T24NG	0.00	9.57
tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse	T24NG	55.22	52.46
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse	T24NG	9.65	9.17
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	1.16	1.10
tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse	T24NG	26,696.95	19,221.80
tblEnergyUse	T24NG	1.16	1.10
tblEnergyUse	T24NG	26.63	25.30
tblEnergyUse	T24NG	0.00	13.02
tblFleetMix	FleetMixLandUseSubType	General Office Building	Apartments Mid Rise
tblFleetMix	FleetMixLandUseSubType	Hospital	Apartments Mid Rise
tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Enclosed Parking with Elevator
tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Fast Food Restaurant with Drive
tblFleetMix	FleetMixLandUseSubType	Office Park	Thru General Light Industry
tblFleetMix	FleetMixLandUseSubType	Research & Development	General Office Building
tblFleetMix	FleetMixLandUseSubType	User Defined Commercial	High Turnover (Sit Down
tblFleetMix	FleetMixLandUseSubType	Library	Restaurant) Hospital
tblFleetMix	FleetMixLandUseSubType	Place of Worship	Library
tblFleetMix	FleetMixLandUseSubType	University/College (4Yr)	Medical Office Building
tblFleetMix	FleetMixLandUseSubType	General Light Industry	Medical Office Building
tblFleetMix	FleetMixLandUseSubType	Enclosed Parking with Elevator	Office Park
		<u> </u>	<u> </u>

tblFleetMix	FleetMixLandUseSubType	Fast Food Restaurant with Drive Thru	Place of Worship
tblFleetMix	FleetMixLandUseSubType	High Turnover (Sit Down Restaurant)	Regional Shopping Center
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Research & Development
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Single Family Housing
tblFleetMix	FleetMixLandUseSubType	Single Family Housing	Strip Mall
tblFleetMix	FleetMixLandUseSubType	Regional Shopping Center	University/College (4Yr)
tblFleetMix	FleetMixLandUseSubType	Strip Mall	User Defined Commercial
tblLandUse	BuildingSpaceSquareFeet	385,340.00	385,337.00
tblLandUse	BuildingSpaceSquareFeet	1,120.00	1,118.00
tblLandUse	BuildingSpaceSquareFeet	3,740.00	3,736.00
tblLandUse	BuildingSpaceSquareFeet	35,430.00	35,427.00
tblLandUse	BuildingSpaceSquareFeet	224,320.00	224,317.00
tblLandUse	BuildingSpaceSquareFeet	98,510.00	98,506.00
tblLandUse	BuildingSpaceSquareFeet	0.00	295,148.00
tblLandUse	BuildingSpaceSquareFeet	8,940.00	8,939.00
tblLandUse	BuildingSpaceSquareFeet	26,430.00	26,428.00
tblLandUse	BuildingSpaceSquareFeet	2,210.00	2,215.00
tblLandUse	BuildingSpaceSquareFeet	225,930.00	225,926.00
tblLandUse	BuildingSpaceSquareFeet	2,700.00	2,696.00
tblLandUse	BuildingSpaceSquareFeet	7,090.00	7,086.00
tblLandUse	BuildingSpaceSquareFeet	81,570.00	81,572.00
tblLandUse	LandUseSquareFeet	385,340.00	385,337.00
tblLandUse	LandUseSquareFeet	1,120.00	1,118.00
tblLandUse	LandUseSquareFeet	3,740.00	3,736.00
tblLandUse	LandUseSquareFeet	35,430.00	35,427.00
tblLandUse	LandUseSquareFeet	224,320.00	224,317.00
tblLandUse	LandUseSquareFeet	98,510.00	98,506.00
tblLandUse	LandUseSquareFeet	0.00	295,148.00
tblLandUse	LandUseSquareFeet	8,940.00	8,939.00

tblLandUse	LandUseSquareFeet	26,430.00	26,428.00
tblLandUse	LandUseSquareFeet	2,210.00	2,215.00
tblLandUse	LandUseSquareFeet	225,930.00	225,926.00
tblLandUse	LandUseSquareFeet	2,700.00	2,696.00
tblLandUse	LandUseSquareFeet	7,090.00	7,086.00
tblLandUse	LandUseSquareFeet	81,570.00	81,572.00
tblProjectCharacteristics	OperationalYear	2018	2025
tblSolidWaste	SolidWasteGenerationRate	0.00	7.49
tblVehicleTrips	ST_TR	6.39	4.70
tblVehicleTrips	ST_TR	722.03	207.00
tblVehicleTrips	ST_TR	1.32	0.00
tblVehicleTrips	ST_TR	2.46	8.82
tblVehicleTrips	ST_TR	158.37	81.27
tblVehicleTrips	ST_TR	10.18	0.00
tblVehicleTrips	ST_TR	46.55	42.20
tblVehicleTrips	ST_TR	8.96	25.80
tblVehicleTrips	ST_TR	1.64	10.04
tblVehicleTrips	ST_TR	10.37	6.83
tblVehicleTrips	ST_TR	49.97	26.88
tblVehicleTrips	ST_TR	1.90	6.51
tblVehicleTrips	ST_TR	9.91	5.56
tblVehicleTrips	ST_TR	42.04	17.71
tblVehicleTrips	ST_TR	1.30	1.45
tblVehicleTrips	SU_TR	5.86	4.70
tblVehicleTrips	SU_TR	542.72	207.00
tblVehicleTrips	SU_TR	0.68	0.00
tblVehicleTrips	SU_TR	1.05	8.82
tblVehicleTrips	SU_TR	131.84	81.27
tblVehicleTrips	SU_TR	8.91	0.00

tblVehicleTrips	SU_TR	25.49	42.20			
tblVehicleTrips	SU_TR	1.55	25.80			
tblVehicleTrips	SU_TR	0.76	10.04			
tblVehicleTrips	SU_TR	36.63	6.83			
tblVehicleTrips	SU_TR	25.24	26.88			
tblVehicleTrips	SU_TR	1.11	6.51			
tblVehicleTrips	SU_TR	8.62	5.56			
tblVehicleTrips	SU_TR	20.43	17.71			
tblVehicleTrips	SU_TR	0.00	1.45			
tblVehicleTrips	WD_TR	6.65	4.70			
tblVehicleTrips	WD_TR	496.12	207.00			
tblVehicleTrips	WD_TR	6.97	0.00			
tblVehicleTrips	WD_TR	11.03	8.82			
tblVehicleTrips	WD_TR	127.15	81.27			
tblVehicleTrips	WD_TR	13.22	0.00			
tblVehicleTrips	WD_TR	56.24	42.20			
tblVehicleTrips	WD_TR	36.13	25.80			
tblVehicleTrips	WD_TR	11.42	10.04			
tblVehicleTrips	WD_TR	9.11	6.83			
tblVehicleTrips	WD_TR	42.70	26.88			
tblVehicleTrips	WD_TR	8.11	6.51			
tblVehicleTrips	WD_TR	9.52	5.56			
tblVehicleTrips	WD_TR	44.32	17.71			
tblVehicleTrips	WD_TR	1.71	1.45			
tblWater	IndoorWaterUseRate	0.00	48,436,770.74			

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/c	lay		
Area	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460
Energy	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
Mobile	40.2615	197.5413	509.4156	2.1633	150.1971	1.5853	151.7824	41.3712	1.4726	42.8438		220,998.0 141	220,998.01 41	9.8455		221,244.1 505
Total	1,077.8647	288.5148	2,530.945 7	6.9810	150.1971	281.7517	431.9488	41.3712	281.6389	323.0101	34,114.31 68	303,684.3 625	337,798.67 93	112.1827	2.6242	341,385.2 484

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/c	lay		
Area	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3		2.3154	103,201.1 460
Energy	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
Mobile	40.2615	197.5413	509.4156	2.1633	150.1971	1.5853	151.7824	41.3712	1.4726	42.8438		220,998.0 141	220,998.01 41	9.8455		221,244.1 505
Total	1,077.8647	288.5148	2,530.945 7	6.9810	150.1971	281.7517	431.9488	41.3712	281.6389	323.0101	34,114.31 68	303,684.3 625	337,798.67 93	112.1827	2.6242	341,385.2 484

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
Mitigated	40.2615	197.5413	509.4156	2.1633	150.1971	1.5853	151.7824	41.3712	1.4726	42.8438		220,998.0 141	220,998.01 41	9.8455		221,244.1 505
Unmitigated	40.2615	197.5413	509.4156	2.1633	150.1971	1.5853	151.7824	41.3712	1.4726	42.8438		220,998.0 141	220,998.01 41	9.8455		221,244.1 505

4.2 Trip Summary Information

	Aver	age Daily Trip R	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	7,449.50	7,449.50	7449.50	25,456,073	25,456,073
Apartments Mid Rise	493.50	493.50	493.50	1,686,364	1,686,364
Enclosed Parking with Elevator	0.00	0.00	0.00		
Fast Food Restaurant with Drive Thru	558.90	558.90	558.90	588,179	588,179
General Light Industry	0.00	0.00	0.00		
General Office Building	3,398.70	3,398.70	3398.70	10,948,776	10,948,776
High Turnover (Sit Down Restaurant)	576.20	576.20	576.20	785,269	785,269
Hospital	0.00	0.00	0.00		
Library	377.27	377.27	377.27	952,483	952,483
Medical Office Building	96.49	96.49	96.49	250,287	250,287
Medical Office Building	914.09	914.09	914.09	2,371,031	2,371,031
Office Park	2,252.17	2,252.17	2252.17	7,609,305	7,609,305
Place of Worship	180.52	180.52	180.52	385,005	385,005
Regional Shopping Center	828.71	828.71	828.71	1,792,371	1,792,371
Research & Development	641.30	641.30	641.30	2,166,729	2,166,729
Single Family Housing	1,456.72	1,456.72	1456.72	4,977,834	4,977,834
Strip Mall	1,444.60	1,444.60	1444.60	2,748,498	2,748,498
University/College (4Yr)	1,196.25	1,196.25	1196.25	3,593,401	3,593,401
User Defined Commercial	0.00	0.00	0.00		
Total	21,864.93	21,864.93	21,864.93	66,311,604	66,311,604

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose	· %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Fast Food Restaurant with Drive	16.60	8.40	6.90	2.20	78.80	19.00	29	21	50
General Light Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hospital	16.60	8.40	6.90	64.90	16.10	19.00	73	25	2
Library	16.60	8.40	6.90	52.00	43.00	5.00	44	44	12
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Office Park	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Place of Worship	16.60	8.40	6.90	0.00	95.00	5.00	64	25	11
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Research & Development	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
University/College (4Yr)	16.60	8.40	6.90	6.40	88.60	5.00	91	9	0
User Defined Commercial	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Enclosed Parking with Elevator	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Fast Food Restaurant with Drive	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
General Light Industry	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
General Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
High Turnover (Sit Down Restaurant)	0.551360							0.035696			0.004899		0.000825
Hospital	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Library	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Office Park	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Place of Worship	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Regional Shopping Center	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Research & Development	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Single Family Housing	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Strip Mall	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
University/College (4Yr)	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
User Defined Commercial	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
NaturalGas Mitigated	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19
NaturalGas Unmitigated	1.5437	13.5528	8.2649	0.0842		1.0665	1.0665		1.0665	1.0665		16,839.88 09	16,839.880 9	0.3228	0.3087	16,939.95 19

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/d	day		
Apartments Mid Rise	3932.28	0.0424	0.3624	0.1542	2.3100e- 003		0.0293	0.0293		0.0293	0.0293		462.6217	462.6217	8.8700e- 003	8.4800e- 003	465.3708
Apartments Mid Rise	59358.8	0.6401	5.4703	2.3278	0.0349		0.4423	0.4423		0.4423	0.4423		6,983.3848	6,983.384 8	0.1339	0.1280	7,024.8836
Enclosed Parking with Elevator	5923.59	0.0639	0.5807	0.4878	3.4800e- 003		0.0441	0.0441		0.0441	0.0441		696.8934	696.8934	0.0134	0.0128	701.0347
Fast Food Restaurant with	1690.06	0.0182	0.1657	0.1392	9.9000e- 004		0.0126	0.0126		0.0126	0.0126		198.8305	198.8305	3.8100e- 003	3.6500e- 003	200.0121
General Light Industry	106.017	1.1400e- 003	0.0104	8.7300e- 003	6.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		12.4725	12.4725	2.4000e- 004	2.3000e- 004	12.5467
General Office Building	10514.9	0.1134	1.0309	0.8659	6.1900e- 003		0.0784	0.0784		0.0784	0.0784		1,237.0529	1,237.052 9	0.0237	0.0227	1,244.4041
High Turnover (Sit Down Restaurant)	4442.05	0.0479	0.4355	0.3658	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.5939	522.5939	0.0100	9.5800e- 003	525.6994
Hospital	190.764	2.0600e- 003	0.0187	0.0157	1.1000e- 004		1.4200e- 003	1.4200e- 003		1.4200e- 003	1.4200e- 003		22.4429	22.4429	4.3000e- 004	4.1000e- 004	22.5763
Library	427.847	4.6100e- 003	0.0420	0.0352	2.5000e- 004		3.1900e- 003	3.1900e- 003		3.1900e- 003	3.1900e- 003		50.3350	50.3350	9.6000e- 004	9.2000e- 004	50.6341
Medical Office Building	101.947	1.1000e- 003	9.9900e- 003	8.4000e- 003	6.0000e- 005		7.6000e- 004	7.6000e- 004		7.6000e- 004	7.6000e- 004		11.9937	11.9937	2.3000e- 004	2.2000e- 004	12.0650

Medical Office	966.72	0.0104	0.0948	0.0796	5.7000e-	,	7.2000e-	7.2000e-	 7.2000e-	7.2000e-	113.7318	113.7318		2.0900e-	114.4077
Building					004		003	003	003	003			003	003	
Office Park	5752.35	0.0620	0.5640	0.4737	3.3800e- 003		0.0429	0.0429	0.0429	0.0429	676.7469	676.7469	0.0130	0.0124	680.7684
Place of Worship	1264.92	0.0136	0.1240	0.1042	7.4000e- 004		9.4200e- 003	9.4200e- 003	9.4200e- 003	9.4200e- 003	148.8146	148.8146	2.8500e- 003	2.7300e- 003	149.6989
Regional Shopping Center	134.301	1.4500e- 003	0.0132	0.0111	8.0000e- 005		1.0000e- 003	1.0000e- 003	1.0000e- 003	1.0000e- 003	15.8001	15.8001	3.0000e- 004	2.9000e- 004	15.8940
Research & Development	4714.79	0.0509	0.4622	0.3883	2.7700e- 003		0.0351	0.0351	 0.0351	0.0351	554.6817	554.6817	0.0106	0.0102	557.9779
Single Family Housing	18380.1	0.1982	1.6939	0.7208	0.0108		0.1370	0.1370	0.1370	0.1370	2,162.3593	2,162.359 3	0.0415	0.0396	2,175.2091
Strip Mall	355.341	3.8300e- 003	0.0348	0.0293	2.1000e- 004		2.6500e- 003	2.6500e- 003	2.6500e- 003	2.6500e- 003	41.8048	41.8048	8.0000e- 004	7.7000e- 004	42.0533
University/College (4Yr)	10755.6	0.1160	1.0545	0.8858	6.3300e- 003		0.0801	0.0801	0.0801	0.0801	1,265.3589	1,265.358 9	0.0243	0.0232	1,272.8783
User Defined Commercial	14126.7	0.1524	1.3850	1.1634	8.3100e- 003		0.1053	0.1053	 0.1053	0.1053	1,661.9615	1,661.961 5	0.0319	0.0305	1,671.8377
Total		1.5437	13.5528	8.2649	0.0842		1.0665	1.0665	1.0665	1.0665	16,839.880 9	16,839.88 09	0.3228	0.3088	16,939.951 9

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/d	day		
Apartments Mid Rise	59.3588	0.6401	5.4703	2.3278	0.0349		0.4423	0.4423		0.4423	0.4423		6,983.3848	6,983.384 8	0.1339	0.1280	7,024.8836
Apartments Mid Rise	3.93228	0.0424	0.3624	0.1542	2.3100e- 003		0.0293	0.0293		0.0293	0.0293		462.6217	462.6217	8.8700e- 003	8.4800e- 003	465.3708
Enclosed Parking with Elevator	5.92359	0.0639	0.5807	0.4878	3.4800e- 003		0.0441	0.0441		0.0441	0.0441		696.8934	696.8934	0.0134	0.0128	701.0347
Fast Food Restaurant with	1.69006	0.0182	0.1657	0.1392	9.9000e- 004		0.0126	0.0126		0.0126	0.0126		198.8305	198.8305	3.8100e- 003	3.6500e- 003	200.0121
General Light Industry	0.106017	1.1400e- 003	0.0104	8.7300e- 003	6.0000e- 005		7.9000e- 004	7.9000e- 004		7.9000e- 004	7.9000e- 004		12.4725	12.4725	2.4000e- 004	2.3000e- 004	12.5467
General Office Building	10.5149	0.1134	1.0309	0.8659	6.1900e- 003		0.0784	0.0784		0.0784	0.0784		1,237.0529	1,237.052 9	0.0237	0.0227	1,244.4041
High Turnover (Sit Down Restaurant)		0.0479	0.4355	0.3658	2.6100e- 003		0.0331	0.0331		0.0331	0.0331		522.5939	522.5939	0.0100	9.5800e- 003	525.6994
Hospital	0.190764	2.0600e- 003	0.0187	0.0157	1.1000e- 004		1.4200e- 003	1.4200e- 003		1.4200e- 003	1.4200e- 003		22.4429	22.4429	4.3000e- 004	4.1000e- 004	22.5763
Library	0.427847	4.6100e- 003	0.0420	0.0352	2.5000e- 004		3.1900e- 003	3.1900e- 003		3.1900e- 003	3.1900e- 003		50.3350	50.3350	9.6000e- 004	9.2000e- 004	50.6341

Medical Office Building	0.101947	1.1000e- 003	9.9900e- 003	8.4000e- 003	6.0000e- 005	7.6000e- 004	7.6000e- 004	7.6000e- 004	7.6000e- 004		11.9937	11.9937	2.3000e- 004	2.2000e- 004	12.0650
Medical Office Building	0.96672	0.0104	0.0948	0.0796	5.7000e- 004	7.2000e- 003	7.2000e- 003	7.2000e- 003	7.2000e- 003		113.7318	113.7318	2.1800e- 003	2.0900e- 003	114.4077
Office Park	5.75235	0.0620	0.5640	0.4737	3.3800e- 003	 0.0429	0.0429	 0.0429	0.0429		676.7469	676.7469	0.0130	0.0124	680.7684
Place of Worship	1.26492	0.0136	0.1240	0.1042	7.4000e- 004	9.4200e- 003	9.4200e- 003	 9.4200e- 003	9.4200e- 003		148.8146	148.8146	2.8500e- 003	2.7300e- 003	149.6989
Regional Shopping Center	0.134301	1.4500e- 003	0.0132	0.0111	8.0000e- 005	1.0000e- 003	1.0000e- 003	1.0000e- 003	1.0000e- 003		15.8001	15.8001	3.0000e- 004	2.9000e- 004	15.8940
Research & Development	4.71479	0.0509	0.4622	0.3883	2.7700e- 003	0.0351	0.0351	0.0351	0.0351		554.6817	554.6817	0.0106	0.0102	557.9779
Single Family Housing	18.3801	0.1982	1.6939	0.7208	0.0108	0.1370	0.1370	0.1370	0.1370		2,162.3593	2,162.359 3	0.0415	0.0396	2,175.2091
Strip Mall	0.355341	3.8300e- 003	0.0348	0.0293	2.1000e- 004	2.6500e- 003	2.6500e- 003	 2.6500e- 003	2.6500e- 003		41.8048	41.8048	8.0000e- 004	7.7000e- 004	42.0533
University/College (4Yr)	10.7556	0.1160	1.0545	0.8858	6.3300e- 003	 0.0801	0.0801	 0.0801	0.0801	0	1,265.3589	1,265.358 9	0.0243	0.0232	1,272.8783
User Defined Commercial	14.1267	0.1524	1.3850	1.1634	8.3100e- 003	0.1053	0.1053	 0.1053	0.1053		1,661.9615	1,661.961 5	0.0319	0.0305	1,671.8377
Total		1.5437	13.5528	8.2649	0.0842	1.0665	1.0665	1.0665	1.0665		16,839.880 9	16,839.88 09	0.3228	0.3088	16,939.951 9

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	lay		
Mitigated	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998		68	75	99,960.784 3			103,201.1 460
Unmitigated	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/c	lay							lb/c	lay		
Architectural Coating	7.1642					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	69.7085			***************************************		0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	954.3351	75.5654	1,852.145 8	4.7250		278.2063	278.2063		278.2063	278.2063	34,114.31 68	65,556.00 00	99,670.316 8	101.7355	2.3154	102,903.7 044
Landscaping	4.8518	1.8553	161.1195	8.5200e- 003		0.8936	0.8936		0.8936	0.8936		290.4675	290.4675	0.2790		297.4416
Total	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	7.1642					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	69.7085					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Hearth	954.3351	75.5654	1,852.145 8	4.7250		278.2063	278.2063		278.2063	278.2063	34,114.31 68	65,556.00 00	99,670.316 8	101.7355	2.3154	102,903.7 044
Landscaping	4.8518	1.8553	161.1195	8.5200e- 003		0.8936	0.8936		0.8936	0.8936		290.4675	290.4675	0.2790		297.4416
Total	1,036.0595	77.4207	2,013.265 3	4.7335		279.0998	279.0998		279.0998	279.0998	34,114.31 68	65,846.46 75	99,960.784 3	102.0145	2.3154	103,201.1 460

Willowbrook Specific Plan- Demolition, Grading, and Residential - South Coast AQMD Air District, Annual

Willowbrook Specific Plan- Demolition, Grading, and Residential South Coast AQMD Air District, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	385.34	1000sqft	8.85	385,337.00	0
Hospital	1.12	1000sqft	0.03	1,118.00	0
Medical Office Building	3.74	1000sqft	0.09	3,736.00	0
Medical Office Building	35.43	1000sqft	0.81	35,427.00	0
Office Park	224.32	1000sqft	5.15	224,317.00	0
Research & Development	98.51	1000sqft	2.26	98,506.00	0
User Defined Commercial	295.15	User Defined Unit	0.00	295,148.00	0
Library	8.94	1000sqft	0.21	8,939.00	0
Place of Worship	26.43	1000sqft	0.61	26,428.00	0
University/College (4Yr)	825.00	Student	3.48	151,632.91	0
General Light Industry	2.21	1000sqft	0.05	2,215.00	0
Enclosed Parking with Elevator	225.93	1000sqft	5.19	225,926.00	0
Fast Food Restaurant with Drive Thru	2.70	1000sqft	0.06	2,696.00	0
High Turnover (Sit Down Restaurant)	7.09	1000sqft	0.16	7,086.00	0
Apartments Mid Rise	1,585.00	Dwelling Unit	41.71	1,585,000.00	4533
Apartments Mid Rise	105.00	Dwelling Unit	2.76	105,000.00	300
Single Family Housing	262.00	Dwelling Unit	85.06	471,600.00	749
Regional Shopping Center	30.83	1000sqft	0.71	30,830.00	0
Strip Mall	81.57	1000sqft	1.87	81,572.00	0

Date: 1/17/2017 3:04 PM

1.2 Other Project Characteristics

Urban Urban Wind Speed (m/s) 2.2 Precipitation Freq (Days)

Climate Zone 9 Operational Year 2025

Utility Company Los Angeles Department of Water & Power

CO2 Intensity 1227.89 **CH4 Intensity** 0.029 **N20 Intensity** 0.006

(lb/MWhr) (lb/MWhr) (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Energy Use - Title 24 Conversion to 2016 Standards

Water And Wastewater - User Defined Commercial= Institution

Solid Waste - User Defined Commercial= Institution

Construction Off-road Equipment Mitigation -

Area Mitigation - Default

Table Name	Column Name	Default Value	New Value
tblAreaMitigation	UseLowVOCPaintNonresidentialExterio rValue	100	0
tblAreaMitigation	UseLowVOCPaintNonresidentialInterior	100	0
tblAreaMitigation	UseLowVOCPaintResidentialExteriorVa	50	0
tblAreaMitigation	UseLowVOCPaintResidentialInteriorVal	50	0
tblConstDustMitigation	ие. WaterUnpavedRoadVehicleSpeed	40	0
tblEnergyUse	LightingElect	741.44	533.84
tblEnergyUse	LightingElect	2.63	2.50
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	3.88	3.69
tblEnergyUse	LightingElect	8.13	7.72
tblEnergyUse	LightingElect	5.44	5.17
tblEnergyUse	LightingElect	3.20	3.04

2 of 23 2/3/2017 11:59 AM

31

tblEnergyUse	LightingElect	3.88	3.69
tblEnergyUse	LightingElect	3.84	3.65
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	6.43	6.11
tblEnergyUse	LightingElect	3.20	3.04
tblEnergyUse	LightingElect	1,608.84	1,158.36
tblEnergyUse	LightingElect	6.43	6.11
tblEnergyUse	LightingElect	3.48	3.31
tblEnergyUse	LightingElect	0.00	3.04
tblEnergyUse	NT24E	0.00	5.75
tblEnergyUse	NT24NG	0.00	4.45
tblEnergyUse	T24E	297.91	214.50
tblEnergyUse	T24E	3.92	3.72
tblEnergyUse	T24E	8.50	8.08
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.82	4.58
tblEnergyUse	T24E	8.50	8.08
tblEnergyUse	T24E	10.44	9.92
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.82	4.58
tblEnergyUse	T24E	5.89	5.60
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	4.20	3.99
tblEnergyUse	T24E	2.36	2.24
tblEnergyUse	T24E	502.24	361.61
tblEnergyUse	T24E	4.20	3.99

3 of 23 2/3/2017 11:59 AM

tblEnergyUse T24NG 10,118.57 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building	tblEnergyUse	T24E	3.18	3.02
tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Medical Office Building Fe tblFleetMix FleetMixL	tblEnergyUse	T24E	0.00	2.24
tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG Passed tblEnergyUse T24NG 0.00 tblEnergyUse T24	tblEnergyUse	T24NG	10,118.57	7,285.37
tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG </td <td>tblEnergyUse</td> <td>T24NG</td> <td>0.00</td> <td>9.57</td>	tblEnergyUse	T24NG	0.00	9.57
tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Fa tblFleetMix FleetMixLandUseSubType Nesearch & D	tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse T24NG 43.19 tblEnergyUse T24NG 55.22 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG H0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG H0.00 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Medical Office Building tblFleetMix FleetMixLandUseSubType Medical Office Building tblFleetMix <	tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 9.63 tblEnergyUse T24NG 1.6 tblEnergyUse T24NG 1.6 tblEnergyUse T24NG 9.00 tblEnergyU	tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse T24NG 10.07 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.371 tblEnergyUse T24NG 1.6 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 9.00 tblEnergyUse T24NG 9.00 tblEnergyUse T24NG 9.00 tblFleetMix FleetMixLandUseSubType General Office Building 1 tblFleetMix FleetMixLandUseSubType Medical Office Building E2 tblFleetMix FleetMixLandUseSubType Medical Office Building F2 tblFleetMix FleetMixLandUseSubType Medical Office Building F3 tblFleetMix FleetMixLandUseSubType Medical Office Building F3 tblFleetMix FleetMixLandUseSubType User Defined Commercial TblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	43.19	41.03
tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.3.71 tblEnergyUse T24NG 1.3.71 tblEnergyUse T24NG 1.6 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building E1 tblFleetMix FleetMixLandUseSubType Medical Office Building E2 tblFleetMix FleetMixLandUseSubType Medical Office Building F2 tblFleetMix FleetMixLandUseSubType Medical Office Building F3 tblFleetMix FleetMixLandUseSubType Medical Office Building F3 tblFleetMix FleetMixLandUseSubType Medical Office Building F3 tblFleetMix FleetMixLandUseSubType Necical Office Building F4 tblFleetMix FleetMixLandUseSubType Necical Office Park tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	55.22	52.46
tblEnergyUse T24NG 9.65 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.3.71 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26.696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Fe tblFleetMix FleetMixLandUseSubType Medical Office Building Fe tblFleetMix FleetMixLandUseSubType Medical Office Building Fe tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Factor of tblFleetMix FleetMixLandUseSubType Medical Office Building Factor of tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	10.07	9.57
tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building TblFleetMix FleetMixLandUseSubType Medical Office Building E TblFleetMix FleetMixLandUseSubType Medical Office Building E TblFleetMix FleetMixLandUseSubType Medical Office Building FleetMixLandUseSubType Medical Office Building FleetMixLandUseSubType Medical Office Building FleetMixLandUseSubType Medical Office Building FleetMixLandUseSubType Office Park TblFleetMix FleetMixLandUseSubType Research & Development TblFleetMix FleetMixLandUseSubType User Defined Commercial TblFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	9.65	9.17
tblEnergyUse T24NG 13.71 tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building TblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building FatblFleetMix FleetMixLandUseSubType Medical Office Building FatblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse T24NG 26,696.95 tblEnergyUse T24NG 1.16 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building blFleetMix FleetMixLandUseSubType Hospital blFleetMix FleetMixLandUseSubType Medical Office Building E blFleetMix FleetMixLandUseSubType Medical Office Building FeatblFleetMix FleetMixLandUseSubType Medical Office Building Factor FleetMixLandUseSubType Medical Office Building Factor FleetMixLandUseSubType Medical Office Park blFleetMix FleetMixLandUseSubType Research & Development blFleetMix FleetMixLandUseSubType User Defined Commercial blFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	1.16	1.10
tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building TblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Factorized TblFleetMix FleetMixLandUseSubType Medical Office Building Factorized TblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development TblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	13.71	13.02
tblEnergyUse T24NG 26.63 tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Fa tblFleetMix FleetMixLandUseSubType Medical Office Building Fa tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType User Defined Commercial	tblEnergyUse	T24NG	26,696.95	19,221.80
tblEnergyUse T24NG 0.00 tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Factor tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	1.16	1.10
tblFleetMix FleetMixLandUseSubType General Office Building tblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Factor tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	26.63	25.30
tblFleetMix FleetMixLandUseSubType Hospital tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Fa tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblEnergyUse	T24NG	0.00	13.02
tblFleetMix FleetMixLandUseSubType Medical Office Building E tblFleetMix FleetMixLandUseSubType Medical Office Building Fa tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	General Office Building	Apartments Mid Rise
tblFleetMix FleetMixLandUseSubType Medical Office Building FattblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	Hospital	Apartments Mid Rise
tblFleetMix FleetMixLandUseSubType Office Park tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Enclosed Parking with Elevator
tblFleetMix FleetMixLandUseSubType Research & Development tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	Medical Office Building	Fast Food Restaurant with Drive
tblFleetMix FleetMixLandUseSubType User Defined Commercial tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	Office Park	Thru General Light Industry
tblFleetMix FleetMixLandUseSubType Library	tblFleetMix	FleetMixLandUseSubType	Research & Development	General Office Building
	tblFleetMix	FleetMixLandUseSubType	User Defined Commercial	High Turnover (Sit Down Restaurant)
tblFleetMix FleetMixLandUseSubType Place of Worship	tblFleetMix	* '	Ť	Hospital
	tblFleetMix	FleetMixLandUseSubType	Place of Worship	Library
tblFleetMix FleetMixLandUseSubType University/College (4Yr)	tblFleetMix	FleetMixLandUseSubType	University/College (4Yr)	Medical Office Building

4 of 23 2/3/2017 11:59 AM

tblFleetMix	FleetMixLandUseSubType	General Light Industry	Medical Office Building
tblFleetMix	FleetMixLandUseSubType	Enclosed Parking with Elevator	Office Park
tblFleetMix	FleetMixLandUseSubType	Fast Food Restaurant with Drive Thru	Place of Worship
tblFleetMix	FleetMixLandUseSubType	High Turnover (Sit Down Restaurant)	Regional Shopping Center
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Research & Development
tblFleetMix	FleetMixLandUseSubType	Apartments Mid Rise	Single Family Housing
tblFleetMix	FleetMixLandUseSubType	Single Family Housing	Strip Mall
tblFleetMix	FleetMixLandUseSubType	Regional Shopping Center	University/College (4Yr)
tblFleetMix	FleetMixLandUseSubType	Strip Mall	User Defined Commercial
tblLandUse	BuildingSpaceSquareFeet	385,340.00	385,337.00
tblLandUse	BuildingSpaceSquareFeet	1,120.00	1,118.00
tblLandUse	BuildingSpaceSquareFeet	3,740.00	3,736.00
tblLandUse	BuildingSpaceSquareFeet	35,430.00	35,427.00
tblLandUse	BuildingSpaceSquareFeet	224,320.00	224,317.00
tblLandUse	BuildingSpaceSquareFeet	98,510.00	98,506.00
tblLandUse	BuildingSpaceSquareFeet	0.00	295,148.00
tblLandUse	BuildingSpaceSquareFeet	8,940.00	8,939.00
tblLandUse	BuildingSpaceSquareFeet	26,430.00	26,428.00
tblLandUse	BuildingSpaceSquareFeet	2,210.00	2,215.00
tblLandUse	BuildingSpaceSquareFeet	225,930.00	225,926.00
tblLandUse	BuildingSpaceSquareFeet	2,700.00	2,696.00
tblLandUse	BuildingSpaceSquareFeet	7,090.00	7,086.00
tblLandUse	BuildingSpaceSquareFeet	81,570.00	81,572.00
tblLandUse	LandUseSquareFeet	385,340.00	385,337.00
tblLandUse	LandUseSquareFeet	1,120.00	1,118.00
tblLandUse	LandUseSquareFeet	3,740.00	3,736.00
tblLandUse	LandUseSquareFeet	35,430.00	35,427.00
tblLandUse	LandUseSquareFeet	224,320.00	224,317.00
tblLandUse	LandUseSquareFeet	98,510.00	98,506.00

5 of 23 2/3/2017 11:59 AM

tblLandUse	LandUseSquareFeet	0.00	295,148.00
tblLandUse	LandUseSquareFeet	8,940.00	8,939.00
tblLandUse	LandUseSquareFeet	26,430.00	26,428.00
tblLandUse	LandUseSquareFeet	2,210.00	2,215.00
tblLandUse	LandUseSquareFeet	225,930.00	225,926.00
tblLandUse	LandUseSquareFeet	2,700.00	2,696.00
tblLandUse	LandUseSquareFeet	7,090.00	7,086.00
tblLandUse	LandUseSquareFeet	81,570.00	81,572.00
tblProjectCharacteristics	OperationalYear	2018	2025
tblSolidWaste	SolidWasteGenerationRate	0.00	7.49
tblVehicleTrips	ST_TR	6.39	4.70
tblVehicleTrips	ST_TR	722.03	207.00
tblVehicleTrips	ST_TR	1.32	0.00
tblVehicleTrips	ST_TR	2.46	8.82
tblVehicleTrips	ST_TR	158.37	81.27
tblVehicleTrips	ST_TR	10.18	0.00
tblVehicleTrips	ST_TR	46.55	42.20
tblVehicleTrips	ST_TR	8.96	25.80
tblVehicleTrips	ST_TR	1.64	10.04
tblVehicleTrips	ST_TR	10.37	6.83
tblVehicleTrips	ST_TR	49.97	26.88
tblVehicleTrips	ST_TR	1.90	6.51
tblVehicleTrips	ST_TR	9.91	5.56
tblVehicleTrips	ST_TR	42.04	17.71
tblVehicleTrips	ST_TR	1.30	1.45
tblVehicleTrips	SU_TR	5.86	4.70
tblVehicleTrips	SU_TR	542.72	207.00
tblVehicleTrips	SU_TR	0.68	0.00
tblVehicleTrips	SU_TR	1.05	8.82

tblVehicleTrips	SU_TR	131.84	81.27
tblVehicleTrips	SU_TR	8.91	0.00
tblVehicleTrips	SU_TR	25.49	42.20
tblVehicleTrips	SU_TR	1.55	25.80
tblVehicleTrips	SU_TR	0.76	10.04
tblVehicleTrips	SU_TR	36.63	6.83
tblVehicleTrips	SU_TR	25.24	26.88
tblVehicleTrips	SU_TR	1.11	6.51
tblVehicleTrips	SU_TR	8.62	5.56
tblVehicleTrips	SU_TR	20.43	17.71
tblVehicleTrips	SU_TR	0.00	1.45
tblVehicleTrips	WD_TR	6.65	4.70
tblVehicleTrips	WD_TR	496.12	207.00
tblVehicleTrips	WD_TR	6.97	0.00
tblVehicleTrips	WD_TR	11.03	8.82
tblVehicleTrips	WD_TR	127.15	81.27
tblVehicleTrips	WD_TR	13.22	0.00
tblVehicleTrips	WD_TR	56.24	42.20
tblVehicleTrips	WD_TR	36.13	25.80
tblVehicleTrips	WD_TR	11.42	10.04
tblVehicleTrips	WD_TR	9.11	6.83
tblVehicleTrips	WD_TR	42.70	26.88
tblVehicleTrips	WD_TR	8.11	6.51
tblVehicleTrips	WD_TR	9.52	5.56
tblVehicleTrips	WD_TR	44.32	17.71
tblVehicleTrips	WD_TR	1.71	1.45
tblWater	IndoorWaterUseRate	0.00	48,436,770.74

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	:/yr							MT	/yr		
Area	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893	386.8499	776.3310	1,163.1808	1.1853	0.0263	1,200.637 7
Energy	0.2817	2.4734	1.5083	0.0154		0.1946	0.1946		0.1946	0.1946	0.0000	17,956.99 29	17,956.992 9	0.4117	0.1252	18,004.60 56
Mobile	7.1721	36.5394	94.2366	0.3996	26.8705	0.2875	27.1580	7.4153	0.2670	7.6823	0.0000	37,028.43 12	37,028.431 2	1.6140	0.0000	37,068.78 16
Waste						0.0000	0.0000		0.0000	0.0000	537.3719	0.0000	537.3719	31.7578	0.0000	1,331.316 1
Water						0.0000	0.0000		0.0000	0.0000	111.7205	3,527.450 6	3,639.1710	11.5581	0.2882	4,014.000 7
Total	34.0187	40.1893	139.0367	0.4751	26.8705	4.0714	30.9419	7.4153	4.0509	11.4663	1,035.942 2	59,289.20 57	60,325.147 9	46.5268	0.4397	61,619.34 17

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Area	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893	386.8499	776.3310	1,163.1808	1.1853	0.0263	1,200.637 7
Energy	0.2817	2.4734	1.5083	0.0154		0.1946	0.1946		0.1946	0.1946	0.0000	17,956.99 29	17,956.992 9	0.4117	0.1252	18,004.60 56
Mobile	7.1721	36.5394	94.2366	0.3996	26.8705	0.2875	27.1580	7.4153	0.2670	7.6823	0.0000	37,028.43 12	37,028.431 2	1.6140	0.0000	37,068.78 16
Waste						0.0000	0.0000		0.0000	0.0000	537.3719	0.0000	537.3719	31.7578	0.0000	1,331.316 1
Water						0.0000	0.0000		0.0000	0.0000	111.7205	3,527.450 6	3,639.1710	11.5581	0.2882	4,014.000 7
Total	34.0187	40.1893	139.0367	0.4751	26.8705	4.0714	30.9419	7.4153	4.0509	11.4663	1,035.942 2	59,289.20 57	60,325.147 9	46.5268	0.4397	61,619.34 17

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	7.1721	36.5394	94.2366	0.3996	26.8705	0.2875	27.1580	7.4153	0.2670	7.6823	0.0000	37,028.43 12	37,028.431 2	1.6140	0.0000	37,068.78 16
Unmitigated	7.1721	36.5394	94.2366	0.3996	26.8705	0.2875	27.1580	7.4153	0.2670	7.6823	0.0000	37,028.43 12	37,028.431 2	1.6140	0.0000	37,068.78 16

4.2 Trip Summary Information

	Ave	rage Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	7,449.50	7,449.50	7449.50	25,456,073	25,456,073
Apartments Mid Rise	493.50	493.50	493.50	1,686,364	1,686,364
Enclosed Parking with Elevator	0.00	0.00	0.00		
Fast Food Restaurant with Drive Thru	558.90	558.90	558.90	588,179	588,179
General Light Industry	0.00	0.00	0.00		
General Office Building	3,398.70	3,398.70	3398.70	10,948,776	10,948,776
High Turnover (Sit Down Restaurant)	576.20	576.20	576.20	785,269	785,269
Hospital	0.00	0.00	0.00		
Library	377.27	377.27	377.27	952,483	952,483
Medical Office Building	96.49	96.49	96.49	250,287	250,287
Medical Office Building	914.09	914.09	914.09	2,371,031	2,371,031
Office Park	2,252.17	2,252.17	2252.17	7,609,305	7,609,305
Place of Worship	180.52	180.52	180.52	385,005	385,005
Regional Shopping Center	828.71	828.71	828.71	1,792,371	1,792,371
Research & Development	641.30	641.30	641.30	2,166,729	2,166,729
Single Family Housing	1,456.72	1,456.72	1456.72	4,977,834	4,977,834
Strip Mall	1,444.60	1,444.60	1444.60	2,748,498	2,748,498
University/College (4Yr)	1,196.25	1,196.25	1196.25	3,593,401	3,593,401
User Defined Commercial	0.00	0.00	0.00		
Total	21,864.93	21,864.93	21,864.93	66,311,604	66,311,604

4.3 Trip Type Information

		Miles			Trip %			Trip Purpose	. %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Apartments Mid Rise	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Enclosed Parking with Elevator	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0
Fast Food Restaurant with Drive	16.60	8.40	6.90	2.20	78.80	19.00	29	21	50
General Light Industry	16.60	8.40	6.90	59.00	28.00	13.00	92	5	3
General Office Building	16.60	8.40	6.90	33.00	48.00	19.00	77	19	4
High Turnover (Sit Down	16.60	8.40	6.90	8.50	72.50	19.00	37	20	43
Hospital	16.60	8.40	6.90	64.90	16.10	19.00	73	25	2
Library	16.60	8.40	6.90	52.00	43.00	5.00	44	44	12
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Medical Office Building	16.60	8.40	6.90	29.60	51.40	19.00	60	30	10
Office Park	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Place of Worship	16.60	8.40	6.90	0.00	95.00	5.00	64	25	11
Regional Shopping Center	16.60	8.40	6.90	16.30	64.70	19.00	54	35	11
Research & Development	16.60	8.40	6.90	33.00	48.00	19.00	82	15	3
Single Family Housing	14.70	5.90	8.70	40.20	19.20	40.60	86	11	3
Strip Mall	16.60	8.40	6.90	16.60	64.40	19.00	45	40	15
University/College (4Yr)	16.60	8.40	6.90	6.40	88.60	5.00	91	9	0
User Defined Commercial	16.60	8.40	6.90	0.00	0.00	0.00	0	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Apartments Mid Rise	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Enclosed Parking with Elevator	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Fast Food Restaurant with Drive	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Thru General Light Industry	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
General Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
High Turnover (Sit Down Restaurant)	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Hospital	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Library	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Medical Office Building	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Office Park	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Place of Worship	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Regional Shopping Center	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Research & Development	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Single Family Housing	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
Strip Mall	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
University/College (4Yr)	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825
User Defined Commercial	0.551360	0.042151	0.204257	0.114482	0.014139	0.005783	0.021875	0.035696	0.002143	0.001676	0.004899	0.000713	0.000825

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	15,168.96 18	15,168.961 8	0.3583	0.0741	15,200.00 66
Electricity Unmitigated	M					0.0000	0.0000		0.0000	0.0000	0.0000	15,168.96 18	15,168.961 8	0.3583	0.0741	15,200.00 66
NaturalGas Mitigated	0.2817	2.4734	1.5083	0.0154		0.1946	0.1946		0.1946	0.1946	0.0000	2,788.031 1	2,788.0311	0.0534	0.0511	2,804.599 0
NaturalGas Unmitigated	0.2817	2.4734	1.5083	0.0154		0.1946	0.1946		0.1946	0.1946	0.0000	2,788.031 1	2,788.0311	0.0534	0.0511	2,804.599 0

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
Apartments Mid Rise	1.43528e+ 006	7.7400e- 003	0.0661	0.0281	4.2000e- 004		5.3500e- 003	5.3500e- 003		5.3500e- 003	5.3500e- 003	0.0000	76.5922	76.5922	1.4700e- 003	1.4000e- 003	77.0474
Apartments Mid Rise	2.1666e+0 07	0.1168	0.9983	0.4248	6.3700e- 003		0.0807	0.0807		0.0807	0.0807	0.0000	1,156.1777	1,156.177 7	0.0222	0.0212	1,163.0483
Enclosed Parking with Elevator	2.16211e+ 006	0.0117	0.1060	0.0890	6.4000e- 004		8.0500e- 003	8.0500e- 003		8.0500e- 003	8.0500e- 003	0.0000	115.3785	115.3785	2.2100e- 003	2.1200e- 003	116.0642
Fast Food Restaurant with	616872	3.3300e- 003	0.0302	0.0254	1.8000e- 004		2.3000e- 003	2.3000e- 003		2.3000e- 003	2.3000e- 003	0.0000	32.9186	32.9186	6.3000e- 004	6.0000e- 004	33.1143
General Light Industry	38696	2.1000e- 004	1.9000e- 003	1.5900e- 003	1.0000e- 005		1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	2.0650	2.0650	4.0000e- 005	4.0000e- 005	2.0772
General Office Building	3.83796e+ 006	0.0207	0.1881	0.1580	1.1300e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.8080	204.8080	3.9300e- 003	3.7500e- 003	206.0251
High Turnover (Sit Down Restaurant)	006	8.7400e- 003	0.0795	0.0668	4.8000e- 004		6.0400e- 003	6.0400e- 003		6.0400e- 003	6.0400e- 003	0.0000	86.5213	86.5213	1.6600e- 003	1.5900e- 003	87.0354
Hospital	69629	3.8000e- 004	3.4100e- 003	2.8700e- 003	2.0000e- 005		2.6000e- 004	2.6000e- 004		2.6000e- 004	2.6000e- 004	0.0000	3.7157	3.7157	7.0000e- 005	7.0000e- 005	3.7378
Library	156164	8.4000e- 004	7.6600e- 003	6.4300e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004	0.0000	8.3335	8.3335	1.6000e- 004	1.5000e- 004	8.3831
Medical Office Building	352853	1.9000e- 003	0.0173	0.0145	1.0000e- 004		1.3100e- 003	1.3100e- 003		1.3100e- 003	1.3100e- 003	0.0000	18.8296	18.8296	3.6000e- 004	3.5000e- 004	18.9415

Medical Office	37210.6	2.0000e-	1.8200e-	1.5300e-	1.0000e-	1.4000e-	1.4000e-	,	1.4000e-	1.4000e-	0.0000	1.9857	1.9857	4.0000e-	4.0000e-	1.9975
Office Park	2.09961e+ 006	0.0113	0.1029	0.0865	ΩΩ Γ 6.2000e- 004	ΩΩ4 7.8200e- 003	7.8200e- 003)	7.8200e- 003	Ω04 7.8200e- 003	0.0000	112.0430	112.0430	ΩΩ <i>Ε</i> 2.1500e- 003	003 2.0500e-	112.7089
Place of Worship	461697	2.4900e- 003	0.0226	0.0190	1.4000e- 004	1.7200e- 003	1.7200e- 003		1.7200e- 003	1.7200e- 003	0.0000	24.6379	24.6379	4.7000e- 004	4.5000e- 004	24.7843
Regional Shopping Center	49019.7	2.6000e- 004	2.4000e- 003	2.0200e- 003	1.0000e- 005	1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004	0.0000	2.6159	2.6159	5.0000e- 005	5.0000e- 005	2.6314
Research & Development	1.7209e+0 06	9.2800e- 003	0.0844	0.0709	5.1000e- 004	6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003	0.0000	91.8338	91.8338	1.7600e- 003	1.6800e- 003	92.3795
Single Family Housing	6.70872e+ 006	0.0362	0.3091	0.1315	1.9700e- 003	0.0250	0.0250		0.0250	0.0250	0.0000	358.0028	358.0028	6.8600e- 003	6.5600e- 003	360.1303
Strip Mall	129699	7.0000e- 004	6.3600e- 003	5.3400e- 003	4.0000e- 005	4.8000e- 004	4.8000e- 004		4.8000e- 004	4.8000e- 004	0.0000	6.9213	6.9213	1.3000e- 004	1.3000e- 004	6.9624
University/College (4Yr)	3.92578e+ 006	0.0212	0.1924	0.1617	1.1500e- 003	0.0146	0.0146		0.0146	0.0146	0.0000	209.4944	209.4944	4.0200e- 003	3.8400e- 003	210.7393
User Defined Commercial	5.15624e+ 006	0.0278	0.2528	0.2123	1.5200e- 003	0.0192	0.0192		0.0192	0.0192	0.0000	275.1564	275.1564	5.2700e- 003	5.0400e- 003	276.7915
Total		0.2817	2.4734	1.5083	0.0154	0.1946	0.1946		0.1946	0.1946	0.0000	2,788.0312	2,788.031 2	0.0534	0.0511	2,804.5990

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	Г/уг		
Apartments Mid Rise	1.43528e+ 006	7.7400e- 003	0.0661	0.0281	4.2000e- 004		5.3500e- 003	5.3500e- 003		5.3500e- 003	5.3500e- 003	0.0000	76.5922	76.5922	1.4700e- 003	1.4000e- 003	77.0474
Apartments Mid Rise	2.1666e+0 07	0.1168	0.9983	0.4248	6.3700e- 003		0.0807	0.0807		0.0807	0.0807	0.0000	1,156.1777	1,156.177 7	0.0222	0.0212	1,163.0483
Enclosed Parking with Elevator	2.16211e+ 006	0.0117	0.1060	0.0890	6.4000e- 004		8.0500e- 003	8.0500e- 003	Nananananananananana	8.0500e- 003	8.0500e- 003	0.0000	115.3785	115.3785	2.2100e- 003	2.1200e- 003	116.0642
Fast Food Restaurant with	616872	3.3300e- 003	0.0302	0.0254	1.8000e- 004		2.3000e- 003	2.3000e- 003		2.3000e- 003	2.3000e- 003	0.0000	32.9186	32.9186	6.3000e- 004	6.0000e- 004	33.1143
General Light Industry	38696	2.1000e- 004	1.9000e- 003	1.5900e- 003	1.0000e- 005		1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	2.0650	2.0650	4.0000e- 005	4.0000e- 005	2.0772
General Office Building	3.83796e+ 006	0.0207	0.1881	0.1580	1.1300e- 003		0.0143	0.0143		0.0143	0.0143	0.0000	204.8080	204.8080	3.9300e- 003	3.7500e- 003	206.0251
High Turnover (Sit Down Restaurant)	1.62135e+ 006	8.7400e- 003	0.0795	0.0668	4.8000e- 004		6.0400e- 003	6.0400e- 003		6.0400e- 003	6.0400e- 003	0.0000	86.5213	86.5213	1.6600e- 003	1.5900e- 003	87.0354
Hospital	69629	3.8000e- 004	3.4100e- 003	2.8700e- 003	2.0000e- 005		2.6000e- 004	2.6000e- 004	J	2.6000e- 004	2.6000e- 004	0.0000	3.7157	3.7157	7.0000e- 005	7.0000e- 005	3.7378
Library	156164	8.4000e- 004	7.6600e- 003	6.4300e- 003	5.0000e- 005		5.8000e- 004	5.8000e- 004		5.8000e- 004	5.8000e- 004	0.0000	8.3335	8.3335	1.6000e- 004	1.5000e- 004	8.3831

Medical Office Building	352853	1.9000e- 003	0.0173	0.0145	1.0000e- 004	 1.3100e- 003	1.3100e- 003	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.3100e- 003	1.3100e- 003	0.0000	18.8296	18.8296	3.6000e- 004	3.5000e- 004	18.9415
Medical Office Building	37210.6	2.0000e- 004	1.8200e- 003	1.5300e- 003	1.0000e- 005	1.4000e- 004	1.4000e- 004		1.4000e- 004	1.4000e- 004	0.0000	1.9857	1.9857	4.0000e- 005	4.0000e- 005	1.9975
Office Park	2.09961e+ 006	0.0113	0.1029	0.0865	6.2000e- 004	7.8200e- 003	7.8200e- 003		7.8200e- 003	7.8200e- 003	0.0000	112.0430	112.0430	2.1500e- 003	2.0500e- 003	112.7089
Place of Worship	461697	2.4900e- 003	0.0226	0.0190	1.4000e- 004	 1.7200e- 003	1.7200e- 003		1.7200e- 003	1.7200e- 003	0.0000	24.6379	24.6379	4.7000e- 004	4.5000e- 004	24.7843
Regional Shopping Center	49019.7	2.6000e- 004	2.4000e- 003	2.0200e- 003	1.0000e- 005	 1.8000e- 004	1.8000e- 004		1.8000e- 004	1.8000e- 004	0.0000	2.6159	2.6159	5.0000e- 005	5.0000e- 005	2.6314
Research & Development	1.7209e+0 06	9.2800e- 003	0.0844	0.0709	5.1000e- 004	 6.4100e- 003	6.4100e- 003		6.4100e- 003	6.4100e- 003	0.0000	91.8338	91.8338	1.7600e- 003	1.6800e- 003	92.3795
Single Family Housing	6.70872e+ 006	0.0362	0.3091	0.1315	1.9700e- 003	0.0250	0.0250		0.0250	0.0250	0.0000	358.0028	358.0028	6.8600e- 003	6.5600e- 003	360.1303
Strip Mall	129699	7.0000e- 004	6.3600e- 003	5.3400e- 003	4.0000e- 005	4.8000e- 004	4.8000e- 004)	4.8000e- 004	4.8000e- 004	0.0000	6.9213	6.9213	1.3000e- 004	1.3000e- 004	6.9624
University/College (4Yr)	3.92578e+ 006	0.0212	0.1924	0.1617	1.1500e- 003	0.0146	0.0146)	0.0146	0.0146	0.0000	209.4944	209.4944	4.0200e- 003	3.8400e- 003	210.7393
User Defined Commercial	5.15624e+ 006	0.0278	0.2528	0.2123	1.5200e- 003	0.0192	0.0192		0.0192	0.0192	0.0000	275.1564	275.1564	5.2700e- 003	5.0400e- 003	276.7915
Total		0.2817	2.4734	1.5083	0.0154	0.1946	0.1946		0.1946	0.1946	0.0000	2,788.0312	2,788.031 2	0.0534	0.0511	2,804.5990

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
Apartments Mid Rise	422667	235.4093	5.5600e- 003	1.1500e- 003	235.8911
Apartments Mid Rise	6.38026e+ 006	3,553.5589	0.0839	0.0174	3,560.831 6
Enclosed Parking with Elevator	1.44819e+ 006	806.5837	0.0191	3.9400e- 003	808.2345
Fast Food Restaurant with	118516	66.0089	1.5600e- 003	3.2000e- 004	66.1440
General Light Industry	24431.5	13.6074	3.2000e- 004	7.0000e- 005	13.6352
General Office Building	4.96699e+ 006	2,766.4246	0.0653	0.0135	2,772.086 3

High Turnover (Sit Down Restaurant)	311501	173.4938	4.1000e- 003	8.5000e- 004	173.8489
Hospital	25311.5	14.0975	3.3000e- 004	7.0000e- 005	14.1264
Library	98597.2	54.9148	1.3000e- 003	2.7000e- 004	55.0272
Medical Office Building	456654	254.3387	6.0100e- 003	1.2400e- 003	254.8593
Medical Office Building	48157	26.8216	6.3000e- 004	1.3000e- 004	26.8765
Office Park	3.14941e+ 006	1,754.1006	0.0414	8.5700e- 003	1,757.690 6
Place of Worship	291501		003	004	162.6870
Regional Shopping Center	410964	228.8911	5.4100e- 003	1.1200e- 003	229.3595
Research & Development	1.08652e+ 006	605.1505	0.0143	2.9600e- 003	606.3890
Housing	06	1,196.6316		003	6
Strip Mall	1.08735e+ 006	605.6148	0.0143	2.9600e- 003	
University/College (4Yr)	1.5042e+0 06			003	839.4953
		1,813.1785		8.8600e- 003	
Total		15,168.961 8	0.3583	0.0741	15,200.00 66

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		M	Г/уг	
Apartments Mid Rise	422667	235.4093	5.5600e- 003	1.1500e- 003	235.8911
Apartments Mid Rise	6.38026e+ 006	3,553.5589	0.0839	0.0174	3,560.831 6
Enclosed Parking with Elevator	1.44819e+ 006	806.5837	0.0191	3.9400e- 003	808.2345
Fast Food Restaurant with	118516	66.0089	1.5600e- 003	3.2000e- 004	66.1440

General Light Industry	24431.5	13.6074	3.2000e- 004	7.0000e- 005	13.6352
,					
		2,766.4246	0.0653	0.0135	2,772.086
Building	006				3
High Turnover (Sit	311501	173.4938	4.1000e-	8.5000e-	173.8489
Down Restaurant)			003	004	
Hospital	25311.5	14.0975	3.3000e-	7.0000e-	14.1264
			004	005	
Library	98597.2	54.9148	1.3000e-	2.7000e-	55.0272
			003	004	
Medical Office	456654	254.3387	6.0100e-	1.2400e-	254.8593
Building			003	003	
Medical Office	48157	26.8216	6.3000e-	1.3000e-	26.8765
Building			004	004	
Office Park	3.14941e+	1,754.1006	0.0414	8.5700e-	1,757.690
	006			003	6
Place of Worship	291501	162.3548	3.8300e-	7.9000e-	162.6870
•			003	004	
Regional	410964	228.8911	5.4100e-	1.1200e-	229.3595
Shopping Center			003	003	
Research &		605.1505	0.0143	2.9600e-	606.3890
Development	006			003	
Single Family	2.1485e+0	1,196.6316	0.0283	5.8500e-	1,199.080
Housing	06			003	6
Strip Mall	1.08735e+	605.6148	0.0143	2.9600e-	606.8542
	006			003	
University/College	1.5042e+0	837.7807	0.0198	4.0900e-	839.4953
(4Yr)	06			003	
User Defined	3.25548e+	1,813.1785	0.0428	8.8600e-	1,816.889
Commercial	006			003	4
Total		15,168.961	0.3583	0.0741	15,200.00
		8			66

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons	s/yr							MT	/yr		
Mitigated	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893			1,163.1808		0.0263	1,200.637 7
Unmitigated	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893	386.8499	776.3310	1,163.1808	1.1853	0.0263	1,200.637 7

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	1.3075					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	12.7218					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	11.9292	0.9446	23.1518	0.0591		3.4776	3.4776		3.4776	3.4776	386.8499	743.3925	1,130.2424	1.1537	0.0263	1,166.908 4
Landscaping	0.6065	0.2319	20.1399	1.0700e- 003		0.1117	0.1117		0.1117	0.1117	0.0000	32.9385	32.9385	0.0316	0.0000	33.7293
Total	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893	386.8499	776.3310	1,163.1808	1.1853	0.0263	1,200.637 7

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tons	s/yr							MT	/yr		
Architectural Coating	1.3075					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	12.7218					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	11.9292	0.9446	23.1518	0.0591		3.4776	3.4776		3.4776	3.4776	386.8499	743.3925	1,130.2424	1.1537	0.0263	1,166.908 4
Landscaping	0.6065	0.2319	20.1399	1.0700e- 003		0.1117	0.1117		0.1117	0.1117	0.0000	32.9385	32.9385	0.0316	0.0000	33.7293
Total	26.5649	1.1765	43.2918	0.0601		3.5893	3.5893		3.5893	3.5893	386.8499	776.3310	1,163.1808	1.1853	0.0263	1,200.637 7

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		MT	/yr	
Mitigated	3,639.1710	11.5581	0.2882	4,014.0007
Unmitigated	3,639.1710	11.5581	0.2882	4,014.0007

7.2 Water by Land Use

Unmitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M	Γ/yr	
Apartments Mid Rise	110.11 / 69.4174	1,263.0182	3.6170	0.0907	1,380.476 5
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Fast Food Restaurant with	0.819541 / 0.0523111	6.5272	0.0269	6.6000e- 004	7.3955
General Light Industry	0.511062 / 0	3.8685	0.0167	4.1000e- 004	4.4096
General Office Building	68.4879 / 41.9765	778.1597	2.2496	0.0564	851.2029
High Turnover (Sit Down Restaurant)	2.15205 / 0.137365	17.1399	0.0705	1.7400e- 003	19.4201
Hospital	0.140538 / 0.0267692	1.2294	4.6100e- 003	1.1000e- 004	1.3786
Library	0.279723 / 0.437515	4.8246	9.2300e- 003	2.4000e- 004	5.1263
Medical Office Building	4.91507 / 0.936204	42.9975	0.1611	3.9800e- 003	48.2132
Office Park	39.8692 / 24.436	452.9942	1.3095	0.0328	495.5152
Place of Worship	0.826966 / 1.29346	14.2634	0.0273	7.0000e- 004	15.1553
Regional Shopping Center	2.28366 / 1.39966	25.9469	0.0750	1.8800e- 003	28.3824
Research & Development	48.4368 / 0	366.6397	1.5866	0.0390	417.9221
Single Family Housing	17.0704 / 10.7617	195.8052	0.5607	0.0141	214.0147
Strip Mall	6.0421 / 3.70322	68.6503	0.1985	4.9700e- 003	75.0943
University/College (4Yr)	1.76641 / 2.76284	30.4668	0.0583	1.5100e- 003	32.3719
User Defined Commercial	48.4368 / 0	366.6397	1.5866	0.0390	417.9221
Total		3,639.1710	11.5581	0.2882	4,014.000 7

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		M٦	Г/уг	
Apartments Mid Rise	110.11 / 69.4174	1,263.0182	3.6170	0.0907	1,380.476 5
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Fast Food Restaurant with	0.819541 / 0.0523111	6.5272	0.0269	6.6000e- 004	7.3955
General Light Industry	0.511062 / 0	3.8685	0.0167	4.1000e- 004	4.4096
General Office Building	68.4879 / 41.9765	778.1597	2.2496	0.0564	851.2029
High Turnover (Sit Down Restaurant)	2.15205 / 0.137365	17.1399	0.0705	1.7400e- 003	19.4201
Hospital	0.140538 / 0.0267692	1.2294	4.6100e- 003	1.1000e- 004	1.3786
Library	0.279723 / 0.437515	4.8246	9.2300e- 003	2.4000e- 004	5.1263
Medical Office Building	4.91507 / 0.936204	42.9975	0.1611	3.9800e- 003	48.2132
Office Park	39.8692 / 24.436	452.9942	1.3095	0.0328	495.5152
Place of Worship	0.826966 / 1.29346	14.2634	0.0273	7.0000e- 004	15.1553
Regional Shopping Center	2.28366 / 1.39966	25.9469	0.0750	1.8800e- 003	28.3824
Research & Development	48.4368 / 0	366.6397	1.5866	0.0390	417.9221
Single Family Housing	17.0704 / 10.7617	195.8052	0.5607	0.0141	214.0147
Strip Mall	6.0421 / 3.70322	68.6503	0.1985	4.9700e- 003	75.0943
University/College (4Yr)	1.76641 / 2.76284	30.4668	0.0583	1.5100e- 003	32.3719
User Defined Commercial	48.4368 / 0	366.6397	1.5866	0.0390	417.9221
Total		3,639.1710	11.5581	0.2882	4,014.000 7

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e							
	MT/yr										
Mitigated	537.3719	31.7578	0.0000	1,331.3161							
Unmitigated	537.3719	31.7578	0.0000	1,331.3161							

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Г/уг	
Apartments Mid Rise	777.4	157.8052	9.3260	0.0000	390.9556
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Fast Food Restaurant with	31.1	6.3130	0.3731	0.0000	15.6402
General Light Industry	2.74	0.5562	0.0329	0.0000	1.3780
General Office Building	358.37	72.7459	4.2992	0.0000	180.2248
High Turnover (Sit Down Restaurant)	84.37	17.1264	1.0121	0.0000	42.4298
Hospital	12.1	2.4562	0.1452	0.0000	6.0851
Library	8.23	1.6706	0.0987	0.0000	4.1389
Medical Office Building	423.04	85.8733	5.0750	0.0000	212.7475
Office Park	208.62	42.3480	2.5027	0.0000	104.9153
Place of Worship	150.65	30.5806	1.8073	0.0000	75.7621
Regional Shopping Center	32.37	6.5708	0.3883	0.0000	16.2789
Research & Development	7.49	1.5204	0.0899	0.0000	3.7667
Single Family Housing	307.09	62.3365	3.6840	0.0000	154.4360
Strip Mall	85.65	17.3862	1.0275	0.0000	43.0735
University/College (4Yr)	150.56	30.5623	1.8062	0.0000	75.7169
User Defined Commercial	7.49	1.5204	0.0899	0.0000	3.7667
Total		537.3719	31.7578	0.0000	1,331.316 1

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		M	Γ/yr	
				,	
Apartments Mid Rise	777.4	157.8052	9.3260	0.0000	390.9556
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Fast Food Restaurant with	31.1	6.3130	0.3731	0.0000	15.6402
General Light Industry	2.74	0.5562	0.0329	0.0000	1.3780
General Office Building	358.37	72.7459	4.2992	0.0000	180.2248
High Turnover (Sit Down Restaurant)	84.37	17.1264	1.0121	0.0000	42.4298
Hospital	12.1	2.4562	0.1452	0.0000	6.0851
Library	8.23	1.6706	0.0987	0.0000	4.1389
Medical Office Building	423.04	85.8733	5.0750	0.0000	212.7475
Office Park	208.62	42.3480	2.5027	0.0000	104.9153
Place of Worship	150.65	30.5806	1.8073	0.0000	75.7621
Regional Shopping Center	32.37	6.5708	0.3883	0.0000	16.2789
Research & Development	7.49	1.5204	0.0899	0.0000	3.7667
Single Family Housing	307.09	62.3365	3.6840	0.0000	154.4360
Strip Mall	85.65	17.3862	1.0275	0.0000	43.0735
University/College (4Yr)	150.56	30.5623	1.8062	0.0000	75.7169
User Defined Commercial	7.49	1.5204	0.0899	0.0000	3.7667
Total		537.3719	31.7578	0.0000	1,331.316 1

Willowbrook Specific Plan- Hospital Scenario (LST) - South Coast Air Basin, Winter

Willowbrook Specific Plan- Hospital Scenario (LST) South Coast Air Basin, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Hospital	312.00	1000sqft	7.16	312,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	9			Operational Year	2019
Utility Company	Los Angeles Depa	artment of Water & Power			
CO2 Intensity (lb/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity 0 (Ib/MWhr)	.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase -

Off-road Equipment -

Vehicle Trips -

Table Name	Column Name	Default Value	New Value
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	18.00	10.00
tblTripsAndVMT	WorkerTripNumber	15.00	10.00
tblTripsAndVMT	WorkerTripNumber	23.00	18.00
tblTripsAndVMT	WorkerTripNumber	13.00	5.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day												lb/c	lay		
Area	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Energy	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6
Mobile	9.2035	48.6894	127.9076	0.4169	33.9871	0.4920	34.4790	9.0939	0.4629	9.5568		42,320.09 32	42,320.093 2	2.2665		42,376.75 52
Total	15.9838	54.1402	132.5182	0.4496	33.9871	0.9063	34.8934	9.0939	0.8773	9.9712		48,860.84 80	48,860.848 0	2.3920	0.1199	48,956.38 27

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhausi PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	lay		
Area	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Energy	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.55 ⁴
Mobile	9.2035	48.6894	127.9076	0.4169	33.9871	0.4920	34.4790	9.0939	0.4629	9.5568		42,320.09 32	42,320.093 2	2.2665		42,376.75 52
Total	15.9838	54.1402	132.5182	0.4496	33.9871	0.9063	34.8934	9.0939	0.8773	9.9712		48,860.84 80	48,860.848 0	2.3920	0.1199	48,956.38 27
	ROG	N	Ox C	co s	_	·			_		M2.5 Bio- otal	CO2 NBio	-CO2 Total	CO2 CI	14 N	20 C
Percent Reduction	0.00	0.	.00 0.	.00 0	.00 0.	00 0	.00 0	.00 (0.00	0.00 0	.00 0.	00 0.0	0.0	0.0	00 0.	00 0.

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	lay		
Mitigated	9.2035	48.6894	127.9076	0.4169	33.9871	0.4920	34.4790	9.0939	0.4629	9.5568		42,320.09 32	42,320.093 2	2.2665		42,376.75 52
Unmitigated	9.2035	48.6894	127.9076	0.4169	33.9871	0.4920	34.4790	9.0939	0.4629	9.5568		42,320.09 32	42,320.093 2	2.2665		42,376.75 52

4.2 Trip Summary Information

	Aver	age Daily Trip F	Rate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Hospital	4,124.64	3,176.16	2779.92	14,720,523	14,720,523
Total	4,124.64	3,176.16	2,779.92	14,720,523	14,720,523

4.3 Trip Type Information

		Miles			Trip %		Trip Purpose %			
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C- H-S or C-C H-O or C-NW			Primary	Diverted	Pass-by	
Hospital	16.60	8.40	6.90	64.90	16.10	19.00	73	25	2	

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Hospital	0.548893	0.044275		0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
NaturalGas Mitigated	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6
NaturalGas Unmitigated	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Hospital	55595.8	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546
Total		0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
Hospital	55.5958	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546
Total		0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/da	ау							lb/c	lay		
Mitigated	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Unmitigated	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	6.1776					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.0500e- 003	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Total	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	6.1776					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.0500e- 003	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Total	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

Willowbrook Specific Plan- Hospital Scenario (LST) - South Coast Air Basin, Summer

Willowbrook Specific Plan- Hospital Scenario (LST) South Coast Air Basin, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Hospital	312.00	1000sqft	7.16	312,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	31
Climate Zone	9			Operational Year	2019
Utility Company	Los Angeles Departmen	t of Water & Power			
CO2 Intensity (lb/MWhr)	1227.89	CH4 Intensity (lb/MWhr)	0.029	N2O Intensity (lb/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use -

Construction Phase -

Off-road Equipment -

Vehicle Trips -

Table Name	Column Name	Default Value	New Value
tblProjectCharacteristics	ConstructionPhaseStartDate	2/6/2017 2:32:22 PM	2/6/2017 12:00:00 AM
tblProjectCharacteristics	OperationalYear	2018	2019
tblTripsAndVMT	WorkerTripNumber	18.00	10.00
tblTripsAndVMT	WorkerTripNumber	15.00	10.00
tblTripsAndVMT	WorkerTripNumber	23.00	18.00
tblTripsAndVMT	WorkerTripNumber	13.00	5.00

2.0 Emissions Summary

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/c	lay		
Area	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Energy	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6
Mobile	9.5358	47.2851	136.3961	0.4397	33.9871	0.4891	34.4762	9.0939	0.4602	9.5541		44,606.32 21	44,606.322 1	2.2855		44,663.45 95
Total	16.3160	52.7360	141.0067	0.4724	33.9871	0.9035	34.8906	9.0939	0.8746	9.9685		51,147.07 69	51,147.076 9	2.4110	0.1199	51,243.08 70

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaus PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Area	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e 004	- 1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Energy	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.55 ⁴
Mobile	9.5358	47.2851	136.3961	0.4397	33.9871	0.4891	34.4762	9.0939	0.4602	9.5541		44,606.32 21	44,606.322 1	2.2855		44,663.45 95
Total	16.3160	52.7360	141.0067	0.4724	33.9871	0.9035	34.8906	9.0939	0.8746	9.9685		51,147.07 69	51,147.076 9	2.4110	0.1199	51,243.08 70
	ROG	N	Ox C	co s	_				_		M2.5 Bio otal	- CO2 NBio	-CO2 Total	CO2 CF	14 N	20 C
Percent Reduction	0.00	0	.00 0	.00 0	.00 0.	.00 0	.00 0.	00	0.00	0.00	0.00	.00 0.	00 0.0	0.0	00 0.	00 0

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/d	ay		
Mitigated	9.5358	47.2851	136.3961	0.4397	33.9871	0.4891	34.4762	9.0939	0.4602	9.5541		44,606.32 21	44,606.322 1	2.2855		44,663.45 95
Unmitigated	9.5358	47.2851	136.3961	0.4397	33.9871	0.4891	34.4762	9.0939	0.4602	9.5541		44,606.32 21	44,606.322 1	2.2855		44,663.45 95

4.2 Trip Summary Information

	Aver	age Daily Trip R	late	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Hospital	4,124.64	3,176.16	2779.92	14,720,523	14,720,523
Total	4,124.64	3,176.16	2,779.92	14,720,523	14,720,523

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Hospital	16.60	8.40	6.90	64.90	16.10	19.00	73	25	2

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Hospital	0.548893	0.044275	0.199565	0.124385	0.017503	0.005874	0.020174	0.028962	0.001990	0.002015	0.004673	0.000702	0.000989

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	ay							lb/d	ay		
NaturalGas Mitigated	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6
NaturalGas Unmitigated	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.686 5	6,540.6865	0.1254	0.1199	6,579.554 6

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/d	day		
Hospital	55595.8	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546
Total		0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/c	day							lb/d	day		
Hospital	55.5958	0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546
Total		0.5996	5.4506	4.5785	0.0327		0.4142	0.4142		0.4142	0.4142		6,540.6865	6,540.686 5	0.1254	0.1199	6,579.5546

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day										lb/c	lay			
Mitigated	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Unmitigated	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

6.2 Area by SubCategory

Unmitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	6.1776					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.0500e- 003	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Total	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	ay							lb/c	lay		
Architectural Coating	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	6.1776					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	3.0500e- 003	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729
Total	6.1807	3.0000e- 004	0.0322	0.0000		1.2000e- 004	1.2000e- 004		1.2000e- 004	1.2000e- 004		0.0683	0.0683	1.9000e- 004		0.0729

Air Quality Assessment

Title 24 Energy Savings Adjustment

Project Energy Use Factors Adjustment

Nonresidential % savings over Title 24 (2013) = Residential % savings over Title 24 (2013) =

5.0%
28.0%

	T24 Electricity	NT24 Electricity	Lighting Electricity	T24 NG	NT24 NG
Title 24 (2013 - CalEEMod Default)					
Project Nonresidential Land Uses					
Enclosed Parking with Elevator	3.92	0.19	2.63	10.07	-
Fast Food Restaurant with Drive thru	8.5	28.16	8.13	43.19	187.78
General Light Industry (Fire Station)	2.36	5.75	3.2	13.71	4.45
General Office Building	4.82	4.62	3.88	10.07	0.39
High Turnover (Sit Down Restaurant)	8.5	28.16	8.13	43.19	187.78
Hospital	10.44	7.55	5.44	55.22	9.82
Library	2.36	5.75	3.2	13.71	4.45
Medical Office Building	4.82	4.62	3.88	10.07	0.39
Office Park	5.89	4.79	3.84	9.65	0.19
Place of Worship	2.36	5.75	3.2	13.71	4.45
Regional Shopping Center	4.2	3.23	6.43	1.16	0.49
Research and Development	2.36	5.75	3.20	13.71	4.45
Strip Mall	4.20	3.23	6.43	1.16	0.49
University/College (4yr)	3.18	3.59	3.48	26.63	0.59
User Defined Commercial (Institution)	2.36	5.75	3.20	13.71	4.45
Project Residential Land Uses					
Apartment Mid Rise	297.91	3,277.06	741.44	10,118.57	6,384.00
Single Family Housing	502.24	6,680.41	1,608.84	26,696.95	6,384.00
Title 24 (2016) Project Nonresidential Land Uses					
Enclosed Parking with Elevator	3.72	0.19	2.50	9.57	_
Fast Food Restaurant with Drive thru	8.08	28.16	7.72	41.03	187.78
General Light Industry (Fire Station)	2.24	5.75	3.04	13.02	4.45
General Office Building	4.58	4.62	3.69	9.57	0.39
High Turnover (Sit Down Restaurant)	8.08	28.16	7.72	41.03	187.78
Hospital	9.92	7.55	5.17	52.46	9.82
Library	2.24	5.75	3.04	13.02	4.45
Medical Office Building	4.58	4.62	3.69	9.57	0.39
Office Park	5.60	4.79	3.65	9.17	0.19
Place of Worship	2.24	5.75	3.04	13.02	4.45
Regional Shopping Center	3.99	3.23	6.11	1.10	0.49
Research and Development	2.24	5.75	3.04	13.02	4.45
Strip Mall	3.99	3.23	6.11	1.10	0.49
University/College (4yr)	3.99	3.59	3.31	25.30	0.49
User Defined Commercial (Institution)	2.24	5.75	3.04	13.02	4.45
0	2.24	3.75	3.04	15.02	4.45
Project Residential Land Uses					
Apartment Mid Rise	214.50	3,277.06	533.84	7,285.37	6,384.00
Single Family Housing	361.61	6,680.41	1,158.36	19,221.80	6,384.00

Sources:

1 of 1 2/9/2017 1:06 PM

California Emissions Estimator Model (CalEEMod), version 2016.3.1.

California Energy Commission, Adoption Hearing, 2016 Building Energy Efficiency Standards, June 10, 2015. Available:

 $http://www.energy.ca.gov/title 24/2016 standards/rule making/documents/2015-06-10_hearing/2015-06-10_Adoption_Hearing_Presentation.pdf.\ Accessed December 2016.$

Appendix C Cultural Resources Correspondence and Record Searches

C-1 SB18 Consultation Correspondence

Local Government Tribal Consultation List Request

Native American Heritage Commission

1550 Harbor Blvd, Suite 100 West Sacramento, CA 95691 916-373-3710 916-373-5471 – Fax nahc@nahc.ca.gov

☐ CEQA Tribal Consultation List (AB 52) – Per Public Resources Code § 21080.3.1, subs. (b), (d), (e) and 21080.3.2 ☐ General Plan (SB 18) - Per Government Code § 65352.3.
General Plan (SB 18) - Per Government Code § 65352.3.
Local Action Type: General Plan General Plan Element General Plan Amendment Specific Plan Specific Plan Amendment Pre-planning Outreach Activity
Required Information
Project Title:
Local Government/Lead Agency:
Contact Person:
Street Address:
City: Zip:
Phone: Fax:
Email:
Specific Area Subject to Proposed Action
County: City/Community:
Project Description:
Additional Request
☐ Sacred Lands File Search - Required Information:
USGS Quadrangle Name(s):

Range:______ Section(s):_____

Township:_____

NATIVE AMERICAN HERITAGE COMMISSION

1550 Harbor Blvd., Suite 100 West Sacramento, CA 95691 (916) 373-3710 (916) 373-5471 - Fax

February 2, 2016

Leon Freeman
Los Angeles County Department of Regional Planning

Sent via e-mail: lfreeman@planning.lacounty.gov

RE: Proposed Willowbrook Transit Oriented District Specific Plan Project, Community of Willowbrook; South Gate USGS Quadrangle, Los Angeles County, California

Dear Mr. Freeman:

Government Code §65352.3 requires local governments to consult with California Native American tribes identified by the Native American Heritage Commission (NAHC) for the purpose of avoiding, protecting, and/or mitigating impacts to cultural places in creating or amending general plans, including specific plans. Attached is a consultation list of tribes traditionally and culturally affiliated with the area that may have cultural places located within the boundaries of the project referenced above.

As a part of consultation, the NAHC recommends that local governments conduct record searches through the NAHC and California Historic Resources Information System (CHRIS) to determine if any cultural places are located within the area(s) affected by the proposed action. A record search of the Native American Heritage Commission (NAHC) Sacred Lands File was completed for the area of potential project effect (APE) referenced above with negative results. Please note that the absence of specific site information in the Sacred Lands File does not indicate the absence of Native American cultural resources in any APE. Records maintained by the NAHC and CHRIS are not exhaustive, and a negative response to these searches does not preclude the existence of a cultural place. A tribe may be the only source of information regarding the existence of tribal cultural resources.

The list should provide a starting place to locate areas of potential adverse impact within the APE. I suggest you contact all of those listed, if they cannot supply information, they might recommend others with specific knowledge. By contacting all those on the list, your organization will be better able to respond to claims of failure to consult. If a response has not been received within two weeks of notification, the NAHC requests that you follow-up with a telephone call to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from tribes on the attached list, please notify me. With your assistance we are able to assure that our consultation list contains current information.

If you have any questions, please contact me at my email address: gayle.totton@nahc.ca.gov.

Sincerely,

aye Totton, M.A., PhD.

Associate Governmental Program Analyst

Native American Heritage Commission Tribal Consultation List Los Angeles County 2/2/2017

Gabrieleno Band of Mission Indians - Kizh Nation

Andrew Salas, Chariperson P.O. Box 393

Gabrieleno

Covina, CA, 91723 Phone: (626) 926 - 4131 gabrielenoindians@yahoo.com

Gabrieleno/Tongva San Gabriel Band of Mission Indians

Anthony Morales, Chairperson

P.O. Box 693

Gabrieleno

San Gabriel, CA, 91778 Phone: (626) 483 - 3564 Fax: (626)286-1262 GTTribalcouncil@aol.com

Gabrielino /Tongva Nation

Sandonne Goad, Chairperson 106 1/2 Judge John Aiso St.,

Gabrielino

#231

Los Angeles, CA, 90012 Phone: (951)807-0479

sgoad@gabrielino-tongva.com

Gabrielino Tongva Indians of California Tribal Council Robert Dorame, Chairperson

P.O. Box 490

Gabrielino

Bellflower, CA, 90707 Phone: (562) 761 - 6417 Fax: (562) 761-6417

Fax: (562) 761-6417 gtongva@gmail.com

Gabrielino-Tongva Tribe

Linda Candelaria, Co-Chairperson 1999 Avenue of the Stars, Suite Gabrielino


1100

Los Angeles, CA, 90067 Phone: (626) 676 - 1184

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resources Code and Section 6097.98 of the Public Resources Code and Section 5097.98 of the Public Resources Code.

This list is only applicable for consultation with Native American tribes under Government Code Sections 65352.3 and 65362.4 et seq for the proposed Willowbrook Transit Oriented Specific Plan Project, Los Angeles County.

February 2, 2017

Linda Candelario, Co-Chairperson Gabrielino-Tongva Tribe 1999 Avenue of the Stars, Suite 1100 Los Angeles, CA 90067

SUBJECT: SENATE BILL (SB) 18 CONSULTATION (GOVERNMENT CODE §65352.3)

WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN

PROJECT NO. R2015-02007-(2)

RSPT201500001 RADVT201500004 RZCT201500006 RENVT201500136

RPAT201500005

The Native American Heritage Commission (NAHC) has identified your tribe as one with traditional lands or cultural places located within the proposed boundary of the above-referenced project. Because this project requires the amendment of the General Plan and adoption of a Specific Plan, it is subject to the SB 18 Tribal Consultation requirements (Government Code Section 65352.3). This letter serves as a formal notification and invitation to consult with the County of Los Angeles on the proposed project identified above.

The project area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east. The project area is bounded by Compton Avenue, Imperial Highway, Mona Boulevard and 121st/122nd Streets. A map depicting the project site location is enclosed for your reference.

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

A Sacred Lands File Search conducted by the NAHC <u>did not</u> find the presence of Native American cultural resources sites within the area of potential effect (APE) of the project area. In addition, Native American resources <u>are not</u> recorded in close proximity to the project site. The NAHC has also provided the Los Angeles County Department of Regional Planning with a list of Native

CC.103116

SB 18 Consultation Page 2 of 2

American Tribes with traditional lands or cultural places located within the proposed project site. This letter was sent to each of the listed tribes.

Your participation in this local planning process is important. Pursuant to Government Code Section 65352.3(a)(2), you have 90 days from the receipt of this letter to request consultation with the County of Los Angeles. Please submit your request to the contact information listed below.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner

Community Studies West Section

Encl: Map of Project Location

Notice of Preparation

CC: Gabrieleno Band of Mission Indians – Kizh Nation; Gabrieleno/Tongva San Gabriel Band of Mission Indians; Gabrielino/Tongva Nation; Gabrielino Tongva Indians of California Tribal Council

AG:LF

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan* & the *Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- · Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

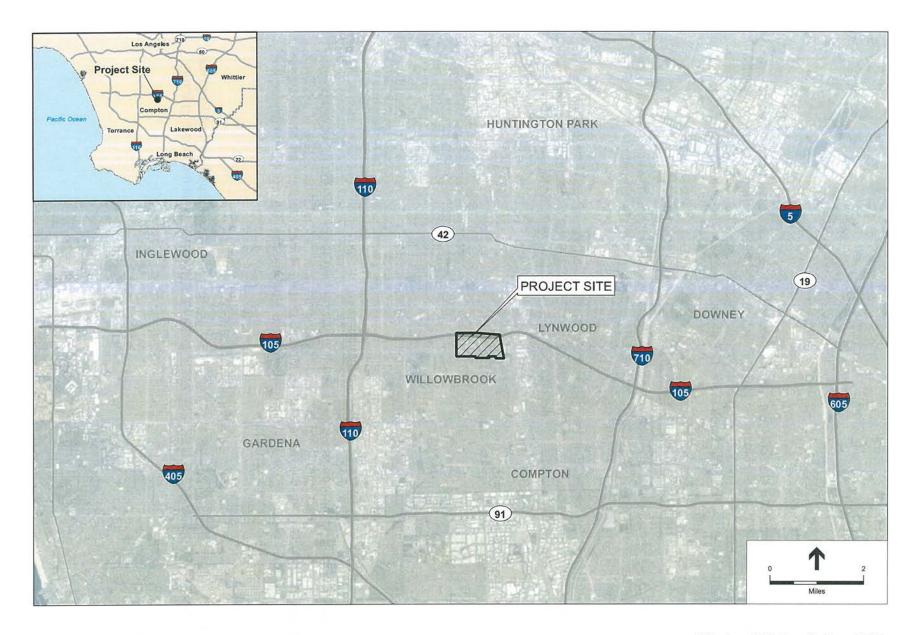
The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015, from 10:00 am to 12:00 pm.**

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

Planning for the Challenges Ahead

February 2, 2017

Robert Dorame, Chairperson Gabrielino Tongva Indians of California Tribal Council PO Box 490 Bellflower, CA 90707

SUBJECT: SENATE BILL (SB) 18 CONSULTATION (GOVERNMENT CODE §65352.3)

WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN

PROJECT NO. R2015-02007-(2)

RSPT201500001

RZCT201500006

RADVT201500004

RENVT201500136

RPAT201500005

The Native American Heritage Commission (NAHC) has identified your tribe as one with traditional lands or cultural places located within the proposed boundary of the above-referenced project. Because this project requires the amendment of the General Plan and adoption of a Specific Plan, it is subject to the SB 18 Tribal Consultation requirements (Government Code Section 65352.3). This letter serves as a formal notification and invitation to consult with the County of Los Angeles on the proposed project identified above.

The project area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east. The project area is bounded by Compton Avenue, Imperial Highway, Mona Boulevard and 121st/122nd Streets. A map depicting the project site location is enclosed for your reference.

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

A Sacred Lands File Search conducted by the NAHC <u>did not</u> find the presence of Native American cultural resources sites within the area of potential effect (APE) of the project area. In addition, Native American resources <u>are not</u> recorded in close proximity to the project site. The NAHC has also provided the Los Angeles County Department of Regional Planning with a list of Native

CC.103116

SB 18 Consultation Page 2 of 2

American Tribes with traditional lands or cultural places located within the proposed project site. This letter was sent to each of the listed tribes.

Your participation in this local planning process is important. Pursuant to Government Code Section 65352.3(a)(2), you have 90 days from the receipt of this letter to request consultation with the County of Los Angeles. Please submit your request to the contact information listed below.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner

Community Studies West Section

Encl: Map of Project Location

Notice of Preparation

CC: Gabrieleno Band of Mission Indians – Kizh Nation; Gabrieleno/Tongva San Gabriel Band of Mission Indians; Gabrielino/Tongva Nation; Gabrielino-Tongva Tribe

AG:LF

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan* & the *Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

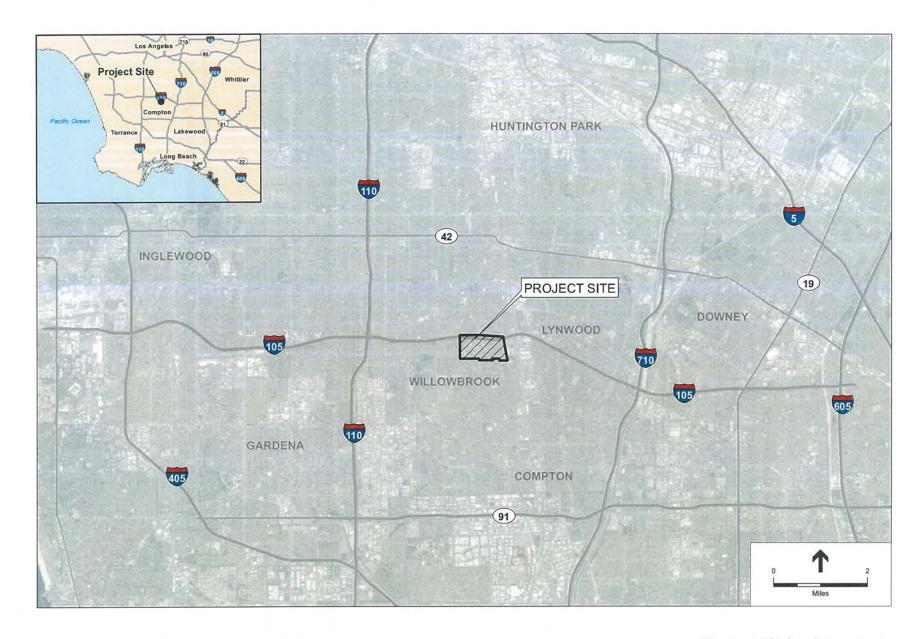
The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015, from 10:00 am to 12:00 pm.**

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

Planning for the Challenges Ahead

February 2, 2017

Sandonne Goad, Chairperson Gabrielino/Tongva Nation 106 ½ Judge John Also Street #231 Los Angeles, CA 90012

SUBJECT: SENATE BILL (SB) 18 CONSULTATION (GOVERNMENT CODE §65352.3)

WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN

PROJECT NO. R2015-02007-(2)

RSPT201500001 RADVT201500004 RZCT201500006 RENVT201500136

RPAT201500005

The Native American Heritage Commission (NAHC) has identified your tribe as one with traditional lands or cultural places located within the proposed boundary of the above-referenced project. Because this project requires the amendment of the General Plan and adoption of a Specific Plan, it is subject to the SB 18 Tribal Consultation requirements (Government Code Section 65352.3). This letter serves as a formal notification and invitation to consult with the County of Los Angeles on the proposed project identified above.

The project area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east. The project area is bounded by Compton Avenue, Imperial Highway, Mona Boulevard and 121st/122nd Streets. A map depicting the project site location is enclosed for your reference.

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

A Sacred Lands File Search conducted by the NAHC <u>did not</u> find the presence of Native American cultural resources sites within the area of potential effect (APE) of the project area. In addition, Native American resources <u>are not</u> recorded in close proximity to the project site. The NAHC has also provided the Los Angeles County Department of Regional Planning with a list of Native

CC.103116

SB 18 Consultation Page 2 of 2

American Tribes with traditional lands or cultural places located within the proposed project site. This letter was sent to each of the listed tribes.

Your participation in this local planning process is important. Pursuant to Government Code Section 65352.3(a)(2), you have 90 days from the receipt of this letter to request consultation with the County of Los Angeles. Please submit your request to the contact information listed below.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

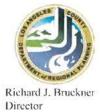
Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner

Community Studies West Section

Encl: Map of Project Location


Notice of Preparation

CC: Gabrieleno Band of Mission Indians – Kizh Nation; Gabrieleno/Tongva San Gabriel Band of Mission Indians; Gabrielino Tongva Indians of California Tribal Council; Gabrielino-Tongva Tribe

AG:LF

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE: October 29, 2015

PROJECT TITLE: Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION: The Specific Plan area is located in the unincorporated community

of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

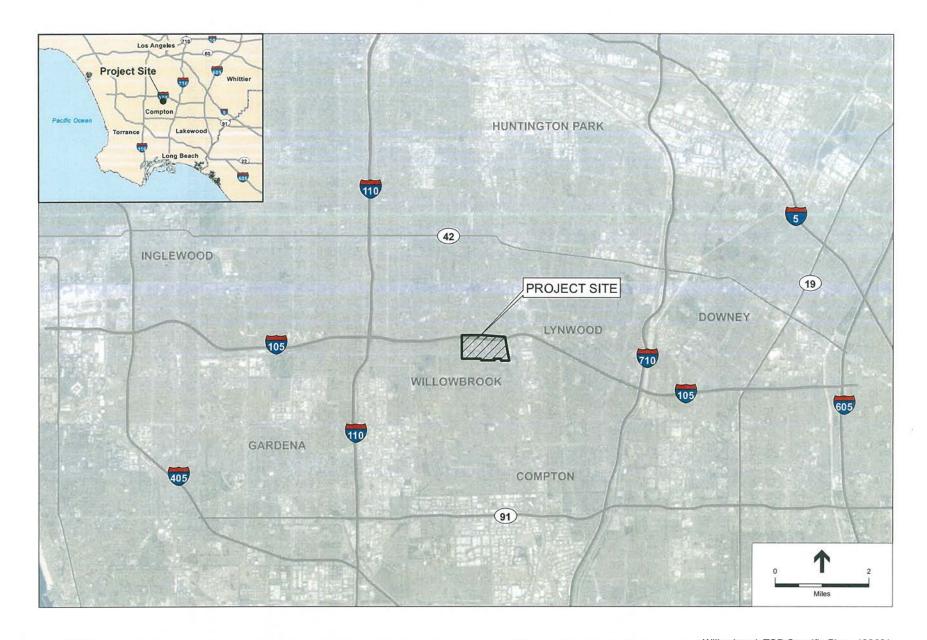
The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015, from 10:00 am to 12:00 pm.**

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

Richard J. Bruckner Director

Planning for the Challenges Ahead

February 2, 2017

Anthony Morales, Chairperson Gabrieleno/Tongva San Gabriel Band of Mission Indians PO Box 693 San Gabriel, CA 91778

SUBJECT: SENATE BILL (SB) 18 CONSULTATION (GOVERNMENT CODE §65352.3)

WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN

PROJECT NO. R2015-02007-(2)

RSPT201500001 RADVT201500004 RZCT201500006

RPAT201500005

RENVT201500136

The Native American Heritage Commission (NAHC) has identified your tribe as one with traditional lands or cultural places located within the proposed boundary of the abovereferenced project. Because this project requires the amendment of the General Plan and adoption of a Specific Plan, it is subject to the SB 18 Tribal Consultation requirements (Government Code Section 65352.3). This letter serves as a formal notification and invitation to consult with the County of Los Angeles on the proposed project identified above.

The project area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east. The project area is bounded by Compton Avenue, Imperial Highway, Mona Boulevard and 121st/122nd Streets, A map depicting the project site location is enclosed for your reference.

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

A Sacred Lands File Search conducted by the NAHC did not find the presence of Native American cultural resources sites within the area of potential effect (APE) of the project area. In addition, Native American resources are not recorded in close proximity to the project site. The NAHC has also provided the Los Angeles County Department of Regional Planning with a list of Native

CC 103116

SB 18 Consultation Page **2** of **2**

American Tribes with traditional lands or cultural places located within the proposed project site. This letter was sent to each of the listed tribes.

Your participation in this local planning process is important. Pursuant to Government Code Section 65352.3(a)(2), you have 90 days from the receipt of this letter to request consultation with the County of Los Angeles. Please submit your request to the contact information listed below.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner

Community Studies West Section

Encl: Map of Project Location

Notice of Preparation

CC: Gabrieleno Band of Mission Indians – Kizh Nation; Gabrielino/Tongva Nation; Gabrielino Tongva Indians of California Tribal Council; Gabrielino-Tongva Tribe

AG:LF

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan* & the *Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015**, from 10:00 am to 12:00 pm.

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

Planning for the Challenges Ahead

February 2, 2017

Andrew Salas, Chairman Gabrieleno Band of Mission Indians – Kizh Nation PO Box 393 Covina, CA 91723

SUBJECT: SENATE BILL (SB) 18 CONSULTATION (GOVERNMENT CODE §65352.3)

WILLOWBROOK TRANSIT ORIENTED DISTRICT SPECIFIC PLAN

PROJECT NO. R2015-02007-(2)

RSPT201500001

RZCT201500006

RADVT201500004

RENVT201500136

RPAT201500005

The Native American Heritage Commission (NAHC) has identified your tribe as one with traditional lands or cultural places located within the proposed boundary of the above-referenced project. Because this project requires the amendment of the General Plan and adoption of a Specific Plan, it is subject to the SB 18 Tribal Consultation requirements (Government Code Section 65352.3). This letter serves as a formal notification and invitation to consult with the County of Los Angeles on the proposed project identified above.

The project area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east. The project area is bounded by Compton Avenue, Imperial Highway, Mona Boulevard and 121st/122nd Streets. A map depicting the project site location is enclosed for your reference.

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

A Sacred Lands File Search conducted by the NAHC <u>did not</u> find the presence of Native American cultural resources sites within the area of potential effect (APE) of the project area. In addition, Native American resources <u>are not</u> recorded in close proximity to the project site. The NAHC has also provided the Los Angeles County Department of Regional Planning with a list of Native

CC.103116

SB 18 Consultation Page **2** of **2**

American Tribes with traditional lands or cultural places located within the proposed project site. This letter was sent to each of the listed tribes.

Your participation in this local planning process is important. Pursuant to Government Code Section 65352.3(a)(2), you have 90 days from the receipt of this letter to request consultation with the County of Los Angeles. Please submit your request to the contact information listed below.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner Community Studies West Section

Encl: Map of Project Location

Notice of Preparation

CC: Gabrieleno/Tongva San Gabriel Band of Mission Indians; Gabrielino/Tongva Nation; Gabrielino Tongva Indians of California Tribal Council; Gabrielino-Tongva Tribe

AG:LF

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov

SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015**, from 10:00 am to 12:00 pm.

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

GABRIELENO BAND OF MISSION INDIANS - KIZH NATION

Historically known as The San Gabriel Band of Mission Indians Recognized by the State of California as the aboriginal tribe of the Los Angeles basin

Dear Leon Freeman Regional Planning Assistant ll

Subject: SB18 Formal Notification - Willow brook TOD Specific Plan

"The project locale lies in an area where the Ancestral & traditional territories of the Kizh(Kitc) Gabrieleño villages, adjoined and overlapped with each other, at least during the Late Prehistoric and Protohistoric Periods. The homeland of the Kizh (Kitc) Gabrieleños, probably the most influential Native American group in aboriginal southern California (Bean and Smith 1978a:538 https://nrmsecure.dfg.ca.gov/FileHandler.ashx?DocumentlD=9497), was centered in the Los Angeles Basin, and reached as far east as the San Bernardino-Riverside area. The homeland of the Serranos was primarily the San Bernardino Mountains, including the slopes and lowlands on the north and south flanks. Whatever the linguistic affiliation, Native Americans in and around the project area exhibited similar organization and resource procurement strategies. Villages were based on clan or lineage groups. Their home/base sites are marked by midden deposits, often with bedrock mortars. During their seasonal rounds to exploit plant resources, small groups would migrate within their traditional territory in search of specific plants and animals. Their gathering strategies often left behind signs of special use sites, usually grinding slicks on bedrock boulders, at the locations of the resources. Therefore, in order to protect our resources we're requesting one of our experienced & certified Native American monitors to be on site during any & all ground disturbances (this includes but is not limited to pavement removal, pot-holing or grubbing, auguring, boring, grading, excavation and trenching).

In all cases, when the NAHC states there are "No" records of sacred sites" in the subject area; they always refer the contractors back to the Native American Tribes whose tribal territory the project area is in. This is due to the fact, that the NAHC is only aware of general information on each California NA Tribe they are "NOT" the "experts" on our Tribe. Our Elder Committee & Tribal Historians are the experts and is the reason why the NAHC will always refer contractors to the local tribes.

In addition, we are also often told that an area has been previously developed or disturbed and thus there are no concerns for cultural resources and thus minimal impacts would be expected. I have two major recent examples of how similar statements on other projects were proven very inadequate. An archaeological study claimed there would be no impacts to an area adjacent to the Plaza Church at Olvera Street, the original Spanish settlement of Los Angeles, now in downtown Los Angeles. In fact, this site was the Gabrieleno village of Yangna long before it became what it is now today. The new development wrongfully began their construction and they, in the process, dug up and desecrated 118 burials. The area that was dismissed as culturally sensitive was in fact the First Cemetery of Los Angeles where it had been well documented at the Huntington Library that 400 of our Tribe's ancestors were buried there along with the founding families of Los Angeles (Pico's, Sepulveda's, and Alvarado's to name a few). In addition, there was another inappropriate study for the development of a new sports complex at Fedde Middle School in the City of Hawaiian Gardens could commence. Again, a village and burial site were desecrated despite their mitigation measures. Thankfully, we were able to work alongside the school district to quickly and respectfully mitigate a mutually beneficial resolution.

Given all the above, the proper thing to do for your project would be for our Tribe to monitor ground disturbing construction work. Native American monitors and/or consultant can see that cultural resources are treated appropriately from the Native American point of view. Because we are the lineal descendants of the vast area of Los Angeles and Orange Counties, we hold sacred the ability to protect what little of our culture remains. We thank you for taking seriously your role and responsibility in assisting us in preserving our culture.

With respect,

Please contact our office regarding this project to coordinate a Native American Monitor to be present. Thank You

Andrew Salas, Chairman

Albert Perez treasurer l

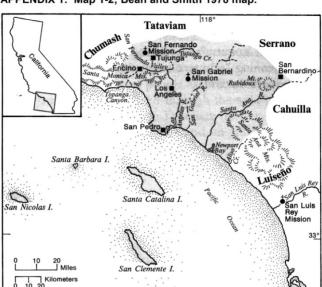
Nadine Salas, Vice-Chairman

Martha Gonzalez Lemos treasurer II

Christina Swindall Martinez, secretary

Richard Gradias Chairman of the council of Elders

PO Box 393 Covina, CA 91723


www.gabrielenoindians@yahoo.com

gabrielenoindians@yahoo.com

Addendum: clarification regarding some confusions regarding consultation under AB52:

AB52 clearly states that consultation must occur with tribes that claim traditional and cultural affiliation with a project site. Unfortunately, this statement has been left open to interpretation so much that neighboring tribes are claiming affiliation with projects well outside their traditional tribal territory. The territories of our surrounding Native American tribes such as the Luiseno, Chumash, and Cahuilla tribal entities. Each of our tribal territories has been well defined by historians, ethnographers, archaeologists, and ethnographers – a list of resources we can provide upon request. Often, each Tribe as well educates the public on their very own website as to the definition of their tribal boundaries. You may have received a consultation request from another Tribe. However we are responding because your project site lies within our Ancestral tribal territory, which, again, has been well documented. What does Ancestrally or Ancestral mean? The people who were in your family in past times, Of, belonging to, inherited from, or denoting an ancestor or ancestors http://www.thefreedictionary.com/ancestral. If you have questions regarding the validity of the "traditional and cultural affiliation" of another Tribe, we urge you to contact the Native American Heritage Commission directly. Section 5 section 21080.3.1 (c) states "...the Native American Heritage Commission shall assist the lead agency in identifying the California Native American tribes that are traditionally and culturally affiliated with the project area." In addition, please see the map below.

CC: NAHC

APPENDIX 1: Map 1-2; Bean and Smith 1978 map.

Fig. 1. Tribal territory.

The United States National Museum's Map of Gabrielino Territory:

Bean, Lowell John and Charles R. Smith 1978 Gabrielino IN *Handbook of North American Indians, California,* Vol. 8, edited by R.F. Heizer, Smithsonian Institution Press, Washington, D.C., pp. 538-549

C-2 AB52 Consultation Correspondence

Los Angeles County Department of Regional Planning

Planning for the Challenges Ahead

January 30, 2017

Andrew Salas, Chairman Gabrieleno Band of Mission Indians - Kizh Nation PO Box 393 Covina, CA 91723

RE: Tribal Cultural Resources under the California Environmental Quality Act, AB 52 (Gatto, 2014). Formal Notification of the Proposed Project pursuant to Public Resources Code (PRC) §21080.3.1.

The Los Angeles County Department of Regional Planning is issuing this formal notification of the proposed project. Below please find a description of the proposed project, a map showing the project location, and our contact information along with the name of our point of contact, pursuant to PRC §21080.3.1(d).

Proposed Project: Willowbrook Transit Oriented District Specific Plan

Project No. R2015-02007-(2)

RSPT201500001 RADVT201500004 RZCT201500006 RENVT201500136

RPAT201500005

Project Description: The proposed Specific Plan is a planning document that has been prepared to introduce a transit oriented development pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicle miles traveled. improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects. The proposed Specific Plan would facilitate development by rezoning and amending the General Plan land uses of parcels within a half mile radius south of the Willowbrook/Rosa Parks Station to include mixed uses, increased housing densities, and additional neighborhood-serving retail uses.

Project Location: The Specific Plan area is located in the Willowbrook community, which is an unincorporated community within Los Angeles County. It is located along the I-105 Freeway at the Wilmington Avenue interchange, and at the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and City of Compton to the east (Figure 1, Regional Location). The plan area is bounded by Compton Avenue. Imperial Highway, Mona Boulevard and 121st/122nd Streets.

Lead Agency Contact Information:

Leon Freeman, Regional Planning Assistant II

Community Studies West Section Department of Regional Planning 320 W. Temple Street, Room 1356

Los Angeles, CA 90012 Tel: (213) 974-6406

Email: LFreeman@planning.lacounty.gov

Pursuant to PRC §21080.3.1(b), you have 30 days from the receipt of this letter to request consultation, in writing, with the Department of Regional Planning. Written request must be submitted to the contact information listed above.

Our office hours are Monday through Thursday, 7:00 a.m. to 5:30 p.m. We are closed on Fridays.

Sincerely,

DEPARTMENT OF REGIONAL PLANNING

Richard J. Bruckner

Anita Gutierrez, AICP

Supervising Regional Planner

Community Studies West Section

Encl: Notice of Preparation, Regional Location Map

AG:LF

Los Angeles County Department of Regional Planning

Planning for the Challenges Ahead

NOTICE OF PREPARATION

DATE:

October 29, 2015

PROJECT TITLE:

Willowbrook Transit Oriented District Specific Plan

County Project Number: R2015-02007

Environmental Review Number: RENVT201500136

PROJECT LOCATION:

The Specific Plan area is located in the unincorporated community of Willowbrook within Los Angeles County. It is located along the I-105 Freeway and includes the junction of the Metro Blue and Green lines. The project area is approximately 10 miles south of Downtown Los Angeles and is bordered by the City of Los Angeles to the north and the City of Lynwood and the City of

Compton to the east.

The County of Los Angeles is the lead agency and, after conducting an Initial Study for the Project, has determined that it will prepare an Environmental Impact Report (EIR). In compliance with Section 15082 of the California Environmental Quality Act (CEQA) Guidelines, the County of Los Angeles is sending this Notice of Preparation (NOP) to responsible agencies, interested parties, and trustee agencies responsible for natural resources that may be affected by the Project.

PROJECT LOCATION AND ENVIRONMENTAL SETTING

The Specific Plan area generally encompasses a half mile radius south of the Willowbrook/Rosa Parks Metro station, which is a major transfer point between the Metro Blue Line and Green Line. At the station, the Green Line is located in the median of the I-105 Freeway (Glenn Anderson). The Specific Plan area totals 312 acres. Major activity centers within the Specific Plan area are the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza, Willowbrook Library, and Martin Luther King Jr. Center for Public Health. See attached project boundary map.

North of the Specific Plan area is predominantly residential with some commercial uses. The City of Lynwood is directly adjacent to the Specific Plan's eastern border and land uses are manufacturing, public uses and commercial. South and west of the Specific Plan area is predominantly residential.

PROJECT SUMMARY

The Specific Plan has been prepared to introduce a transit oriented development (TOD) pattern to the area, which would promote active transportation and improve quality of life for residents by reducing vehicles miles traveled, improving the public realm, improving economic vitality and employment opportunities, and streamlining the environmental review process for future projects.

The Specific Plan would facilitate development by rezoning and amending General Plan land uses to include mixed uses, increased residential densities, and additional neighborhood-serving retail uses. A key part of the Specific Plan is also to preserve existing residential uses and densities in certain areas. The proposed zoning includes: Mixed Use 1 (MU-1); Mixed Use 2 (MU-2); MLK Medical; Drew Educational; Imperial Commercial; Willowbrook Residential 1; Willowbrook Residential 2; Willowbrook Residential 3; and Open Space (O-S). Overall, the Specific Plan would accommodate an additional 1,734 dwelling units and 2,630,306 square feet of non-residential land use.

The Specific Plan would largely maintain the existing street system in its current configuration, with some improvements designed to improve access, circulation, and walkability. Road diets would also be used to aid the circulation system.

The Specific Plan would improve pedestrian circulation by connecting all major activity areas through sidewalk and intersection improvements. In addition, a combination of Class I, Class II, Class III and potentially Class IV facilities would provide a connected and integrated bicycle network throughout the Specific Plan area that connects activity centers and neighborhoods to the Willowbrook/Rosa Parks Station and adjacent communities. Bicycle amenities, such as bicycle stations, would be provided at appropriate locations.

In 2012, Los Angeles County prepared the *MLK Medical Center Campus Master Plan & the Willowbrook MLK Wellness Community Vision* to guide the development of the campus. It is the County's intent that the Specific Plan serve as the regulatory document for the buildout of the campus. Future development within the campus will be required to comply with the provisions of the Specific Plan; all subsequent development within the campus will be subject to the mitigation requirements of the EIR being prepared for the Specific Plan.

The draft Specific Plan is available for viewing at http://planning.lacounty.gov/willowbrook/tod.

POTENTIAL PROJECT IMPACTS: Based on the Initial Study determination, an EIR is necessary for the proposed Project. Based on a preliminary assessment of potential environmental impacts that may occur as a result of the Project, the areas of potential environmental impact to be addressed in the Programmatic EIR will include at least the following:

Potential Hazards

- Geology/Soils
- Noise
- Hazards/Hazardous Materials

Potential Impacts to Resources

- Aesthetics
- Air Quality
- Cultural Resources
- Energy
- Greenhouse Gas Emissions
- Hydrology and Water Quality
- Land Use/Planning

Potential Impacts to Services

Transportation/Traffic

Page 2 of 4

- Public Services
- Recreation
- Utilities/Services
- Population/Housing

The only environmental factors that were not found to be potentially affected are Agriculture/Forest Resources, Biological Resources, and Mineral Resources. There are multiple mandatory findings of significance. In addition, environmental issues that do not rise to the level of significant impacts will be addressed in the EIR in a separate section entitled "Impacts Found to Be Less Than Significant."

NOTICE OF PREPARATION REVIEW AND COMMENTS

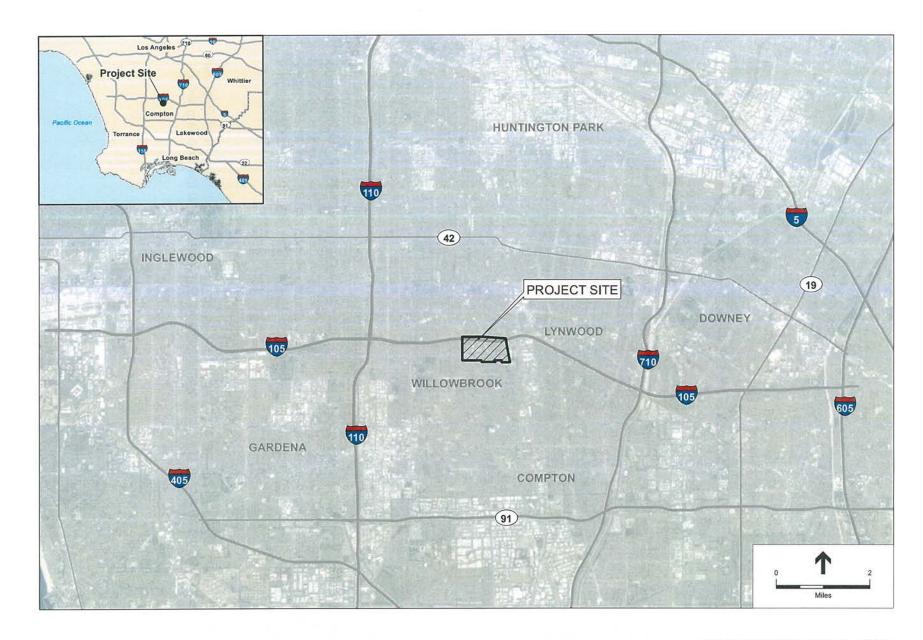
The NOP is being distributed to solicit written comments regarding the scope and content of the environmental analysis to be included in the EIR. The County has prepared this NOP in accordance with the State CEQA Guidelines.

The review period for this NOP is from **November 2, 2015 to December 1, 2015**. Due to the time limits mandated by State law, your response must be sent at the earliest possible date, but not later than **December 1, 2015**. Please direct all written comments to the following address:

Connie Chung, AICP County of Los Angeles Department of Regional Planning 320 W. Temple Street Los Angeles, California 90012 Telephone: (213) 974-6417

Fax: (213) 626-0434

Email: cchung@planning.lacounty.gov


SCOPING MEETING

To assist in local participation, a Scoping Meeting will be held to present the proposed project and to solicit suggestions from the public and responsible agencies on the content of the Draft EIR. The Scoping Meeting will be held at the MLK H. Claude Hudson Auditorium, Martin Luther King, Jr. Medical Center, 12021 S. Wilmington Avenue, Los Angeles, CA, 90059, on **November 21, 2015, from 10:00 am to 12:00 pm.**

REVIEW MATERIALS

Additional copies of this NOP are available for public review on the Department of Regional Planning website: http://planning.lacounty.gov/willowbrook/tod as well as at the following library:

Willowbrook Library 11838 Wilmington Ave Los Angeles, CA 90059

GABRIELENO BAND OF MISSION INDIANS - KIZH NATION

Historically known as The San Gabriel Band of Mission Indians recognized by the State of California as the aboriginal tribe of the Los Angeles basin

AB 52 - 30-day Consultation Notice

Project name: Tribal Cultural Resources under the California Environmental Quality Act AB 52 (Gatto, 2014). Formal Notification of the Proposed Project pursuant to Public Resources Code (PRC).

Dear Leon Freeman,

February 9, 2017

Please find this letter in response to your request for consultation dated January 30, 2017. I have reviewed the project site and do have concerns for cultural resources. Your project lies in an area where the Ancestral territories of the Kizh (Kitc) Gabrieleño's prominent villages adjoined and overlapped with each other, at least during the Late Prehistoric and Protohistoric Periods. The Kizh Gabrieleño were probably the most influential Native American group in aboriginal southern California (Bean and Smith 1978a:538; https://nrmsecure.dfg.ca.gov/FileHandler.ashx?DocumentID=9497). Our homeland was centered in the Los Angeles Basin, and reached as far east as the San Bernardino-Riverside area. The homeland of our neighbors, the Serranos, was primarily the San Bernardino Mountains, including the slopes and lowlands on the north and south flanks. Whatever the linguistic affiliation, Native Americans in and around the project area exhibited similar organization and resource procurement strategies. Villages were based on clan or lineage groups. Their home base sites are marked by midden deposits often with bedrock mortars. During their seasonal rounds to exploit plant resources, small groups would migrate within their traditional territory in search of specific plants and animals. Their gathering strategies of ten left behind signs of special use sites, usually grinding slicks on bedrock boulders, at the locations of the resources.

Due to the project location and the high sensitivity of the area location, we would like to request one of our certified Native American monitors to be on site during any and all ground disturbances (including but not limited to pavement removal, post holing, auguring, boring, grading, excavation and trenching) to protect any cultural resources which may be affected during construction or development. When the Native American Heritage Commission states there are "no records of sacred sites in the project area," they will always refer lead agencies to the respective Native American Tribe. The NAHC is only aware of general information and are not the experts on each California Tribe. Our Elder Committee & Tribal Historians are the experts for our Tribe and are able to provide a more complete history (both written and oral) regarding the location of historic villages, trade routes, cemeteries and sacred/religious sites in the project area. In some instances, the project location may be in an area that has been previously developed and one may question the need for monitoring. Unfortunately, we have numerous examples that we can share where cultural resources including human remains were outright destroyed or at least significantly impacted before a Tribe was present. Please note, if sacred sites haven't been listed with the NAHC, it doesn't mean that they aren't there. Not everyone reports what they know.

The recent implementation of AB52 dictates that lead agencies consult with Native American Tribes who can prove and document traditional and cultural affiliation with the area of said project. Our tribe is connected ancestrally to your project location area. What does "ancestrally" or "ancestral" mean? It simply means the people who were in your family in past times - of, belonging to, inherited from, or denoting an ancestor or ancestors (see http://www.thefreedictionary.com/ancestral). Our main priority is to avoid and protect cultural and biological resources that still exist in our ancestral land for the benefit and education of future generations. We hold strongly to the values of accomplishing this goal without delay or conflicts to the lead agency and project manager.

At your convenience, we are available for consultations via phone or in person. Thank you.

CC: NAHC

With respect,

Andrew Salas, Chairman

Albert Perez, treasurer I

Elders

Nadine Salas, Vice-Chairman

Martha Gonzalez Lemos, treasurer II

Christina Swindall Martinez, secretary

Richard Gradias, Chairman of the council of

PO Box 393 Covina, CA 91723

www.gabrielenoindians@uahoo.com

gabrielenoindians@yahoo.com

Andrew Salas, Chairman Albert Perez, treasurer I Elders

PO Box 393 Covina, CA 91723

Nadine Salas, Vice-Chairman Martha Gonzalez Lemos, treasurer II

www.gabrielenoindians@yahoo.com

Christina Swindall Martinez, secretary
Richard Gradias, Chairman of the council of

gabrielenoindians@yahoo.com

From: Leon Freeman

Sent: Monday, April 17, 2017 4:10 PM
To: 'Andy' <gabrielenoindians@yahoo.com>

Cc: Matt Teutimez.Kizh Gabrieleno <<u>matt.teutimez@gmail.com</u>>; Anita Gutierrez

<agutierrez@planning.lacounty.gov>

Subject: SB 18 and AB 52 Consultation (Willowbrook TOD Specific Plan)

Dear Chairman Salas,

Thank you engaging in consultation with us regarding the proposed Willowbrook Transit Oriented District Specific Plan, as provided for in SB 18 and AB 52.

The Department of Regional Planning received your letters requesting consultation under SB 18 and AB 52, both dated February 9, 2017, in which you provided background reference information and requested a Kizh Nation certified Native American monitor to be on site during any and all ground disturbances (including but not limited to pavement removal, post holing, auguring, boring, grading, excavation and trenching).

Subsequently, we engaged in consultation via telephone on March 13, 2017, and inperson on April 4, 2017. In our meetings, we discussed potential tribal cultural resources that could be present in the area and your suggested mitigation measures. We also discussed the challenges related to a project-level document versus a plan-level document like the Willowbrook Transit Oriented District Specific Plan, which does not authorize actual ground disturbance or construction. While we are not able to incorporate your suggested mitigations for an on-site monitor for every ground disturbance, we can agree to a mitigation measure that provides for Native American tribes to be contacted if resources are encountered in the project area. This language shall be recommended for inclusion in the project environmental document.

During project-level construction, should prehistoric or historic subsurface cultural resources be discovered, all activity in the vicinity of the find shall stop and a qualified archaeologist will be contacted to assess the significance of the find according to CEQA Guidelines Section 15064.5. If any find is determined to be significant, the archaeologist shall determine, in consultation with the County, and local Native American groups expressing interest, appropriate avoidance measures or other appropriate mitigation. Per CEQA Guidelines Section 15126.4(b)(3), project redesign and preservation in place shall be the preferred means to avoid impacts to significant cultural resources. Methods of avoidance may include, but shall not be limited to, project re-route or re-design, project cancellation, or identification of protection measures such as capping or fencing. Consistent with CEQA Guidelines Section 15126.4(b)(3)(C), if it is demonstrated that resources cannot be avoided, the qualified archaeologist shall develop additional treatment measures in consultation with the County, which may include data recovery or other appropriate measures. All significant cultural materials recovered will be, as necessary and at the discretion of the consulting archaeologist and in consultation with local Native American groups expressing interest, subject to scientific analysis, professional museum curation, and documentation according to current professional standards.

We also discussed incorporating some language into the plan document itself that references the historical significance of the early Gabrielinos in Southern California. On April 11, 2017, we provided you with draft text for your input and requested some images to include. The current language is as follows:

Early Peoples

The project site is located within the territory of the native population known as the Gabrielino. Prior to European contact, the Gabrielino occupied a diverse area that included the watersheds of the Los Angeles, San Gabriel, and Santa Ana rivers; the Los Angeles basin; and offshore islands. They were hunter-gatherers and lived in permanent communities located near the presence of a stable food supply and some measure of protection from flooding. Community populations generally ranged from 50-100 inhabitants, although larger settlements may have existed. Houses were made of tule mats on a framework of poles. Basketry and steatite vessels were used rather than ceramics; ceramics became common only toward the end of the Mission Period in the nineteenth century.

The Department of Regional Planning met with representatives of the Gabrielino Band of Mission Indians - Kizh Nation, to determine whether known tribal cultural resources are present in the project area. While specific resources have not yet been identified, the project area is proximate to a known early trade route that connected to the coast at San Pedro. Additionally, its characteristics of being relatively near historical water sources and hunting grounds would have been favorable to settlement. As is common in Southern California, it's possible that artifacts with tribal significance could be discovered in the Specific Plan Area in activities that involve ground disturbance. Therefore, these activities should be undertaken with care to adequately protect potential resources.

Please note that under our current schedule constraints, if we do not receive input from you on the historical language **before Monday, April 24, 2017**, we will plan to include the text as indicated.

This concludes our consultation. If you have any questions or need further information, please feel free to contact me.

Again thanks, Leon

C-3 NAHC Sacred Lands File Search

626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 phone 213.599.4301 fax

January 26, 2017

Gayle Totton Native American Heritage Commission 1550 Harbor Boulevard, Suite 100 West Sacramento, CA 95691 FAX 916.373.5471

Subject: SLF Search Request for the Willowbrook Transit Oriented Specific Plan Project, Community of

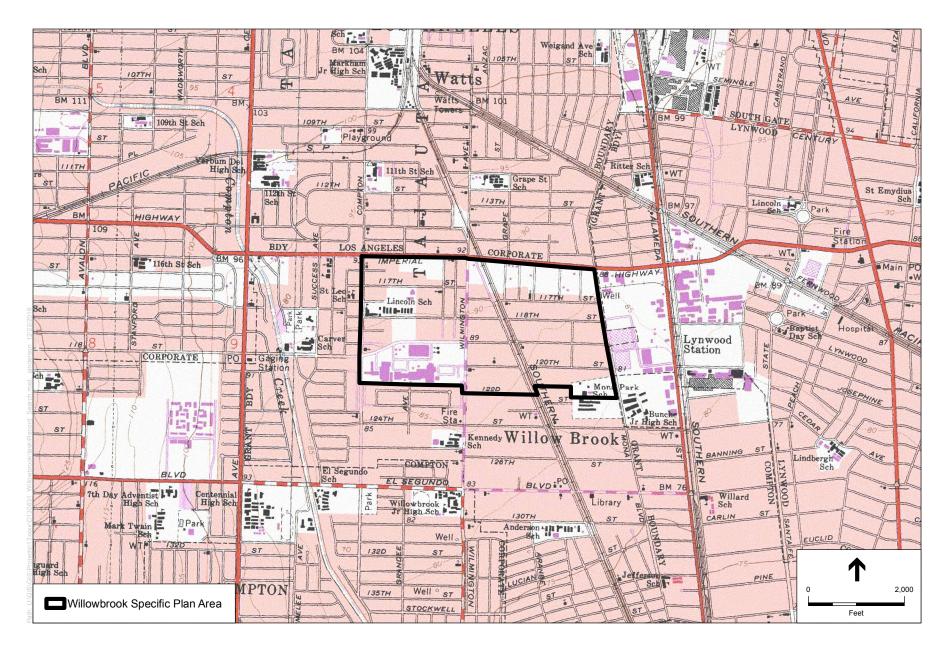
Willowbrook, Los Angeles County, California (D130631.00)

Dear Ms. Tutton:

Environmental Science Associates (ESA) is preparing a Program Environmental Impact Report (PEIR) for the proposed Willowbrook Transit Oriented Specific Plan. The Specific Plan area is approximately 312 acres and is located within the northwestern portion of the unincorporated Willowbrook community. The proposed Specific Plan would amend General Plan Land Use designations of several individual parcels to provide consistency with the General Plan policy direction for mixed use parcels along transportation corridors. In addition, the proposed Specific Plan would facilitate transit oriented development by establishing a new Specific Plan zone for the project area. Within the Specific Plan zone, new designations for land uses would be implemented. Further, minor changes/improvements to the existing street system would be implemented to improve access, circulation, and walkability between the major land uses within the Specific Plan area, such as the MLK Medical Center, CDU, Kenneth Hahn Plaza, Willowbrook Library, Martin Luther King, Jr. Center for Public Health, and the Willowbrook/Rosa Parks Metro Station. The specific plan area is currently developed.

The enclosed map shows the specific plan project area located in:

Un-sectioned area of the South Gate USGS 7.5' Quadrangle, Township 3 South, Range 13 West.


In an effort to provide an adequate appraisal of all potential impacts to cultural resources that may result from the proposed project, ESA is requesting that a records search be conducted for sacred lands or traditional cultural properties that may exist within the specific plan area.

Thank you for your time. To expedite delivery of search results, please email them to aabdelwahed@esassoc.com or fax 949.753.7002. Please contact me at 213.542.6041 or email if you have any questions.

Sincerely,

Arabesque Said-Abdelwahed, MPP

Senior Associate

NATIVE AMERICAN HERITAGE COMMISSION

1550 Harbor Blvd., Suite 100 West Sacramento, CA 95691 (916) 373-3710 Fax (916) 373-5471

January 30, 2017

Arabesque Said-Abdelwahed, MMP, Senior Associate ES Associates

Sent by Email: aabdelwahed@esassoc.com

RE: Proposed Willowbrook Transit Oriented Specific Plan Project, Community of Willowbrook; South Gate USGS Quadrangle, Los Angeles County, California

Dear Ms. Said-Abdelwahed:

A record search of the Native American Heritage Commission (NAHC) *Sacred Lands File* was completed for the area of potential project effect (APE) referenced above with <u>negative results</u>. Please note that the absence of specific site information in the *Sacred Lands File* does not indicate the absence of Native American cultural resources in any APE.

Attached is a list of tribes culturally affiliated to the project area. I suggest you contact all of the listed Tribes. If they cannot supply information, they might recommend others with specific knowledge. The list should provide a starting place to locate areas of potential adverse impact within the APE. By contacting all those on the list, your organization will be better able to respond to claims of failure to consult. If a response has not been received within two weeks of notification, the NAHC requests that you follow-up with a telephone call to ensure that the project information has been received.

If you receive notification of change of addresses and phone numbers from any of these individuals or groups, please notify me. With your assistance we are able to assure that our lists contain current information. If you have any questions or need additional information, please contact via email: gayle.totton@nahc.ca.gov.

Sincerely,

Gayle Totton, M.A., PhD.

Associate Governmental Program Analyst

Native American Heritage Commission Tribal Contact List Los Angeles County 1/30/2017

Gabrieleno Band of Mission Indians - Kizh Nation

Andrew Salas, Chariperson P.O. Box 393

Gabrieleno

Covina, CA, 91723 Phone: (626) 926 - 4131

gabrielenoindians@yahoo.com

Gabrieleno/Tongva San Gabriel Band of Mission Indians

Anthony Morales, Chairperson

P.O. Box 693

Gabrieleno

San Gabriel, CA, 91778 Phone: (626)483-3564 Fax: (626)286-1262 GTTribalcouncil@aol.com

Gabrielino /Tongva Nation

Sandonne Goad, Chairperson 106 1/2 Judge John Aiso St.,

Gabrielino

#231

Los Angeles, CA, 90012 Phone: (951)807-0479 sgoad@gabrielino-tongva.com

Gabrielino Tongva Indians of California Tribal Council

Robert Dorame, Chairperson

P.O. Box 490

Gabrielino

Bellflower, CA, 90707 Phone: (562) 761 - 6417 Fax: (562) 761-6417 gtongva@gmail.com

Gabrielino-Tongva Tribe

Linda Candelaria, Co-Chairperson 1999 Avenue of the Stars, Suite Gabrielino

Los Angeles, CA, 90067 Phone: (626)676-1184

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resource Section 5097.98 of the Public Resources Code.

This list is only applicable for contacting local Native Americans with regard to cultural resources assessment for the proposed Willowbrook Transit Oriented Specific Plan Project, Los Angeles County.

C-4 Paleontological Records Search Results

2121 Alton Parkway Suite 100 Irvine, CA 92606 949.753.7001 phone 949.753.7002 fax

January 3, 2017

Dr. Sam McLeod Natural History Museum of Los Angeles County Vertebrate Paleontology 900 Exposition Blvd. Los Angeles, CA 90007 213,763,3325

Subject: Request for a Database Search for the Willowbrook Transit Oriented District Specific Plan Project, Community of Willowbrook, Los Angeles County, California (D130631.00)

Dear Dr. McLeod:

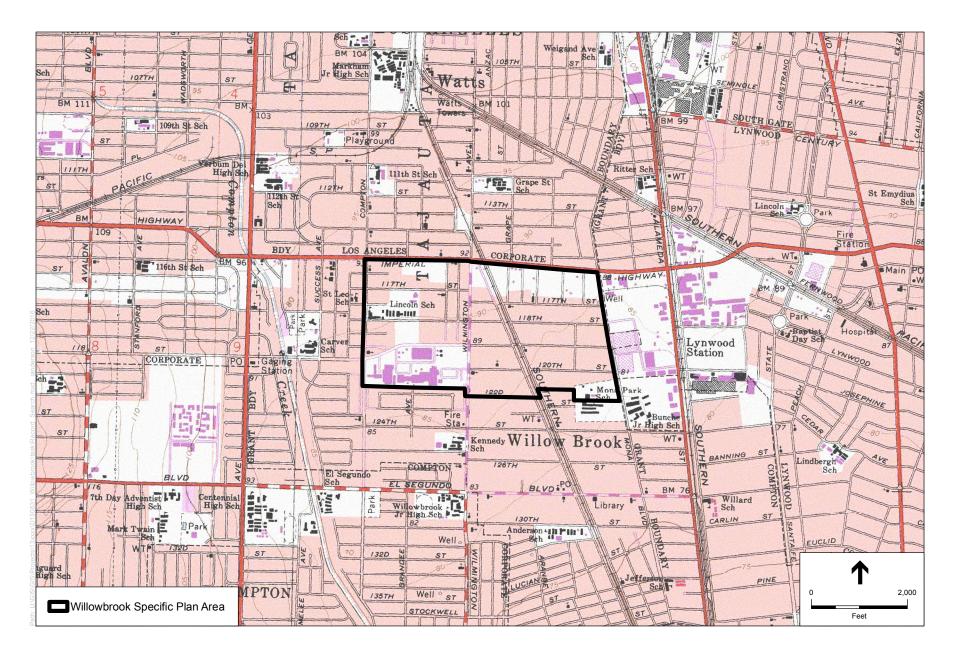
Environmental Science Associates (ESA) is preparing a Program Environmental Impact Report (PEIR) for the Willowbrook Transit Oriented District Specific Plan (Project). The Specific Plan is a County-initiated, Los Angeles County Metropolitan Transit Authority (Metro) grant-funded project that is being proposed pursuant to the County General Plan to enhance the transit oriented development pattern, promote active transportation, reduce vehicle miles traveled, and improve the public realm in the Willowbrook area.

The Specific Plan area is approximately 312 acres and is located within the northwestern portion of the Willowbrook community, in unincorporated Los Angeles County. The Specific Plan area generally encompasses parcels located south of Imperial Highway, north of East 122nd Street, east of Compton Avenue, and west of South Mona Boulevard. The Specific Plan contains a range of land uses, including: residential, retail, office, educational, institutional facilities, and service facilities.

The enclosed map shows the Project area located in:

Un-sectioned area of the South Gate USGS 7.5' Quadrangle, Township 3 South, Range 13 West.

In an effort to provide an adequate appraisal of all potential impacts that may result from the proposed Project, ESA is requesting that a paleontological resource records search be conducted for paleontological resources that may exist within the Project area.


Thank you for your time and cooperation regarding this matter. To expedite the delivery of search results, please email them to aabdelwahed@esassoc.com. Please contact me at 213.599.4300 or email if you have any questions.

Sincerely,

Arabesque Said-Abdelwahed, MPP

Senior Associate

Arfughillethus (

Natural History Museum of Los Angeles County 900 Exposition Boulevard Los Angeles, CA 90007

tel 213.763.DINO www.nhm.org

Vertebrate Paleontology Section Telephone: (213) 763-3325

e-mail: smcleod@nhm.org

17 January 2017

ESA 2121 Alton Parkway, Suite 100 Irvine, CA 92606

Attn: Arabesque Said-Abdelwahed, Senior Associate

re: Paleontological resources for the proposed Willowbrook Transit Oriented District Specific Plan Project, ESA Project # D130631.00, in the Community of Willowbrook, Los Angeles County, project area

Dear Arabesque:

I have thoroughly searched our paleontology collection records for the locality and specimen data for the proposed Willowbrook Transit Oriented District Specific Plan Project, ESA Project # D130631.00, in the Community of Willowbrook, Los Angeles County, project area as outlined on the portion of the South Gate USGS topographic quadrangle map that you sent to me via e-mail on 3 January 2017. We do not have any vertebrate fossil localities that occur directly within the proposed project area, but we do have localities somewhat nearby from the same type of sediments that probably occur as subsurface deposits in the proposed project area.

The entire proposed project site area has surface deposits composed of younger Quaternary Alluvium, derived as fluvial deposits from the floodplain of the Los Angeles River that currently flows in a concrete channel just to the east and from Compton Creek that currently flows just to the west. These younger Quaternary deposits usually do not contain significant fossil vertebrate remains, at least in the uppermost layers, but the underlying older Quaternary deposits found at varying depths may well contain significant vertebrate fossils. Our closest vertebrate fossil locality from these older Quaternary deposits is probably LACM 4685, southwest of the proposed project area between 135th and 136th Streets just east of Avalon

Boulevard, that produced a fossil specimen of undetermined elephantoid, Proboscidea, from an unstated depth.

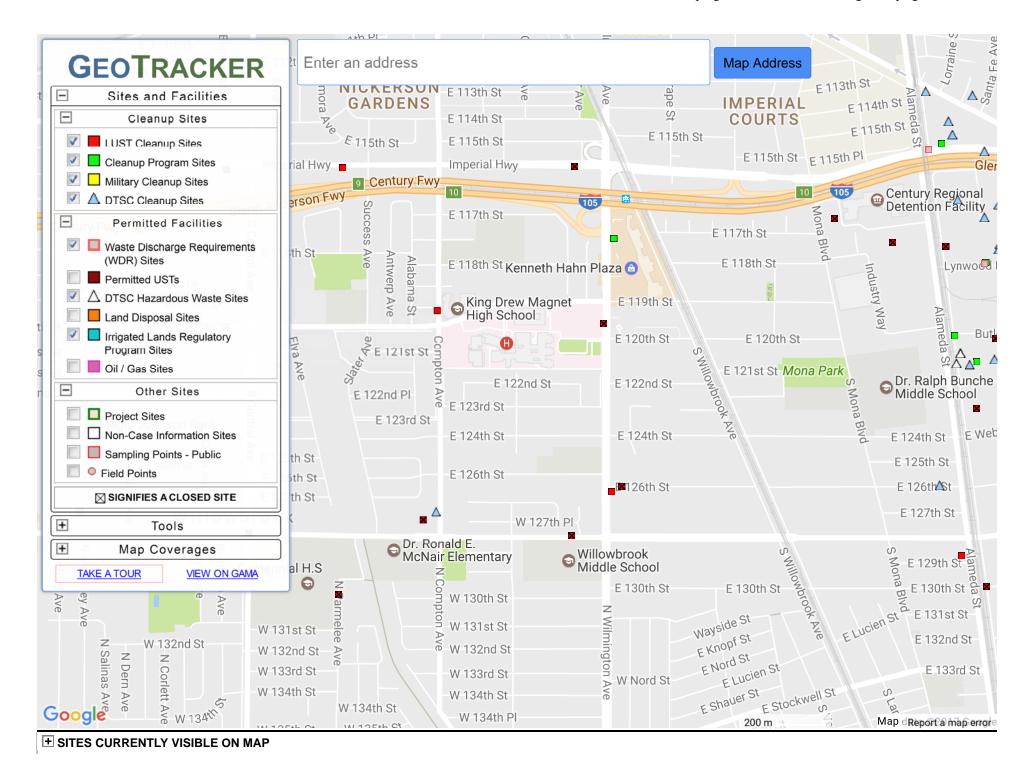
Our next closest vertebrate fossil localities from these older Quaternary deposits, LACM 1344, 3266 and 3365, all occurring just south of west of the southern portion of the proposed project area around the Harbor Freeway and Athens on the Hill, produced fossil specimens of mammoth, *Mammuthus*, squirrel, Sciuridae, horse, *Equus*, and pronghorn antelope, *Breameryx*, at depths between 15 and 20 feet below the surface. Just north of west of the northern portion of the proposed project area, at the Harbor Freeway (I-110) between 112th and 113th Streets and along Imperial Highway near Main Street, we have additional older Quaternary localities LACM 1295 and 4206 that produced a typical late Pleistocene fauna including fossil specimens of pond turtle, *Clemmys*, puffin, *Mancalla*, turkey, *Parapavo*, ground sloth, *Paramylodon*, mammoth, *Mammuthus*, dire wolf, *Canis dirus*, rabbit, *Sylvilagus*, squirrel, Sciuridae, deer mouse, *Microtus*, pocket gopher, *Thomomys*, horse, *Equus*, deer, *Cervus*, pronghorn antelope, *Capromeryx*, and bison, *Bison*, at unstated but relatively shallow depths. A little further away but directly south of the proposed project area east of Wilmington Boulevard and north of Artesia Boulevard, we have locality LACM 3382 that produced a fossil specimen of mammoth Mammuthus, at a depth of approximately five feet below the surface.

Shallow excavations in the younger Quaternary Alluvium exposed throughout the proposed project area are unlikely to uncover significant vertebrate fossils. Deeper excavations that extend down into older Quaternary deposits, however, possibly as shallow as five feet in depth, may well encounter significant fossil vertebrate remains. Any substantial excavations in the proposed project area, therefore, should be monitored closely to quickly and professionally recover any fossil remains discovered while not impeding development. Also, sediment samples should be collected and processed to determine the small fossil potential in the proposed project area. Any fossils collected should be placed in an accredited scientific institution for the benefit of current and future generations.

This records search covers only the vertebrate paleontology records of the Natural History Museum of Los Angeles County. It is not intended to be a thorough paleontological survey of the proposed project area covering other institutional records, a literature survey, or any potential on-site survey.

Sincerely,

Samuel A. McLeod, Ph.D. Vertebrate Paleontology


Summel a. M. Leod

vertebrate rateomology

enclosure: invoice

Appendix D Hazardous Materials Database Search Results

1 of 1 2/17/2017 5:28 PM

GeoTracker Hazardous Materials Sites List

CITCALANC	01004110 6775 717	war.	CTATUS	ADDRESS	orm.	LATITUDE LONGITUDE
SITE NAME	GLOBAL ID SITE_TYI		STATUS	ADDRESS		LATITUDE LONGITUDE
2700 EAST IMPERIAL HIGHWAY, INC 3000 EAST IMPERIAL PROJECT	60001258 VOLUNT 60000653 VOLUNT		NO FURTHER ACTION ACTIVE	2700 EAST IMPERIAL HIGHWAY 3000 EAST IMPERIAL HIGHWAY	LYNWOOD	33.92994 -118.22282 33.9301082 -118.21771
	71002452 EVALUA			424 DIXON STREET	COMPTON	
AAA PLATING & INSPECTION			INACTIVE - NEEDS EVALUATION			
BESTWAY TRANSPORTATION			COMPLETED - CASE CLOSED	575 WEBER ST E	COMPTON	33.92119 -118.219421
BOWMAN PLATING CO., INC.	71002231 VOLUNT		ACTIVE	2631 E. 126TH STREET	COMPTON	33.918047 -118.22472
BROWN AND BROWN MACHINE CO.			COMPLETED - CASE CLOSED	3200 ALAMEDA ST N	COMPTON	33.920782 -118.223135
CALTRANS - WITCO CHEMICAL CO. (FORMER)			OPEN - ASSESSMENT & INTERIM REMEDIAL ACTION	2601 E. IMPERIAL HIGHWAY	LYNWOOD	33.930231 -118.224656
CALTRANS WITCO	60000486 VOLUNT		ACTIVE	2601 E. EMPERIAL HWY.	LYNWOOD	33.927589 -118.22282
CHEMICAL TECHNOLOGY LABS	80001543 CORREC		ACTIVE	12150 S ALAMEDA ST	LYNWOOD	33.922749 -118.22384
CHEROKEE TRUCKING	19470007 EVALUA		NO FURTHER ACTION	414 EAST BANNING STREET	COMPTON	33.9177288 -118.2214
CITY OF LYNWOOD REDEVELOPMENT - PHASE II (PLAZA MEXICO EXTENSION)	60001357 EVALUA		ACTIVE	AREA BETWEEN IMPERIAL HIGHWAY, STATE STREET AND 105 FREEWAY	LYNWOOD	33.9301082 -118.21771
CITY OF LYNWOOD REDEVELOPMENT PHASE I (ALAMEDA TRIANGLE)	60001308 VOLUNT		ACTIVE	NORTHEAST CORNER OF ALAMEDA STREET & IMPERIAL HIGHWAY	LYNWOOD	33.9310051 -118.22434
COORDINATED RIDLEY TRUSTS			COMPLETED - CASE CLOSED	2903 LYNWOOD RD	LYNWOOD	33.9260244 -118.2209999
DV INDUSTRIES, INC.	71002759 TIERED F		REFER: OTHER AGENCY	2605 INDUSTRY WAY	LYNWOOD	33.9240739 -118.22647
DV INDUSTRIES, INC.	71003813 TIERED F		REFER: OTHER AGENCY	2588 INDUSTRY WAY	LYNWOOD	33.923565 -118.22808
FLASK CHEMICAL CO.			COMPLETED - CASE CLOSED	11642 MONA BLVD	LYNWOOD	33.92756 -118.229266
FORMER ATHENS TANK FARM/FORMER UJIMA VILLAGE & APARTMENTS	19290308 VOLUNT		ACTIVE	941 EAST 126TH STREET	LOS ANGELES	33.919905 -118.25643
GREG BELL TRUCKING CO			OPEN - SITE ASSESSMENT	430 WEBER AVE. E.	COMPTON	33.919594 -118.221093
H M GREENFIELD AND SONS INC			COMPLETED - CASE CLOSED	522 WEBER AVE E	COMPTON	33.9200235 -118.2204768
HOOPER TEXACO SERVICE			OPEN - ASSESSMENT & INTERIM REMEDIAL ACTION	11913 COMPTON AVE S	LOS ANGELES	33.9242817 -118.2463258
IDEAL METALS PROCESSING			COMPLETED - CASE CLOSED	1437 EL SEGUNDO BLVD W	COMPTON	33.9168329 -118.246922
JESSE BELL			COMPLETED - CASE CLOSED	1916 126TH ST E	WILLOWBROOK	33.9180075 -118.2383703
KENNETH HAHN PLAZA			OPEN - ASSESSMENT & INTERIM REMEDIAL ACTION	11700 S. WILMINGTON AVE	LOS ANGELES	33.92683005 -118.2387444
LINDBERGH ELEMENTARY SCHOOL	19880079 SCHOOL		NO FURTHER ACTION	3171-3215 EL SEGUNDO BOULEVARD	LYNWOOD	33.9174 -118.2146
LOGISTICS EXPRESS			COMPLETED - CASE CLOSED	11711 ALAMEDA ST S	LYNWOOD	33.926699 -118.226745
LYNWOOD FACILITY	WDR100007622 * WDR S		ACTIVE - WDR	2801 LYNWOOD ROAD	LYNWOOD	33.92595 -118.22282
LYNWOOD TSI #1	70000022 EVALUA		INACTIVE - NEEDS EVALUATION	11400, 11410, 11420 SOUTH ALAMEDA AVENUE	LYNWOOD	33.93206 -118.22533
LYNWOOD TSI #2	70000021 EVALUA		INACTIVE - ACTION REQUIRED	FERNWOOD AVENUE OF THE ALAMEDA TRIANGLE	LYNWOOD	33.931944 -118.22333
MAGNETEK	60000484 VOLUNT		ACTIVE	11510 S. ALAMEDA STREET	LYNWOOD	33.930549 -118.22416
MARTIN LUTHER KING JR HOSPITAL			COMPLETED - CASE CLOSED	12021 WILMINGTON AVE S	WILLOWBROOK	33.9238136 -118.239165
MARTIN METAL FINISHING			OPEN - INACTIVE	12150 SOUTH ALAMEDA ST	LYNWOOD	33.92245893 -118.2231688
MARTIN METAL FINISHING			OPEN - INACTIVE	12150 ALAMEDA ST S	LYNWOOD	33.9234015 -118.224093
MARTIN METAL FINISHING INC.	80001435 CORREC		ACTIVE	12150 S ALAMEDA ST	LYNWOOD	33.9223698 -118.22345
MCWHORTER TECH/ CARGILL CHEM.	T0603701300 CLEANU	UP PROGRAM SITE	OPEN - INACTIVE	2801 LYNWOOD RD	LYNWOOD	33.9259854 -118.22274
MICHAEL'S FURNITURE MFG. CO.	T0603705063 LUST CLI	LEANUP SITE	COMPLETED - CASE CLOSED	2828 BUTLER AVE	LYNWOOD	33.9232935 -118.2223499
MOBIL (FORMER)			COMPLETED - CASE CLOSED	1836 IMPERIAL HWY E	LOS ANGELES	33.9294145 -118.2404056
MONTGOMERY WARDS			COMPLETED - CASE CLOSED	3100 IMPERIAL HWY E	LYNWOOD	33.929226 -118.214942
NATIONAL CYLINDER GAS CO.	80001109 FUDS		INACTIVE - NEEDS EVALUATION		LOS ANGELES	33.9333333 -118.23083
PCCR USA INC.	80001674 CORREC		ACTIVE	2801 LYNWOOD RD	LYNWOOD	33.9264383 -118.22219
POLYNT COMPOSITES USA INC	3000252 INSPECT		NO ACTION	2801 LYNWOOD RD	LYNWOOD	33.9266078 -118.22218
POLYNT COMPOSITES USA INC	CAD076180843 RCRA		UNDERGOING CLOSURE	2801 LYNWOOD RD	LYNWOOD	33.926689 -118.22193
PROCESSES BY MARTIN INC	CAD059794974 RCRA		UNDERGOING CLOSURE	12150 S ALAMEDA ST	LYNWOOD	33.922385 -118.22402
PROCESSES BY MARTIN INC	CAD008275885 RCRA		UNDERGOING CLOSURE	12150 S ALAMEDA ST	LYNWOOD	33.922749 -118.22384
PROCESSES BY MARTIN INC	3000019 INSPECT		NO ACTION	12150 S ALAMEDA ST	LYNWOOD	33.9225301 -118.22239
PROCESSES BY MARTIN INC	3000983 INSPECT	TION	NO ACTION	12150 S ALAMEDA ST	LYNWOOD	33.922749 -118.22384
PROPERTY @ 3000 E. IMPERIAL LLC	WDR100001833 * WDR S	SITE	ACTIVE - WDR	3000 EAST IMPERIAL HIGHWAY	LYNWOOD	33.93011 -118.21773
QUALITY METALS REFINISHING	T0603703831 LUST CLI	LEANUP SITE	COMPLETED - CASE CLOSED	11754 ALAMEDA ST S	LYNWOOD	33.9265404 -118.2244641
S & K PLATING COMPANY	60001461 EVALUA		INACTIVE - ACTION REQUIRED	2727 NORTH COMPTON AVENUE 2727 NORTH COMPTON AVENUE	COMPTON	33.91712 -118.24638
S&K INDUSTRIES, INC.	71003327 TIERED F		REFER: OTHER AGENCY	1821 W. EL SEGUNDO BOULEVARD	COMPTON	33.9168469 -118.25165
SHELL #204-4531-4105			COMPLETED - CASE CLOSED	1150 IMPERIAL HWY E	LOS ANGELES	33.9293006 -118.2553301
TMB OIL			OPEN - REMEDIATION	1340 IMPERIAL HWY E.	WILLOWBROOK	33.929363 -118.250357
UJIMA VILLAGE APARTMENTS / FORMER ATHENS TANK FARM			OPEN - REMEDIATION	941 EAST 126TH ST	LOS ANGELES	33.91715274 -118.2616425
UNOCAL #5840			COMPLETED - CASE CLOSED	611 IMPERIAL HWY E	LOS ANGELES	33.9310716 -118.2646594
USF BESTWAY			COMPLETED - CASE CLOSED	575 WEBER ST. E.	COMPTON	33.921163 -118.219421
WESTECH LYNWOOD SITE	60002028 VOLUNT		ACTIVE	2600 EAST IMPERIAL HIGHWAY	LYNWOOD	33.928237 -118.22396
WESTECH SITE	WDR100039476 * WDR S		ACTIVE - WDR	2600 EAST IMPERIAL HIGHWAY	LYNWOOD	33.93002 -118.22521
WESTERN GEAR WORKS	80000673 FUDS		INACTIVE - NEEDS EVALUATION		LOS ANGELES	33.9280555 -118.22222
WESTERN WASTE INDUSTRIAL			COMPLETED - CASE CLOSED	407 EL SEGUNDO BLVD E	COMPTON	33.9164094 -118.2215112
WILLOW APARTMENTS	SL204DG2390 LUST CLI	LEANUP SITE	OPEN - REMEDIATION	12612 SOUTH WILMINGTON STREET	COMPTON	33.91782048 -118.238833

Appendix E Noise Modeling

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Avalon Boulevard n/o Imperial Hwy	40			18350	70.1	67.6	66.1	71.3	68.9	67.3
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	40			17490	69.5	67.2	65.7	70.7	68.4	66.9
Central Avenue between Century Blvd and 108th St	40			28050	71.5	69.2	67.8	72.7	70.5	69.0
Central Avenue between 108th St and 120th St	40			24370	71.3	68.9	67.3	72.5	70.1	68.5
Central Avenue between 120th St and Rosecrans Ave	40			21990	70.5	68.2	66.7	71.7	69.4	67.9
Future No Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Avalon Boulevard n/o Imperial Hwy	40			20550	70.6	68.1	66.6	71.8	69.3	67.8
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	40			18710	69.8	67.5	66.0	71.0	68.7	67.2
Central Avenue between Century Blvd and 108th St	40			31770	72.1	69.8	68.3	73.3	71.0	69.5
Central Avenue between 108th St and 120th St	40			27980	71.9	69.5	67.9	73.1	70.7	69.1
Central Avenue between 120th St and Rosecrans Ave	40			25470	71.1	68.8	67.3	72.3	70.0	68.6
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Avalon Boulevard n/o Imperial Hwy	40			21250	70.7	68.3	66.7	71.9	69.5	67.9
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	40			19450	69.9	67.7	66.2	71.1	68.9	67.4
Central Avenue between Century Blvd and 108th St	40			32760	72.2	69.9	68.4	73.4	71.1	69.7
Central Avenue between 108th St and 120th St	40			38110	73.3	70.8	69.3	74.5	72.0	70.5
Central Avenue between 120th St and Rosecrans Ave	40			26630	71.3	69.0	67.5	72.5	70.2	68.8

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Avalon Boulevard n/o Imperial Hwy	0.2	0.6	0.1	0.6	
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	0.2	0.5	0.2	0.5	
Central Avenue between Century Blvd and 108th St	0.1	0.6	0.2	0.7	
Central Avenue between 108th St and 120th St	1.3	1.9	1.4	2.0	
Central Avenue between 120th St and Rosecrans Ave	0.2	0.8	0.2	0.9	

	% of ADT						
Vehicle Type	Day	Eve	Night	Sub total			
Auto	77.6%	9.7%	9.7%	97.0%			
Medium Truck	1.6%	0.2%	0.2%	2.0%			
Heavy Truck	0.8%	0.1%	0.1%	1.0%			
	80.0%	10.0%	10.0%	100.0%			

TENS 1.1 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Comption Avenue between Century Blvd and 120th St	40			13270	68.7	66.2	64.7	69.9	67.4	65.9
Comption Avenue between 120th St and El Segundo Blvd	40			9810	67.0	64.7	63.2	68.2	65.9	64.4
Wilmington Avenue between Century Blvd and 112th St	35			14800	68.9	66.0	64.2	70.2	67.2	65.4
Wilmington Avenue between 112th St and I-105	35			16670	69.5	66.5	64.7	70.7	67.7	65.9
Wilmington Avenue between I-105 and 119th St	40			22090	72.5	69.3	67.5	73.8	70.5	68.7
Future No Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Comption Avenue between Century Blvd and 120th St	40			13390	68.7	66.3	64.7	69.9	67.5	65.9
Comption Avenue between 120th St and El Segundo Blvd	40			10000	67.0	64.8	63.3	68.3	66.0	64.5
Wilmington Avenue between Century Blvd and 112th St	35			16350	69.4	66.4	64.6	70.6	67.6	65.9
Wilmington Avenue between 112th St and I-105	35			17650	69.7	66.7	65.0	70.9	67.9	66.2
Wilmington Avenue between I-105 and 119th St	40			23430	72.8	69.6	67.7	74.0	70.8	68.9
Future With Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Comption Avenue between Century Blvd and 120th St	40			17910	70.0	67.5	66.0	71.2	68.7	67.2
Comption Avenue between 120th St and El Segundo Blvd	40			12470	68.0	65.7	64.2	69.2	66.9	65.5
Wilmington Avenue between Century Blvd and 112th St	35			16790	69.5	66.5	64.8	70.7	67.7	66.0
Wilmington Avenue between 112th St and I-105	35			22520	70.8	67.8	66.0	72.0	69.0	67.3
Wilmington Avenue between I-105 and 119th St	40			33740	74.4	71.1	69.3	75.6	72.4	70.5

CNEL

Summary	nmary 25 ft. from ROW			om ROW
	Project	Cumulative	Project	Cumulative
Roadway/Segment	Increment	Increment	Increment	Increment
Comption Avenue between Century Blvd and 120th St	1.2	1.3	1.3	1.3
Comption Avenue between 120th St and El Segundo Blvd	0.9	1.0	1.0	1.1
Wilmington Avenue between Century Blvd and 112th St	0.1	0.5	0.1	0.6
Wilmington Avenue between 112th St and I-105	1.1	1.3	1.1	1.4
Wilmington Avenue between I-105 and 119th St	1.6	1.9	1.6	1.8

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.2 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	s		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Wilmington Avenue between 119th St and Rosecrans Ave	40			19700	70.0	67.7	66.2	71.2	68.9	67.4
Mona Boulevard between Imperial Hwy and 119th St	40			9680	69.0	65.7	63.9	70.2	66.9	65.1
Alameda Street between 103rd and Imperial Hwy	40			23840	72.4	69.4	67.7	73.6	70.6	68.9
Alameda Street between Imperial Hwy and Rosecrans Ave	40			20480	71.7	68.7	67.0	72.9	70.0	68.2
103rd Street w/o Central Ave	40			6130	65.3	62.9	61.3	66.5	64.1	62.5
Future No Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Wilmington Avenue between 119th St and Rosecrans Ave	40			20300	70.1	67.8	66.4	71.3	69.1	67.6
Mona Boulevard between Imperial Hwy and 119th St	40			9680	69.0	65.7	63.9	70.2	66.9	65.1
Alameda Street between 103rd and Imperial Hwy	40			23930	72.4	69.4	67.7	73.6	70.6	68.9
Alameda Street between Imperial Hwy and Rosecrans Ave	40			20500	71.7	68.8	67.0	73.0	70.0	68.2
103rd Street w/o Central Ave	40			6780	65.8	63.3	61.8	67.0	64.5	63.0
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Wilmington Avenue between 119th St and Rosecrans Ave	40			25450	71.1	68.8	67.3	72.3	70.0	68.6
Mona Boulevard between Imperial Hwy and 119th St	40			10190	69.2	65.9	64.1	70.4	67.2	65.3
Alameda Street between 103rd and Imperial Hwy	40			25660	72.7	69.7	68.0	73.9	70.9	69.2
Alameda Street between Imperial Hwy and Rosecrans Ave	40			20660	71.8	68.8	67.0	73.0	70.0	68.2
103rd Street w/o Central Ave	40			6830	65.8	63.3	61.8	67.0	64.6	63.0

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Wilmington Avenue between 119th St and Rosecrans Ave	0.9	1.1	1.0	1.2	
Mona Boulevard between Imperial Hwy and 119th St	0.3	0.3	0.2	0.2	
Alameda Street between 103rd and Imperial Hwy	0.3	0.3	0.3	0.3	
Alameda Street between Imperial Hwy and Rosecrans Ave	0.0	0.0	0.0	0.0	
103rd Street w/o Central Ave	0.1	0.5	0.0	0.5	

		% of ADT							
Vehicle Type	Day	Day Eve Night							
Auto	77.6%	9.7%	9.7%	97.0%					
Medium Truck	1.6%	0.2%	0.2%	2.0%					
Heavy Truck	0.8%	0.1%	0.1%	1.0%					
	80.0%	10.0%	10.0%	100.0%					

TENS 1.3 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq		CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
103rd Street between Central Ave and Wilmington Ave	40			10970	67.4	65.2	63.7	68.7	66.4	64.9
103rd Street between Wilmington Ave Alameda St	35			9080	66.8	63.8	62.1	68.0	65.1	63.3
112th Street between Railroad and Mona Blvd	35			990	57.2	54.2	52.5	58.4	55.4	53.7
Imperial Highway between San Pedro St and Avalon Blvd	40			23590	70.1	68.1	66.7	71.3	69.3	67.9
Imperial Highway between Avalon Blvd and Slater Ave	40			32090	71.5	69.4	68.1	72.7	70.7	69.3
Future No Project										
	Speed	Traffic Volumes			Leq		CNEL			
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
103rd Street between Central Ave and Wilmington Ave	40			12130	67.9	65.6	64.1	69.1	66.8	65.3
103rd Street between Wilmington Ave Alameda St	35			10100	67.3	64.3	62.6	68.5	65.5	63.8
112th Street between Railroad and Mona Blvd	35			1070	57.5	54.6	52.8	58.7	55.8	54.0
Imperial Highway between San Pedro St and Avalon Blvd	40			25780	70.5	68.5	67.1	71.7	69.7	68.3
Imperial Highway between Avalon Blvd and Slater Ave	40			35370	71.9	69.9	68.5	73.1	71.1	69.7
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
103rd Street between Central Ave and Wilmington Ave	40			12160	67.9	65.6	64.1	69.1	66.8	65.3
103rd Street between Wilmington Ave Alameda St	35			10270	67.4	64.4	62.6	68.6	65.6	63.8
112th Street between Railroad and Mona Blvd	35			2240	60.7	57.8	56.0	62.0	59.0	57.2
Imperial Highway between San Pedro St and Avalon Blvd	40			27660	70.8	68.8	67.4	72.0	70.0	68.6
Imperial Highway between Avalon Blvd and Slater Ave	40			37410	72.1	70.1	68.7	73.3	71.3	69.9

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
103rd Street between Central Ave and Wilmington Ave	0.0	0.4	0.0	0.4	
103rd Street between Wilmington Ave Alameda St	0.1	0.5	0.0	0.5	
112th Street between Railroad and Mona Blvd	3.2	3.6	3.2	3.5	
Imperial Highway between San Pedro St and Avalon Blvd	0.3	0.7	0.3	0.7	
Imperial Highway between Avalon Blvd and Slater Ave	0.2	0.6	0.2	0.6	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.4 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Imperial Highway between Slater Ave and Wilmington Ave	40			28730	71.6	69.3	67.9	72.8	70.6	69.1
Imperial Highway between Wilmington Ave and Alameda St	40			34110	71.7	69.7	68.3	72.9	70.9	69.5
Imperial Highway e/o Alameda St	40			23650	70.1	68.1	66.7	71.4	69.3	68.0
118th Street between Compton Ave and Wilmington Ave	35			4940	64.2	61.2	59.5	65.4	62.4	60.7
120th Street between San Pedro St and Central Ave	40			13230	69.2	66.5	64.9	70.4	67.7	66.1
Future No Project										
	Speed	Traffic Volumes			Leq		CNEL			
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Imperial Highway between Slater Ave and Wilmington Ave	40			28960	71.7	69.4	67.9	72.9	70.6	69.1
Imperial Highway between Wilmington Ave and Alameda St	40			35330	71.9	69.9	68.5	73.1	71.1	69.7
Imperial Highway e/o Alameda St	40			24520	70.3	68.3	66.9	71.5	69.5	68.1
118th Street between Compton Ave and Wilmington Ave	35			13290	68.5	65.5	63.7	69.7	66.7	65.0
120th Street between San Pedro St and Central Ave	40			15120	69.7	67.1	65.4	71.0	68.3	66.7
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Imperial Highway between Slater Ave and Wilmington Ave	40			31340	72.0	69.7	68.2	73.2	70.9	69.5
Imperial Highway between Wilmington Ave and Alameda St	40			43100	72.7	70.7	69.3	74.0	71.9	70.6
Imperial Highway e/o Alameda St	40			25960	70.5	68.5	67.1	71.8	69.7	68.4
118th Street between Compton Ave and Wilmington Ave	35			13850	68.7	65.7	63.9	69.9	66.9	65.1
120th Street between San Pedro St and Central Ave	40			16530	70.1	67.5	65.8	71.3	68.7	67.0

CNEL

Summary	25 ft. fro	m ROW	At ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Imperial Highway between Slater Ave and Wilmington Ave	0.3	0.3	0.3	0.4	
Imperial Highway between Wilmington Ave and Alameda St	0.8	1.0	0.9	1.1	
Imperial Highway e/o Alameda St	0.2	0.4	0.3	0.4	
118th Street between Compton Ave and Wilmington Ave	0.2	4.5	0.2	4.5	
120th Street between San Pedro St and Central Ave	0.4	1.0	0.3	0.9	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.5 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

xisting										
	Speed		Traffic Volume	s		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
120th Street between Central Ave and Compton Ave	40			16420	69.2	66.9	65.4	70.4	68.1	66.7
119th Street between Compton Ave and Wilmington Ave	35			14020	68.7	65.7	64.0	69.9	66.9	65.2
119th Street between Wilmington Ave and Willowbrook Ave	35			9660	67.1	64.1	62.4	68.3	65.3	63.6
119th Street between Willowbrook Ave and Mona Blvd	35			6020	65.0	62.1	60.3	66.2	63.3	61.5
El Segundo Boulevard between San Pedro St and Slater Ave	40			25090	70.4	68.4	67.0	71.6	69.6	68.2
Future No Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
120th Street between Central Ave and Compton Ave	40			17710	69.5	67.2	65.8	70.7	68.5	67.0
119th Street between Compton Ave and Wilmington Ave	35			14190	68.8	65.8	64.0	70.0	67.0	65.2
119th Street between Wilmington Ave and Willowbrook Ave	35			9660	67.1	64.1	62.4	68.3	65.3	63.6
119th Street between Willowbrook Ave and Mona Blvd	35			6020	65.0	62.1	60.3	66.2	63.3	61.5
El Segundo Boulevard between San Pedro St and Slater Ave	40			28760	71.0	69.0	67.6	72.2	70.2	68.8
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
120th Street between Central Ave and Compton Ave	40			22320	70.5	68.3	66.8	71.7	69.5	68.0
119th Street between Compton Ave and Wilmington Ave	35			19620	70.2	67.2	65.4	71.4	68.4	66.7
119th Street between Wilmington Ave and Willowbrook Ave	35			10270	67.4	64.4	62.6	68.6	65.6	63.8
119th Street between Willowbrook Ave and Mona Blvd	35			6490	65.4	62.4	60.6	66.6	63.6	61.9
El Segundo Boulevard between San Pedro St and Slater Ave	40			29380	71.1	69.1	67.7	72.3	70.3	68.9

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
120th Street between Central Ave and Compton Ave	1.0	1.4	1.0	1.3	
119th Street between Compton Ave and Wilmington Ave	1.4	1.5	1.5	1.5	
119th Street between Wilmington Ave and Willowbrook Ave	0.3	0.3	0.2	0.2	
119th Street between Willowbrook Ave and Mona Blvd	0.3	0.3	0.4	0.4	
El Segundo Boulevard between San Pedro St and Slater Ave	0.1	0.7	0.1	0.7	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.6 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard between Slater Ave and Wilmington Ave	40			23840	70.8	68.5	67.1	72.0	69.8	68.3
El Segundo Boulevard between Wilmington Ave and Alameda Ave	40			15500	68.9	66.7	65.2	70.2	67.9	66.4
Rosecrans Avenue between San Pedro St and Willowbrook Ave	40			22220	70.5	68.2	66.7	71.7	69.4	68.0
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	40			24330	70.9	68.6	67.1	72.1	69.8	68.4
I-105 between Compton Ave and Mona Blvd	65			101360	80.4	78.8	77.7	81.6	80.0	78.9
Future No Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard between Slater Ave and Wilmington Ave	40			24840	71.0	68.7	67.2	72.2	69.9	68.4
El Segundo Boulevard between Wilmington Ave and Alameda Ave	40			16200	69.1	66.9	65.4	70.3	68.1	66.6
Rosecrans Avenue between San Pedro St and Willowbrook Ave	40			22930	70.6	68.4	66.9	71.9	69.6	68.1
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	40			25040	71.0	68.8	67.3	72.2	70.0	68.5
I-105 between Compton Ave and Mona Blvd	65			111210	80.8	79.2	78.1	82.0	80.4	79.3
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard between Slater Ave and Wilmington Ave	40			27090	71.4	69.1	67.6	72.6	70.3	68.8
El Segundo Boulevard between Wilmington Ave and Alameda Ave	40			17560	69.5	67.2	65.7	70.7	68.4	66.9
Rosecrans Avenue between San Pedro St and Willowbrook Ave	40			24110	70.9	68.6	67.1	72.1	69.8	68.3
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	40			26410	71.3	69.0	67.5	72.5	70.2	68.7
I-105 between Compton Ave and Mona Blvd	65			114940	80.9	79.4	78.2	82.1	80.6	79.4

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
El Segundo Boulevard between Slater Ave and Wilmington Ave	0.4	0.5	0.4	0.5	
El Segundo Boulevard between Wilmington Ave and Alameda Ave	0.3	0.5	0.3	0.5	
Rosecrans Avenue between San Pedro St and Willowbrook Ave	0.2	0.4	0.2	0.3	
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	0.2	0.4	0.2	0.3	
I-105 between Compton Ave and Mona Blvd	0.2	0.6	0.1	0.5	

		% of ADT							
Vehicle Type	Day	Eve	Night	Sub total					
Auto	77.6%	9.7%	9.7%	97.0%					
Medium Truck	1.6%	0.2%	0.2%	2.0%					
Heavy Truck	0.8%	0.1%	0.1%	1.0%					
	80.0%	10.0%	10.0%	100.0%					

TENS 1.7 Wil 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Avalon Boulevard n/o Imperial Hwy	40			18350	70.1	67.6	66.1	71.3	68.9	67.3
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	40			17490	69.5	67.2	65.7	70.7	68.4	66.9
Central Avenue between Century Blvd and 108th St	40			28050	71.5	69.2	67.8	72.7	70.5	69.0
Central Avenue between 108th St and 120th St	40			24370	71.3	68.9	67.3	72.5	70.1	68.5
Central Avenue between 120th St and Rosecrans Ave	40			21990	70.5	68.2	66.7	71.7	69.4	67.9
Existing With Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Avalon Boulevard n/o Imperial Hwy	40			19050	70.2	67.8	66.2	71.5	69.0	67.5
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	40			18230	69.6	67.4	65.9	70.9	68.6	67.1
Central Avenue between Century Blvd and 108th St	40			29040	71.7	69.4	67.9	72.9	70.6	69.1
Central Avenue between 108th St and 120th St	40			34500	72.8	70.4	68.8	74.0	71.6	70.0
Central Avenue between 120th St and Rosecrans Ave	40			23150	70.7	68.4	66.9	71.9	69.6	68.1

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cu		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Avalon Boulevard n/o Imperial Hwy	0.1	-	0.2	-	
Avalon Boulevard between Imperial Hwy and Rosecrans Ave	0.2	-	0.2	-	
Central Avenue between Century Blvd and 108th St	0.1	-	0.1	-	
Central Avenue between 108th St and 120th St	1.5	-	1.5	-	
Central Avenue between 120th St and Rosecrans Ave	0.2	-	0.2	-	

		% of ADT							
Vehicle Type	Day	Eve	Night	Sub total					
Auto	77.6%	9.7%	9.7%	97.0%					
Medium Truck	1.6%	0.2%	0.2%	2.0%					
Heavy Truck	0.8%	0.1%	0.1%	1.0%					
	80.0%	10.0%	10.0%	100.0%					

TENS 1.8 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Comption Avenue between Century Blvd and 120th St	40			13270	68.7	66.2	64.7	69.9	67.4	65.9
Comption Avenue between 120th St and El Segundo Blvd	40			9810	67.0	64.7	63.2	68.2	65.9	64.4
Wilmington Avenue between Century Blvd and 112th St	35			14800	68.9	66.0	64.2	70.2	67.2	65.4
Wilmington Avenue between 112th St and I-105	35			16670	69.5	66.5	64.7	70.7	67.7	65.9
Wilmington Avenue between I-105 and 119th St	40			22090	72.5	69.3	67.5	73.8	70.5	68.7
Existing With Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Comption Avenue between Century Blvd and 120th St	40			17790	69.9	67.5	66.0	71.2	68.7	67.2
Comption Avenue between 120th St and El Segundo Blvd	40			12280	67.9	65.7	64.2	69.1	66.9	65.4
Wilmington Avenue between Century Blvd and 112th St	35			15420	69.1	66.1	64.4	70.3	67.4	65.6
Wilmington Avenue between 112th St and I-105	35			21540	70.6	67.6	65.8	71.8	68.8	67.1
Wilmington Avenue between I-105 and 119th St	40			32400	74.2	71.0	69.1	75.4	72.2	70.4

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Comption Avenue between Century Blvd and 120th St	1.3	-	1.3	-	
Comption Avenue between 120th St and El Segundo Blvd	1.0	-	1.0	-	
Wilmington Avenue between Century Blvd and 112th St	0.2	-	0.2	-	
Wilmington Avenue between 112th St and I-105	1.1	-	1.2	-	
Wilmington Avenue between I-105 and 119th St	1.7	-	1.7	-	

		% of ADT							
Vehicle Type	Day	Eve	Night	Sub total					
Auto	77.6%	9.7%	9.7%	97.0%					
Medium Truck	1.6%	0.2%	0.2%	2.0%					
Heavy Truck	0.8%	0.1%	0.1%	1.0%					
	80.0%	10.0%	10.0%	100.0%					

TENS 1.9 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
Existing											
	Speed		Traffic Volume			Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
Wilmington Avenue between 119th St and Rosecrans Ave	40			19700	70.0	67.7	66.2	71.2	68.9	67.4	
Mona Boulevard between Imperial Hwy and 119th St	40			9680	69.0	65.7	63.9	70.2	66.9	65.1	
Alameda Street between 103rd and Imperial Hwy	40			23840	72.4	69.4	67.7	73.6	70.6	68.9	
Alameda Street between Imperial Hwy and Rosecrans Ave	40			20480	71.7	68.7	67.0	72.9	70.0	68.2	
103rd Street w/o Central Ave	40			6130	65.3	62.9	61.3	66.5	64.1	62.5	
Existing With Project											
	Speed		Traffic Volume			Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
Wilmington Avenue between 119th St and Rosecrans Ave	40			24850	71.0	68.7	67.2	72.2	69.9	68.4	
Mona Boulevard between Imperial Hwy and 119th St	40			10190	69.2	65.9	64.1	70.4	67.2	65.3	
Alameda Street between 103rd and Imperial Hwy	40			25570	72.7	69.7	68.0	73.9	70.9	69.2	
Alameda Street between Imperial Hwy and Rosecrans Ave	40			20640	71.8	68.8	67.0	73.0	70.0	68.2	
103rd Street w/o Central Ave	40			6180	65.4	62.9	61.4	66.6	64.1	62.6	

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Wilmington Avenue between 119th St and Rosecrans Ave	1.0	-	1.0	-	
Mona Boulevard between Imperial Hwy and 119th St	0.3	-	0.2	-	
Alameda Street between 103rd and Imperial Hwy	0.3	-	0.3	-	
Alameda Street between Imperial Hwy and Rosecrans Ave	0.0	-	0.0	-	
103rd Street w/o Central Ave	0.0	-	0.1	-	

		% of ADT							
Vehicle Type	Day	Eve	Night	Sub total					
Auto	77.6%	9.7%	9.7%	97.0%					
Medium Truck	1.6%	0.2%	0.2%	2.0%					
Heavy Truck	0.8%	0.1%	0.1%	1.0%					
	80.0%	10.0%	10.0%	100.0%					

TENS 1.10 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
Existing										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
103rd Street between Central Ave and Wilmington Ave	40			10970	67.4	65.2	63.7	68.7	66.4	64.9
103rd Street between Wilmington Ave Alameda St	35			9080	66.8	63.8	62.1	68.0	65.1	63.3
112th Street between Railroad and Mona Blvd	35			990	57.2	54.2	52.5	58.4	55.4	53.7
Imperial Highway between San Pedro St and Avalon Blvd	40			23590	70.1	68.1	66.7	71.3	69.3	67.9
Imperial Highway between Avalon Blvd and Slater Ave	40			32090	71.5	69.4	68.1	72.7	70.7	69.3
Existing With Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
103rd Street between Central Ave and Wilmington Ave	40			11000	67.5	65.2	63.7	68.7	66.4	64.9
103rd Street between Wilmington Ave Alameda St	35			9250	66.9	63.9	62.2	68.1	65.1	63.4
112th Street between Railroad and Mona Blvd	35			2160	60.6	57.6	55.9	61.8	58.8	57.1
Imperial Highway between San Pedro St and Avalon Blvd	40			25470	70.5	68.4	67.1	71.7	69.7	68.3
Imperial Highway between Avalon Blvd and Slater Ave	40			34130	71.7	69.7	68.3	72.9	70.9	69.5

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
103rd Street between Central Ave and Wilmington Ave	0.0	-	0.0	-	
103rd Street between Wilmington Ave Alameda St	0.0	-	0.1	-	
112th Street between Railroad and Mona Blvd	3.4	-	3.4	-	
Imperial Highway between San Pedro St and Avalon Blvd	0.4	-	0.4	-	
Imperial Highway between Avalon Blvd and Slater Ave	0.2	-	0.2	-	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.11 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
Existing											
	Speed		Traffic Volume	es		Leq		CNEL			
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
Imperial Highway between Slater Ave and Wilmington Ave	40			28730	71.6	69.3	67.9	72.8	70.6	69.1	
Imperial Highway between Wilmington Ave and Alameda St	40			34110	71.7	69.7	68.3	72.9	70.9	69.5	
Imperial Highway e/o Alameda St	40			23650	70.1	68.1	66.7	71.4	69.3	68.0	
118th Street between Compton Ave and Wilmington Ave	35			4940	64.2	61.2	59.5	65.4	62.4	60.7	
120th Street between San Pedro St and Central Ave	40			13230	69.2	66.5	64.9	70.4	67.7	66.1	
Existing With Project											
	Speed		Traffic Volume	es		Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
Imperial Highway between Slater Ave and Wilmington Ave	40			31110	72.0	69.7	68.2	73.2	70.9	69.4	
Imperial Highway between Wilmington Ave and Alameda St	40			41880	72.6	70.6	69.2	73.8	71.8	70.4	
Imperial Highway e/o Alameda St	40	ĺ		25090	70.4	68.4	67.0	71.6	69.6	68.2	
118th Street between Compton Ave and Wilmington Ave	35			5500	64.6	61.7	59.9	65.9	62.9	61.1	
120th Street between San Pedro St and Central Ave	40			14640	69.6	66.9	65.3	70.8	68.2	66.5	

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Imperial Highway between Slater Ave and Wilmington Ave	0.3	-	0.3	-	
Imperial Highway between Wilmington Ave and Alameda St	0.9	-	0.9	-	
Imperial Highway e/o Alameda St	0.3	-	0.2	-	
118th Street between Compton Ave and Wilmington Ave	0.5	-	0.4	-	
120th Street between San Pedro St and Central Ave	0.5	-	0.4	-	

	% of ADT							
Vehicle Type	Day	Day Eve Night						
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.12 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
				0	-	-	-	-	-	-	
Existing											
	Speed		Traffic Volume			Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
120th Street between Central Ave and Compton Ave	40			16420	69.2	66.9	65.4	70.4	68.1	66.7	
119th Street between Compton Ave and Wilmington Ave	35			14020	68.7	65.7	64.0	69.9	66.9	65.2	
119th Street between Wilmington Ave and Willowbrook Ave	35			9660	67.1	64.1	62.4	68.3	65.3	63.6	
119th Street between Willowbrook Ave and Mona Blvd	35			6020	65.0	62.1	60.3	66.2	63.3	61.5	
El Segundo Boulevard between San Pedro St and Slater Ave	40			25090	70.4	68.4	67.0	71.6	69.6	68.2	
Existing With Project											
	Speed		Traffic Volume	es		Leq			CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet	
120th Street between Central Ave and Compton Ave	40			21030	70.3	68.0	66.5	71.5	69.2	67.7	
119th Street between Compton Ave and Wilmington Ave	35			19450	70.1	67.2	65.4	71.3	68.4	66.6	
119th Street between Wilmington Ave and Willowbrook Ave	35			10270	67.4	64.4	62.6	68.6	65.6	63.8	
119th Street between Willowbrook Ave and Mona Blvd	35			6490	65.4	62.4	60.6	66.6	63.6	61.9	
El Segundo Boulevard between San Pedro St and Slater Ave	40			25710	70.5	68.5	67.1	71.7	69.7	68.3	

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
120th Street between Central Ave and Compton Ave	1.1	-	1.0	-	
119th Street between Compton Ave and Wilmington Ave	1.5	-	1.4	-	
119th Street between Wilmington Ave and Willowbrook Ave	0.3	-	0.2	-	
119th Street between Willowbrook Ave and Mona Blvd	0.3	-	0.4	-	
El Segundo Boulevard between San Pedro St and Slater Ave	0.1	-	0.1	-	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.13 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
Existing										
	Speed		Traffic Volume			Leq		CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard between Slater Ave and Wilmington Ave	40			23840	70.8	68.5	67.1	72.0	69.8	68.3
El Segundo Boulevard between Wilmington Ave and Alameda Ave	40			15500	68.9	66.7	65.2	70.2	67.9	66.4
Rosecrans Avenue between San Pedro St and Willowbrook Ave	40			22220	70.5	68.2	66.7	71.7	69.4	68.0
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	40			24330	70.9	68.6	67.1	72.1	69.8	68.4
I-105 between Compton Ave and Mona Blvd	65			101360	80.4	78.8	77.7	81.6	80.0	78.9
Existing With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard between Slater Ave and Wilmington Ave	40			26090	71.2	68.9	67.4	72.4	70.1	68.7
El Segundo Boulevard between Wilmington Ave and Alameda Ave	40			16860	69.3	67.0	65.6	70.5	68.2	66.8
Rosecrans Avenue between San Pedro St and Willowbrook Ave	40			23400	70.7	68.5	67.0	71.9	69.7	68.2
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	40			25700	71.1	68.9	67.4	72.4	70.1	68.6
I-105 between Compton Ave and Mona Blvd	65			104860	80.5	79.0	77.8	81.7	80.2	79.0

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cu		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
El Segundo Boulevard between Slater Ave and Wilmington Ave	0.3	-	0.4	-	
El Segundo Boulevard between Wilmington Ave and Alameda Ave	0.3	-	0.4	-	
Rosecrans Avenue between San Pedro St and Willowbrook Ave	0.3	-	0.2	-	
Rosecrans Avenue between Willowbrook Ave and Alameda Ave	0.3	-	0.2	-	
I-105 between Compton Ave and Mona Blvd	0.2	-	0.1	-	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.14 Wil E 12/7/2016

Project: Willowbrook Transit Oriented District Specific Plan

xisting										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Main Street, N/O and S/O Imperial Hwy	35			11840	67.3	64.7	63.0	68.5	65.9	64.2
San Pedro Street, 108th St to 135th St	40			11320	68.0	65.5	64.0	69.2	66.8	65.2
Avalon Boulevard, N/O Imperial Hwy	40			20440	70.5	68.1	66.6	71.8	69.3	67.8
Central Avenue, Rosecrans Ave to Walnut St	40			19320	69.9	67.6	66.1	71.1	68.8	67.4
Wilmington Avenue, Rosecrans Avenue to SR-91	40			21370	70.3	68.1	66.6	71.6	69.3	67.8
Future No Project										
	Speed	Traffic Volumes			Leq		CNEL			
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Main Street, N/O and S/O Imperial Hwy	35			13490	67.9	65.2	63.6	69.1	66.4	64.8
San Pedro Street, 108th St to 135th St	40			12480	68.4	66.0	64.4	69.6	67.2	65.6
Avalon Boulevard, N/O Imperial Hwy	40			22850	71.0	68.6	67.0	72.2	69.8	68.3
Central Avenue, Rosecrans Ave to Walnut St	40			20860	70.2	68.0	66.5	71.4	69.2	67.7
Wilmington Avenue, Rosecrans Avenue to SR-91	40			21950	70.5	68.2	66.7	71.7	69.4	67.9
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Main Street, N/O and S/O Imperial Hwy	35			13650	67.9	65.3	63.6	69.2	66.5	64.8
San Pedro Street, 108th St to 135th St	40			12560	68.4	66.0	64.4	69.6	67.2	65.7
Avalon Boulevard, N/O Imperial Hwy	40			23550	71.2	68.7	67.2	72.4	69.9	68.4
Central Avenue, Rosecrans Ave to Walnut St	40			21600	70.4	68.1	66.6	71.6	69.3	67.8
Wilmington Avenue, Rosecrans Avenue to SR-91	40			25170	71.0	68.8	67.3	72.3	70.0	68.5

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Project Cumulative		Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Main Street, N/O and S/O Imperial Hwy	0.1	0.6	0.0	0.6	
San Pedro Street, 108th St to 135th St	0.0	0.4	0.1	0.5	
Avalon Boulevard, N/O Imperial Hwy	0.1	0.6	0.1	0.6	
Central Avenue, Rosecrans Ave to Walnut St	0.1	0.5	0.1	0.4	
Wilmington Avenue, Rosecrans Avenue to SR-91	0.6	0.7	0.6	0.7	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.15 Wil 3/16/2017

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	s		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Alameda Street, Rosecrans Ave to SR-91	45			19730	71.2	69.0	67.5	72.4	70.2	68.7
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	40			13910	68.9	66.4	64.9	70.1	67.7	66.1
108th Street, Central Ave to W/O Avalon Blvd	40			7320	66.6	63.9	62.3	67.8	65.1	63.5
Imperial Highway, San Pedro St to W/O Main St	45			24610	72.2	69.9	68.4	73.4	71.1	69.6
Imperial Highway, Alameda St to E/O State St	45			24220	72.1	69.8	68.4	73.3	71.1	69.6
Future No Project										
	Speed		Traffic Volume	es .		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Alameda Street, Rosecrans Ave to SR-91	45			19860	71.3	69.0	67.5	72.5	70.2	68.7
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	40			13910	68.9	66.4	64.9	70.1	67.7	66.1
108th Street, Central Ave to W/O Avalon Blvd	40			8060	67.0	64.3	62.7	68.2	65.6	63.9
Imperial Highway, San Pedro St to W/O Main St	45			27410	72.7	70.4	68.9	73.9	71.6	70.1
Imperial Highway, Alameda St to E/O State St	45			25090	72.3	70.0	68.5	73.5	71.2	69.7
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Alameda Street, Rosecrans Ave to SR-91	45			21160	71.5	69.3	67.8	72.7	70.5	69.0
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	40			14010	68.9	66.5	64.9	70.1	67.7	66.1
108th Street, Central Ave to W/O Avalon Blvd	40			8140	67.1	64.4	62.7	68.3	65.6	64.0
Imperial Highway, San Pedro St to W/O Main St	45			28680	72.9	70.6	69.1	74.1	71.8	70.3
Imperial Highway, Alameda St to E/O State St	45			26530	72.5	70.2	68.8	73.7	71.5	70.0

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project Cumulative		Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Alameda Street, Rosecrans Ave to SR-91	0.3	0.3	0.3	0.3	
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	0.0	0.0	0.0	0.0	
108th Street, Central Ave to W/O Avalon Blvd	0.0	0.5	0.1	0.5	
Imperial Highway, San Pedro St to W/O Main St	0.2	0.7	0.2	0.7	
Imperial Highway, Alameda St to E/O State St	0.3	0.4	0.3	0.4	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.16 Wil 3/16/2017

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard, W/O and E/O State St	35			8660	66.6	63.6	61.9	67.8	64.9	63.1
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19660	70.4	67.9	66.4	71.6	69.2	67.6
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			18540	69.9	67.6	66.2	71.1	68.7	67.2
0	0			0	-	-	-	-	-	-
0	0			0	-	-	-	-	-	
Future No Project										
	Speed		Traffic Volume	es		Leq		CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard, W/O and E/O State St	35			9260	66.9	63.9	62.2	68.1	65.1	63.4
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19700	70.4	67.9	66.4	71.6	69.2	67.6
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19440	69.9	67.6	66.1	71.1	68.9	67.4
0	0			0	-	-	-	-	-	-
0	0			0	-	-	-	-	-	-
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard, W/O and E/O State St	35			9730	67.1	64.1	62.4	68.3	65.4	63.6
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19830	70.4	68.0	66.4	71.6	69.2	67.6
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19530	69.9	67.7	66.2	71.2	68.9	67.4
0	0			0	-	-	-	-	-	-
0	0			0	-	-	-	-	-	-

CNEL

ONLL						
Summary	25 ft. fro	m ROW	50 ft. from ROW			
	Project	Project Cumulative		Cumulative		
Roadway/Segment	Increment	Increment	Increment	Increment		
El Segundo Boulevard, W/O and E/O State St	0.3	0.5	0.2	0.5		
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	0.0	0.0	0.0	0.0		
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	0.0	0.2	0.0	0.2		
0	-	-	-	-		
0	-	-	-	-		

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.17 Wil 3/17/2017

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
				0	-	-	-	-	-	-
Existing										
	Speed		Traffic Volume			Leq		CNEL		
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Main Street, N/O and S/O Imperial Hwy	35			11840	67.3	64.7	63.0	68.5	65.9	64.2
San Pedro Street, 108th St to 135th St	40			11320	68.0	65.5	64.0	69.2	66.8	65.2
Avalon Boulevard, N/O Imperial Hwy	40			20440	70.5	68.1	66.6	71.8	69.3	67.8
Central Avenue, Rosecrans Ave to Walnut St	40			19320	69.9	67.6	66.1	71.1	68.8	67.4
Wilmington Avenue, Rosecrans Avenue to SR-91	40			21370	70.3	68.1	66.6	71.6	69.3	67.8
Existing With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Main Street, N/O and S/O Imperial Hwy	35			12000	67.4	64.7	63.1	68.6	65.9	64.3
San Pedro Street, 108th St to 135th St	40			11400	68.0	65.6	64.0	69.2	66.8	65.2
Avalon Boulevard, N/O Imperial Hwy	40			21140	70.7	68.3	66.7	71.9	69.5	67.9
Central Avenue, Rosecrans Ave to Walnut St	40			20060	70.1	67.8	66.3	71.3	69.0	67.5
Wilmington Avenue, Rosecrans Avenue to SR-91	40			24590	70.9	68.7	67.2	72.2	69.9	68.4

CNEL

Summary	25 ft. fro	m ROW	50 ft. from ROW		
	Project	Cumulative	Project	Cumulative	
Roadway/Segment	Increment	Increment	Increment	Increment	
Main Street, N/O and S/O Imperial Hwy	0.0	-	0.1	-	
San Pedro Street, 108th St to 135th St	0.0	-	0.0	-	
Avalon Boulevard, N/O Imperial Hwy	0.2	-	0.1	-	
Central Avenue, Rosecrans Ave to Walnut St	0.2	-	0.1	-	
Wilmington Avenue, Rosecrans Avenue to SR-91	0.6	-	0.6	-	

	% of ADT							
Vehicle Type	Day	Eve	Night	Sub total				
Auto	77.6%	9.7%	9.7%	97.0%				
Medium Truck	1.6%	0.2%	0.2%	2.0%				
Heavy Truck	0.8%	0.1%	0.1%	1.0%				
	80.0%	10.0%	10.0%	100.0%				

TENS 1.18 Wil E 3/16/2017

Project: Willowbrook Transit Oriented District Specific Plan

Existing										
	Speed		Traffic Volume	es .		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	<u> </u>
Future No Project			- 40 14 1		1	<u> </u>		ı	21151	
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Alameda Street, Rosecrans Ave to SR-91	45			19730	71.2	69.0	67.5	72.4	70.2	68.7
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	40			13910	68.9	66.4	64.9	70.1	67.7	66.1
108th Street, Central Ave to W/O Avalon Blvd	40			7320	66.6	63.9	62.3	67.8	65.1	63.5
Imperial Highway, San Pedro St to W/O Main St	45			24610	72.2	69.9	68.4	73.4	71.1	69.6
Imperial Highway, Alameda St to E/O State St	45			24220	72.1	69.8	68.4	73.3	71.1	69.6
Future With Project										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
Alameda Street, Rosecrans Ave to SR-91	45			21030	71.5	69.2	67.7	72.7	70.4	69.0
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	40			14010	68.9	66.5	64.9	70.1	67.7	66.1
108th Street, Central Ave to W/O Avalon Blvd	40			7400	66.6	64.0	62.3	67.9	65.2	63.5
Imperial Highway, San Pedro St to W/O Main St	45			25880	72.4	70.1	68.6	73.6	71.3	69.9
Imperial Highway, Alameda St to E/O State St	45			25660	72.4	70.1	68.6	73.6	71.3	69.8

CNEL

Summary	25 ft. fro		50 ft. fro	om ROW
	Project	Cumulative	Project	Cumulative
Roadway/Segment	Increment	Increment	Increment	Increment
Alameda Street, Rosecrans Ave to SR-91	0.2	-	0.3	-
State St/Santa Fe Ave, N/O Imperial Hwy to S/O El Segundo Blvd	0.0	-	0.0	-
108th Street, Central Ave to W/O Avalon Blvd	0.1	-	0.0	-
Imperial Highway, San Pedro St to W/O Main St	0.2	-	0.3	-
Imperial Highway, Alameda St to E/O State St	0.2	-	0.2	-

		% of	ADT	
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

TENS 1.19 Wil E 3/16/2017

Project: Willowbrook Transit Oriented District Specific Plan

	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	-
					-	-	-	-	-	
Existing										
	Speed		Traffic Volume			Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard, W/O and E/O State St	35			8660	66.6	63.6	61.9	67.8	64.9	63.1
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19660	70.4	67.9	66.4	71.6	69.2	67.6
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19420	69.9	67.6	66.2	71.1	68.7	67.2
0	0			0	-	-	-	-	-	-
0	0			0	-	-	-	-	-	-
Existing With Project										
	Speed		Traffic Volume	es		Leq			CNEL	
Roadway/Segment	MPH	AM	PM	ADT	ROW	25 Feet	50 Feet	ROW	25 Feet	50 Feet
El Segundo Boulevard, W/O and E/O State St	35			9130	66.8	63.9	62.1	68.1	65.1	63.3
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19790	70.4	68.0	66.4	71.6	69.2	67.6
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	40			19620	70.0	67.7	66.2	71.2	68.7	67.2
0	0			0	-	-	-	-	-	-
0	0			0	-	-	-	-	-	

CNEL

Summary	25 ft. fro	m ROW	50 ft. fro	om ROW
	Project	Cumulative	Project	Cumulative
Roadway/Segment	Increment	Increment	Increment	Increment
El Segundo Boulevard, W/O and E/O State St	0.2	-	0.2	-
Comption Boulevard, W/O Central Ave to E/O Willowbrook Ave	0.0	-	0.0	-
Alondra Boulevard, W/O Central Ave to E/O Willowbrook Ave	0.0	-	0.0	-
0	-	-	-	-
0	-	-	-	-

		% of	ADT	
Vehicle Type	Day	Eve	Night	Sub total
Auto	77.6%	9.7%	9.7%	97.0%
Medium Truck	1.6%	0.2%	0.2%	2.0%
Heavy Truck	0.8%	0.1%	0.1%	1.0%
	80.0%	10.0%	10.0%	100.0%

TENS 1.20 Wil E 3/17/2017

Appendix F Traffic Study

Appendix F Traffic Study

Willowbrook TOD Specific Plan EIR Traffic Study

May 4, 2017

Prepared by

The **Mobility** Group

Willowbrook TOD Specific Plan EIR Traffic Study

May 4, 2017

Matthew L. Simons TR 2154

Table of Contents

1.	Intro	duction	1
	1.1	Project Description	1
	1.2	Study Scope	
	1.3	Organization of this Report	
2.	Exist	ing Conditions	4
	2.1	Roadway System	4
	2.2	Study Intersections	7
	2.3	Existing Intersection Conditions	10
	2.4	Existing Transit Service	23
	2.5	Bicycle and Pedestrian Facilities	32
3.	The S	Specific Plan – Transportation Characteristics	35
	3.1	Specific Plan Purpose and Objectives	35
	3.2	Specific Plan Land Uses	
	3.3	Specific Plan Trip Generation	
	3.4	Specific Plan Trip Distribution	
	3.5	Transportation Improvements in the Specific Plan	
	3.6	Future Traffic Forecasts for The Specific Plan Project	
4.	Exist	ing With Project Conditions	63
	4.1	Significant Impact Thresholds	63
	4.2	Project Impact Analysis – Existing With Project	
5.	Futu	re Conditions Background	84
	5.1	Cumulative (Related) Projects	84
	5.2	Future Traffic Conditions – County of Los Angeles Intersections	
	5.3	Future Traffic Conditions – City of Los Angeles Intersections	
	5.4	Cumulative Transportation Projects	
6.	Exist	ing With Project With Cumulative Conditions	90
	6.1	Project Impact Analysis – Existing With Project With Cumulative	90
	6.2	Project Impacts – CMP Analysis	

Appendix E

7.	Freew	vay Analysis				
	7.1	Freeway Mainline Segments				
	7.2	Freeway Off-Ramps				
8.	Proje	ct Mitigation				
	8.1	Summary of Impact				
	8.2	Discussion of Mitigation Strategy				
	8.3	Transportation Mitigation Measures – Intersection Improvements				
	8.4	Transportation Mitigation Measures – CMP				
	8.5	Transportation Mitigation Measures – Freeways				
App	endix A	A Trip Generation and Trip Rates				
Appendix B		3 Intersection Lane Configurations				
App	endix (C Traffic Counts				
App	endix I	Intersections LOS Sheets				

Freeway Off-Ramp Analysis

List of Figures

Figure 1.1	Specific Plan Area	3
Figure 2.1	Study Intersections	8
Figure 2.2	Configuration of Analyzed Intersections	11
Figure 2.3	Existing Traffic Volumes – AM Peak Hour	15
Figure 2.4	Existing Traffic Volumes – PM Peak Hour	18
Figure 2.5	Existing Transit Service – Regional Lines	28
Figure 2.6	Existing Transit Service – Shuttle Routes	29
Figure 2.7	Existing Bicycle Facilities	34
Figure 3.1	Specific Plan Sub-Areas	37
Figure 3.2	Trip Distribution – Residential	44
Figure 3.3	Trip Distribution – Non-Residential	45
Figure 3.4	Street Network	47
Figure 3.5	Street System Changes – Road Diet	48
Figure 3.6	Key Pedestrian Routes	50
Figure 3.7	Pedestrian Improvements	51
Figure 3.8	Bicycle Network	54
Figure 3.9	Key Transit Routes	57
Figure 3.10	Project Only Traffic Volumes – AM Peak Hour	60
Figure 3.11	Project Only Traffic Volumes – PM Peak Hour	64
Figure 4.1	Existing With Project Traffic Volumes – AM Peak Hour	67
Figure 4.2	Existing With Project Traffic Volumes – PM Peak Hour	67
Figure 4.3	Existing + Project - AM Peak Hour - Significant Impact Locations	80
Figure 4.4	Existing + Project - PM Peak Hour - Significant Impact Locations	82
Figure 5.1	Location of Related Projects	85
Figure 6.1	Existing With Project With Cumulative Traffic Volumes – AM Peak Hour	91

Figure 6.1	Existing With Project With Cumulative Traffic Volumes – AM Peak Hour 94
Figure 6.3	Existing + Project + Cumulative – AM Peak Hour – Significant Impact Locations
Figure 6.4	Existing + Project + Cumulative – PM Peak Hour – Significant Impact Locations
Figure 7.1	Freeway Mainline Segment Analysis Locations
Figure 7.2	Freeway Off-Ramp Analysis Locations
Figure 8.1	Existing + Project + Mitigation – AM Peak Hour – Significant Impact Locations
Figure 8.2	Existing + Project + Mitigation – PM Peak Hour – Significant Impact Locations
Figure 8.3	Existing + Project + Cumulative + Mitigation – AM Peak Hour – Significant Impact Locations
Figure 8.4	Existing + Project + Cumulative + Mitigation – AM Peak Hour – Significant Impact Locations

List of Tables

Table 2.1	Level of Service Definitions for Signalized Intersections
Table 2.2	Level of Service Definition for Unsignalized Intersections
Table 2.3	Existing Conditions – Intersection Level of Service
Table 2.4	Existing Public Transit Services
Table 3.1	Specific Plan Land Use Summary – By Type of Use
Table 3.2	Trip Generation Totals – By Key Land Use Area
Table 3.3	Trip Generation by Sub-Area
Table 4.1	Existing With Project Conditions - Intersection Level of Service
	AM Peak Hour
Table 4.2	Existing With Project Conditions - Intersection Level of Service
	PM Peak Hour 78
Table 5.1	Related Project List and Trip Generation Estimates
Table 6.1	Existing With Project With Cumulative Conditions
	Intersection Level of Service - AM Peak Hour 101
Table 6.2	Existing With Project With Cumulative Conditions
	Intersection Level of Service - PM Peak Hour
Table 6.3	CMP Arterial Analysis – Number of Trips Added by Project
Table 6.4	Future With Project Conditions - CMP Intersection Analysis
Ta .	AM and PM Peak Hours
Table 6.5	CMP Freeway Analyses - Number of Trips Added by Project
Table 6.6	Level of Service Definition for Freeway Mainline Segments
Table 6.7	CMP Freeway Analysis – AM Peak Hour
Table 6.7	CMP Freeway Analysis – PM Peak Hour
Table 6.9	CMP Transit Analysis
Table 7.1	Level of Service Definition for Freeway Segments

Table 7.2	Freeway Segment Level of Service – Existing Plus Project	
	AM Peak Hour	123
Table 7.3	Freeway Segment Level of Service - Existing Plus Project	
	PM Peak Hour	124
Table 7.4	Freeway Segment Level of Service – Future With Project	
	AM Peak Hour	126
Table 7.5	Freeway Segment Level of Service – Future With Project	
	PM Peak Hour	127
Table 7.6	Existing With Project – Freeway Off-Ramp Analysis	
	AM Peak Hour	135
Table 7.7	Existing With Project – Freeway Off-Ramp Analysis	
	AM Peak Hour	137
Table 7.8	Future With Project – Freeway Off-Ramp Analysis	
	AM Peak Hour	139
Table 7.9	Future With Project – Freeway Off-Ramp Analysis	
	AM Peak Hour	141
Table 8.1	Existing With Project With Mitigation Conditions –	
	Intersection Level of Service – AM Peak Hour	164
Table 8.2	Existing With Project With Mitigation Conditions –	
	Intersection Level of Service – PM Peak Hour	169
Table 8.3	Existing With Project With Cumulative With Mitigation Conditions -	
4	Intersection Level of Service – AM Peak Hour	174
Table 8.4	Existing With Project With Cumulative With Mitigation Conditions –	
	Intersection Level of Service – PM Peak Hour	179

1. Introduction

This report documents a traffic analysis to support a Program EIR for the Willowbrook TOD Specific Plan. The area is located in the unincorporated community of Willowbrook in Los Angeles County. The Specific Plan is focused around the Willowbrook/Rosa Parks Station, which serves the Metro Blue Line and Metro Green Line. The Specific Plan Area generally contains the southern portion of the area within a half mile radius of the station, and extends from Imperial Highway in the north, to $121^{st}/122^{nd}$ Streets in the south, Mona Boulevard in the east and Compton Avenue in the west. The Specific Plan Area is shown in Figure 1.1.

1.1 Project Description

The proposed project involves the establishment of the Willowbrook TOD Specific Plan, including goals, and establishment of a land use program and circulation system that will provide a pedestrian-friendly, mixed-use environment, in a transit-oriented district around the existing Metro Station. The Specific Plan is fully described in the Draft Willowbrook TOD Specific Plan document.

Some of the key facilities and land uses in the Specific Plan area include (see Figure 1.1): the Willowbrook/Rosa Parks Station, the Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, Kenneth Hahn Plaza shopping center, the Willowbrook Library, and the Martin Luther King Jr. Center for Public Health.

The purpose of the Willowbrook TOD Specific Plan is to revitalize the community within the project area and to improve access to all modes of transportation, including transit, walking, and bicycling. Building off the goals and policies outlined in the General Plan, the Willowbrook TOD Specific Plan will encourage transit oriented development, promote active transportation and reduce vehicle miles travelled. The Specific Plan is anticipated to facilitate development, especially residential and employment-generating uses proximate to the Willowbrook/Rosa Parks Station.

The primary objectives of the Specific Plan are to identify land use options that include mixed uses, increased housing opportunities', and neighborhood—serving retail uses, In addition the Specific Plan is intended to foster a healthy community by improving pedestrian linkages between the Willowbrook/Rosa Parks Station, the Kenneth Hahn Plaza, the Martin Luther King Jr. Medical Center, the Charles R. Drew University of Medicine and Science, future mixed use areas, and existing residential neighborhoods.

The Mobility Group 1 May 4, 2017

Draft Willowbrook TOD Specific Plan, County of Los Angeles – October, 2015.

1.2 Study Scope

The scope for the analysis in this study was determined in conjunction with the County of Los Angeles staff including the geographic coverage, input assumptions, and methodologies used in the analysis. The analysis addresses the AM and PM peak hours which are the times of the day when the street traffic volumes in the area are highest. For purposes of analysis a future horizon year of 2035 is assumed.

The study area includes a total of 66 analyzed intersections, which are located in four jurisdictions, as follows:

- 28 in the County of Los Angeles
- 16 in the City of Compton
- 3 in the City of Lynwood
- 19 in the City of Los Angeles

Four of the intersections in the County are shared with the City of Compton, and two are shared with the City of Lynwood. Four of the intersections in the City of Los Angeles are shared with the County.

The study follows the methodology procedures of Los Angeles County as the lead agency. However, the intersections in each jurisdiction were analyzed with the methodology appropriate to that jurisdiction, as described in Chapter 2.

The Traffic Study addresses the following scenarios:

- Existing Conditions
- Existing Plus Project Conditions
- Existing Plus Project Conditions Plus Mitigations
- Existing Plus Project Plus Cumulative Conditions (Year 2035)
- Existing Plus Project Plus Cumulative Conditions (Year 2035) Plus Mitigations

1.3 Organization of this Report

The remainder of this report is organized as follows. Chapter 2 describes the existing transportation conditions in the area of the Project. Chapter 3 describes the transportation characteristics of the Specific Plan Project. Chapter 4 addresses impacts for the Existing Plus Project Conditions. Chapter 5 describes transportation parameter inputs for future conditions (2035). Chapter 6 addresses impacts for the Existing Plus Project plus Cumulative Conditions. Chapter 7 provides an analysis of the freeway system for Caltrans. Chapter 8 addresses mitigations for significant transportation impacts.

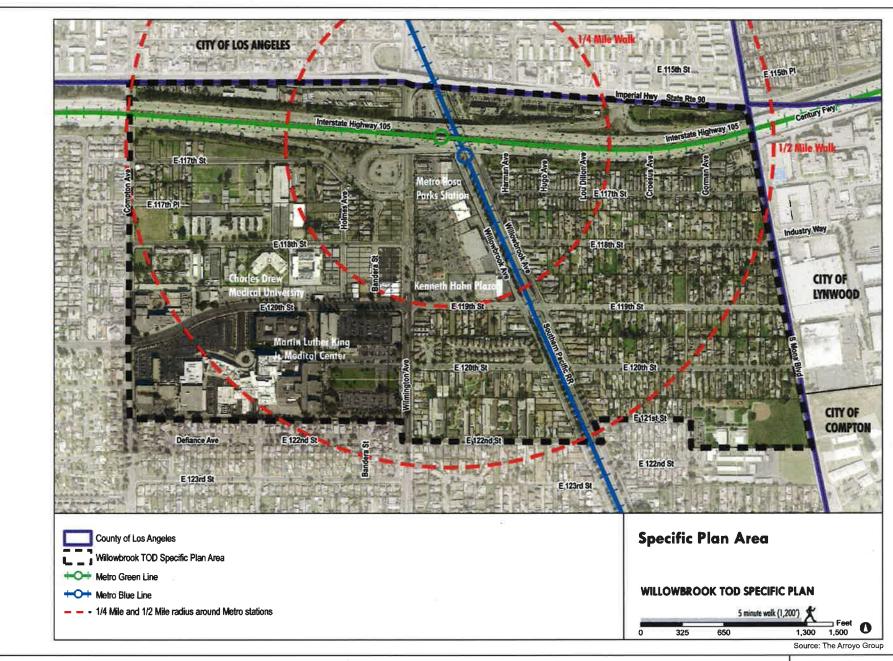


Figure 1.1 Specific Plan Area

The Mobility Group
Transportation Strategies & Solutions

11/7/16

2. Existing Conditions

The Specific Plan is focused around the Willowbrook/Rosa Parks Station, which serves the Metro Blue Line and Metro Green Line. The Specific Plan Area generally contains the southern portion of the area within a half mile radius of the station, and extends from Imperial Highway in the north, to $121^{st}/122^{nd}$ Streets in the south, Mona Boulevard in the east and Compton Avenue in the west. The Specific Plan Area is shown in Figure 1.1.

The street system in the Specific Plan area is under the jurisdiction of the County of Los Angeles. Some streets and study intersections outside of the Specific Plan area are under the jurisdiction of the City of Compton, the City of Lynwood and the City of Los Angeles.

2.1 Roadway System

Regional access to the Project site is provided by the Century (I-105) freeway which is located immediately to the north and east of the Project Site. The I-710 Freeway runs north-south approximately 3.4 miles east of the Project Site. The I-110 Freeway runs north-south approximately 2.8 miles west of the Project Site, and the SR-91 Freeway runs east-west-approximately 3.4 miles south of the Project Site.

The Project site is served by a comprehensive grid system of surface streets, with multiple access points to the I-105 freeway. The key surface streets serving the area of the Specific Plan are described below (street classification references are from the County of Los Angeles General Plan).

North-South Streets

San Pedro Street: San Pedro Street is a two-way street and is classified as a Secondary Highway. South of 120th Street it has two travel lanes in each direction, and north of 120th Street it has one travel lane in each direction with left turn lanes at intersections. North of 120th Street it also has a central left turn lane. North of Alondra Boulevard it connects to Avalon Boulevard. On-street parking is generally allowed on both sides of the street.

Main Street: Main Street is a two-way street and is classified as a Major Highway. South of 120th Street it has two travel lanes in each direction, and north of 120th Street it has one travel lane in each direction with left turn lanes at intersections. North of 119th Street and south of El Segundo Boulevard it also has a central left turn lane. On-street parking is generally allowed on both sides of the street.

<u>Avalon Boulevard</u>: Avalon Boulevard is a two-way street and is classified as a Major Highway. It has two travel lanes in each direction with left turn lanes at intersections, and onstreet parking is generally allowed. Between 119th Street and 126th Street it also has a central left turn lane.

<u>Central Avenue</u>: Central Avenue is a two-way street and is classified as a Major Highway. Its configuration varies, but generally has two travel lanes in each direction with left turn lanes at intersections, and on-street parking is generally allowed. Between 121st Street and 127th Street it has local access streets immediately adjacent to it on either side, which each allow travel in both directions with parking permitted on both sides.

<u>Compton Avenue</u>: Compton Avenue is a two-way street and is classified as a Secondary Highway. It has two travel lanes in each direction. On-street parking is generally allowed on both sides of the street.

<u>Wilmington Avenue</u>: Wilmington Avenue is a two-way street and is classified as a Major Highway. North of 119th Street, it has three travel lanes northbound and two travel lanes southbound with left turn lanes at intersections, and on-street parking is generally prohibited. North of Imperial Highway it reduces to one lane in each direction. South of 119th Street it has two travel lanes in each direction, and on-street parking is permitted without restriction.

<u>Willowbrook Avenue - West:</u> Willowbrook Avenue West is classified as a Secondary Highway. It does not connect directly to Imperial Highway, but is accessed from Wilmington Avenue and provides one southbound lane past the Willowbrook/Rosa Parks Station (and adjacent bus bays). From the Willowbrook/Rosa Parks station south to 119th Street it is a one-way southbound street and has two southbound travel lanes. On-street parking is prohibited on both sides of the street. South of 119th Street, it is a two-way street with one lane in each direction. On-street parking is generally allowed on the west side of the street and prohibited on the east side.

<u>Willowbrook Avenue - East:</u> Willowbrook Avenue East is a two-way street and is classified as a Secondary Highway. It has one travel lane in each direction. On-street parking is generally allowed on the east side of the street and prohibited on the west side. It does not extend north of I-105 as a though street, as the section between just north of 117th Street and Imperial Highway is restricted to southbound buses serving the Willowbrook/Rosa Parks Station.

Mona Boulevard: Mona Boulevard is a two-way street and is classified as a Secondary Highway. It has two travel lanes in each direction. On-street parking is generally prohibited.

Alameda Street: Alameda Street is split into an eastern section and a western section, separated by a train line. The western section is a two-way street and is classified as a Secondary Highway. It has two travel lanes in each direction and on-street parking is

generally allowed on both sides of the street. The eastern section of Alameda Street has a single travel lane in each direction and is a local street and parking is generally allowed on both sides of the street.

<u>State Street / Santa Fe Avenue:</u> State Street is a two-way street and is classified as a Secondary Highway north of Lynwood Road. South of Lynwood Avenue it is classified as a Major Highway. It has two travel lanes in each direction with left turn lanes at intersections. On-street parking is generally allowed on both sides of the street.

East-West Streets

103th Street: 103th Street is a two-way street extending between Alameda Street and S Broadway, and is classified as a local street. It has one travel lane in each direction. Onstreet parking is generally allowed on both sides of the street.

<u>108th Street:</u> 108th Street is a two-way street extending west from Wilmington Avenue past I-110, and is classified as a Secondary Highway. It has one travel lane in each direction. Onstreet parking is generally allowed on both sides of the street. East of Wilmington Avenue it continues as the southern section of Santa Ana Boulevard South.

<u>Santa Ana Boulevard North:</u> Santa Ana Boulevard North is a two-way street extending between Willowbrook Avenue and Alameda Street, and is a local street. It has one travel lane in each direction. On-street parking is generally allowed on both sides of the street. East of Alameda Street it continues as Fernwood Avenue.

<u>Santa Ana Boulevard South:</u> Santa Ana Boulevard South is a two-way street extending between Wilmington Avenue and Alameda Street, and is a local street. It has one travel lane in each direction. On-street parking is generally allowed on both sides of the street. West of Wilmington Avenue it continues as 108th Street.

Imperial Highway: Imperial Highway is a two-way street and is classified as a Major Highway. The configuration varies by location. It generally has three travel lanes in each direction with left turn lanes at intersections. It is grade separated from Wilmington Avenue and Willowbrook Avenue on an overpass with two lanes in each direction, and one-way frontage roads. On-street parking is allowed in some locations, with some restrictions.

119th Street: 119th Street is a two-way street extending between Wilmington Avenue and Mona Boulevard, and is classified as a Secondary Highway. It has one travel lane in each direction with a central turn lane. On-street parking is generally allowed on both sides of the street. West of Wilmington Avenue it continues as 120th Street.

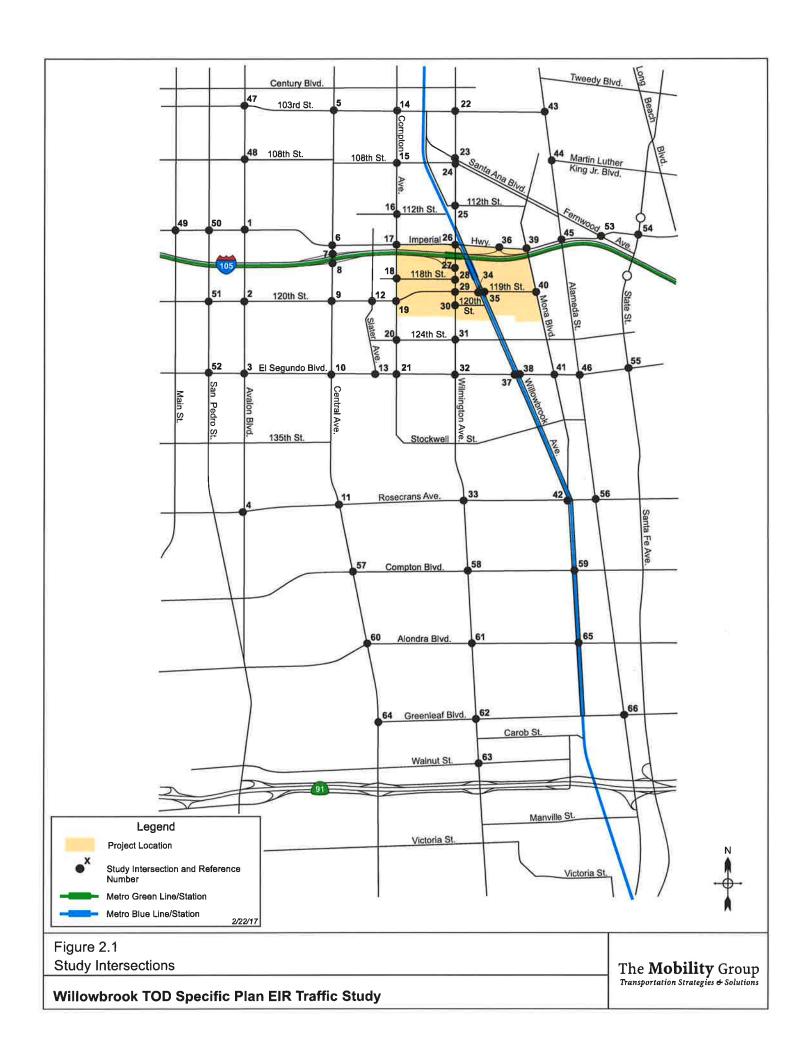
120th Street: 120th Street, extending west of Wilmington Avenue, is a two-way street and is classified as a Secondary Highway. It has two travel lanes in each direction. On-street

parking is generally allowed with some restrictions. East of Wilmington Avenue, 120th Street extends east to Mona Boulevard, on an alignment south of 120th Street west of Wilmington Avenue, but does not connect across the Metro Blue Line tracks on Willowbrook Avenue. Along this section, it is a Local Street, with one lane in each direction with parking allowed on both sides of the street.

<u>El Segundo Boulevard</u>: El Segundo Boulevard is a two-way street and is classified as a Major Highway. The configuration varies by location. It generally has two travel lanes in each direction with left turn lanes at intersections. On-street parking is generally allowed on both sides of the street.

Rosecrans Avenue: Rosecrans Avenue is a two-way street and is classified as a Major Highway. The configuration varies by location. It generally has two travel lanes in each direction with left turn lanes at intersections. On-street parking is generally allowed on both sides of the street.

<u>West Compton Boulevard</u>: West Compton Boulevard is a two-way street and is classified as a Secondary Highway east of Central Avenue. West of Central Avenue it connects to Redondo Beach Boulevard and is classified as a Major Highway. It generally has two travel lanes in each direction with left turn lanes at intersections. On-street parking is generally prohibited.


Alondra Boulevard: Alondra Boulevard is a two-way street and is classified as a Major Highway. It generally has two travel lanes in each direction with left turn lanes at intersections. On-street parking is generally allowed on both sides of the street.

<u>Greenleaf Boulevard:</u> Greenleaf Boulevard is a two-way street extending between Central Avenue and Atlantic Drive and is classified as a Secondary Highway. It generally has one travel lane in each direction with left turn lanes at intersections and a central left turn lane. On-street parking is generally allowed on both sides of the street.

<u>Walnut Street</u>: Walnut Street is a two-way street extending between Billings Drive and Acacia Court and is classified as a Secondary Highway. Between Avalon Boulevard and Central Avenue it has two travel lanes in each direction with a central left turn lane. West of Avalon Boulevard and east of Central Avenue it has one travel lane in each direction. Onstreet parking is generally prohibited.

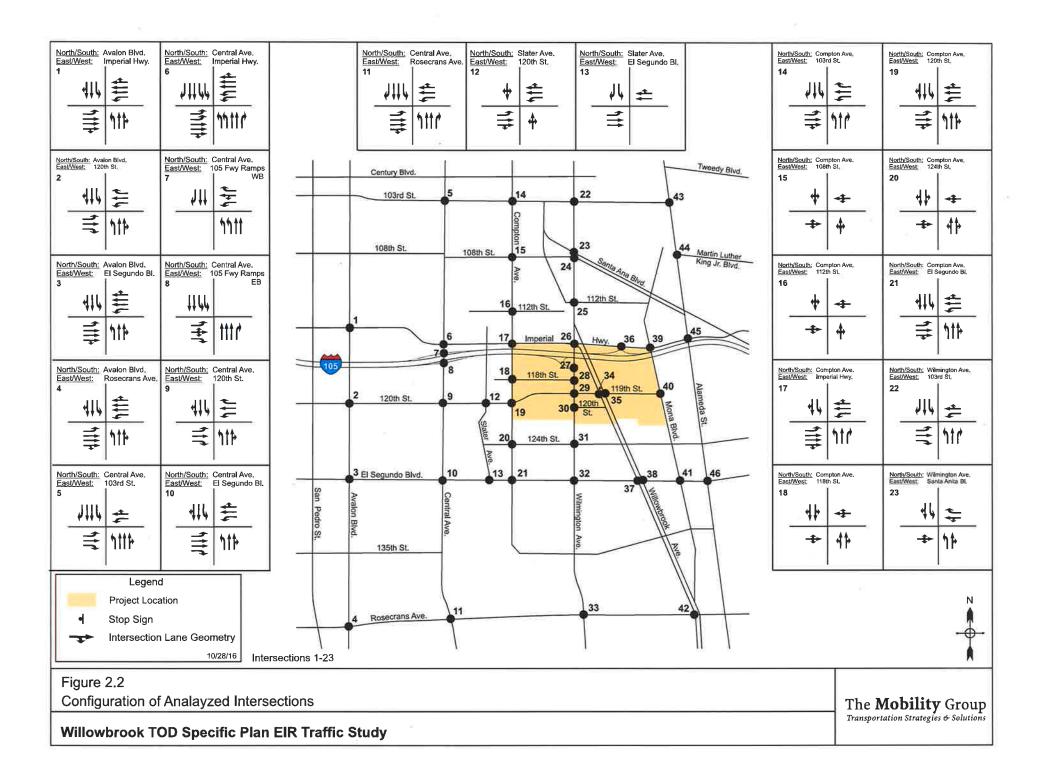
2.2 Study Intersections

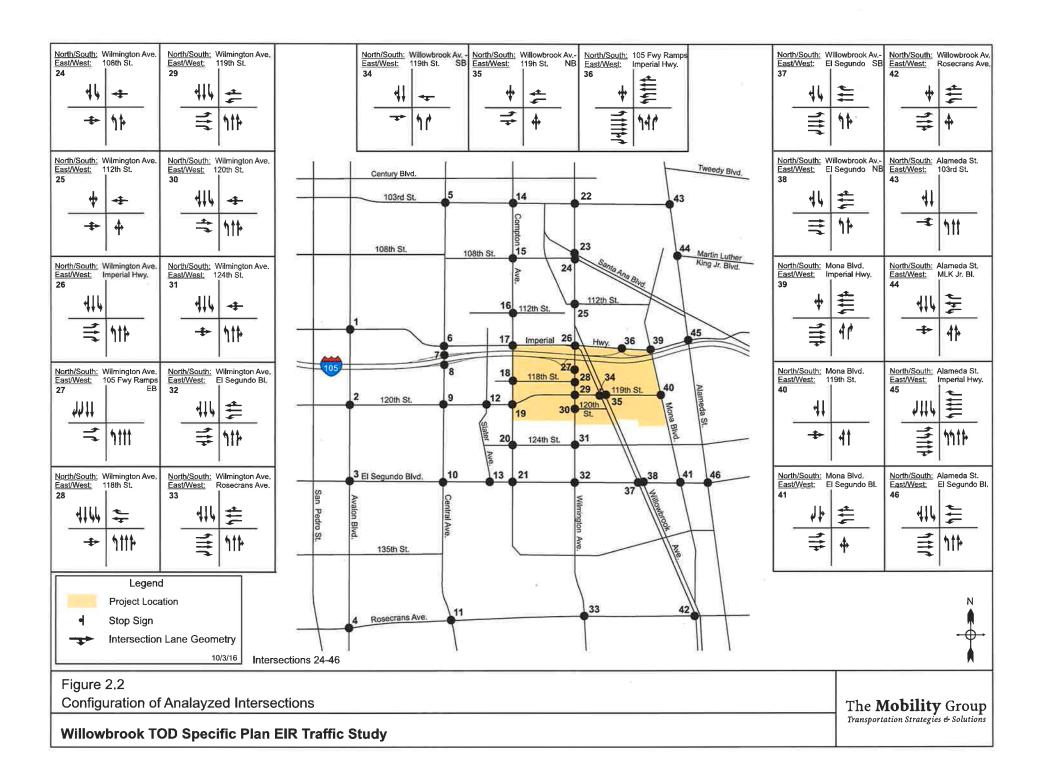
A total of sixty-six study intersections were identified, in conjunction with Los Angeles County staff, for inclusion in the traffic analysis. The analyzed locations are shown in Figure 2.1 and were identified as locations where the majority of trips associated with the Project would be focused based on the trip distribution developed for the Project. These locations

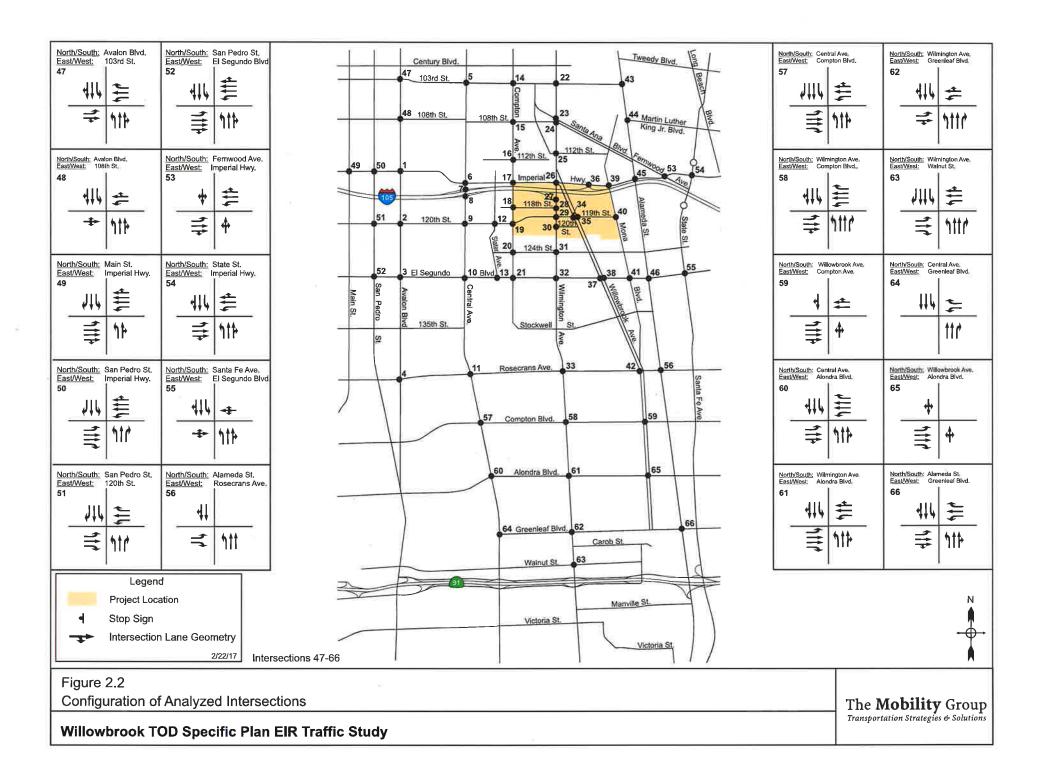
consist of the intersections through which Project trips would travel before dispersing to multiple routes and therefore were the locations where potential traffic impacts were most likely to occur. The intersections identified for analysis are as follows:

- 1. Avalon Blvd & Imperial Hwy
- 2. Avalon Blvd & 120th St
- 3. Avalon Blvd & El Segundo Blvd
- 4. Avalon Blvd & Rosecrans Ave
- 5. Central Ave & 103rd St
- 6. Central Ave & Imperial Hwy
- 7. Central Ave & I-105 w/b Ramps
- 8. Central Ave & I-105 e/b Ramps
- 9. Central Ave & 120th St
- 10. Central Ave & El Segundo Blvd
- 11. Central Ave & Rosecrans Ave
- 12. Slater Ave & 120th St
- 13. Slater Ave & El Segundo Blvd
- 14. Compton Ave & 103rd St
- 15. Compton Ave & 108th St
- 16. Compton Ave & 112th St
- 17. Compton Ave & Imperial Hwy
- 18. Compton Ave & 118th St
- 19. Compton Ave & 120th St
- 20. Compton Ave & 124th St
- 21. Compton Ave & El Segundo Blvd
- 22. Wilmington Ave & 103rd St
- 23. Wilmington Ave & Santa Ana Blvd
- 24. Wilmington Ave & 108th St
- 25. Wilmington Ave & 112th St
- 26. Wilmington Ave & Imperial Hwy
- 27. Wilmington Ave & I-105 e/b Ramps
- 28. Wilmington Ave & 118th St
- 29. Wilmington Ave & 120th St West
- 30. Wilmington Ave & 120th St East
- 31. Wilmington Ave & 124th St
- 32. Wilmington Ave & El Segundo Blvd
- 33. Wilmington Ave & Rosecrans Ave
- 34. Willowbrook Ave W & 119th Street
- 35. Willowbrook Ave E & 119th Street
- 36. Imperial Hwy & I-105 w/b Ramps
- 37. Willowbrook Ave W & El Segundo Blvd
- 38. Willowbrook Ave E & El Segundo Blvd
- 39. Mona Blvd & Imperial Hwy

- 40. Mona Blvd & 119th St
- 41. Mona Blvd & El Segundo Blvd
- 42. Willowbrook Ave & Rosecrans Ave
- 43. Alameda St & 103rd St
- 44. Alameda St & Abbott Rd
- 45. Alameda St & Imperial Hwy
- 46. Alameda St & El Segundo Blvd
- 47. Avalon Blvd & 103rd St
- 48. Avalon Blvd & 108th St
- 49. Imperial Hwy & Main St
- 50. Imperial Hwy & San Pedro St
- 51. San Pedro St & 120th St
- 52. El Segundo Blvd & San Pedro St
- 53. Imperial Hwy & Fernwood Ave
- 54. Imperial Hwy & State St
- 55. El Segundo Blvd & Santa Fe Ave
- 56. Alameda St & Rosecrans Ave
- 57. Central Ave & W Compton Blvd
- 58. Wilmington Ave & W Compton Blvd
- 59. Willowbrook Ave & W Compton Blvd
- 60. Central Ave & Alondra Blvd
- 61. Wilmington Ave & Alondra Blvd
- 62. Wilmington Ave & Greenleaf Blvd
- 63. Wilmington Ave & Walnut St
- 64. Central Ave & Greenleaf Blvd
- 65. Willowbrook Ave & Alondra Blvd
- 66. Alameda St & Greenleaf Blvd


The existing lane configurations for these sixty six analyzed intersections are shown in Figure 2.2.


Intersections in the City of Los Angeles are signalized and currently operate under the City's ATSAC system (Automated Traffic Surveillance and Control) which is a centralized control system that provides for the coordination of traffic signal timing to maximize the street capacities and to minimize traffic delays on City streets. Per the City of Los Angeles, a capacity increase of 7% (0.07 volume/capacity adjustment) was applied for ATSAC at these intersections.


2.3 Existing Intersection Conditions

Existing Traffic Volumes

Recent traffic counts were used for all of the analyzed intersections. AM and PM peak period

traffic counts (7-10 AM and 3-6 PM) were conducted in May of 2015 for intersections 1-46 and were conducted in December 2016 for intersections 47-66. The 2015 counts were factored by 1% to reflect 2016 conditions. The existing peak hour traffic volumes are illustrated in Figure 2.3 and 2.4 for the AM and PM peak hours respectively, and were used in all subsequent analyses. The traffic volume counts are shown in Appendix C.

Level of Service Methodology

Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overloaded conditions at LOS F, with each level defined by a range of volume/capacity (V/C) ratios. Table 2.1 defines the ranges of V/C ratios and their corresponding levels of service for signalized intersections. Three study intersections are unsignalized. Levels of service for unsignalized intersections are defined instead by the average delay in seconds per vehicle occurring at the intersection. In contrast to signalized intersections, where all approaches to the intersection must stop at a red light and wait for the next green light, at stop-controlled intersections only the minor street traffic controlled by the stop sign is required to stop (at two-way stop intersections). Through traffic movements on the major street do not stop, and turning movements from the major street must stop only if there is conflicting traffic approaching in the opposite direction. At all-way stop intersections, all approaches have to stop. Table 2.2 defines the ranges of delay and their corresponding levels of service for unsignalized intersections. For unsignalized intersections these parameters are reported for the minor movements only and not for the major street through moves or for the intersection as a whole.

SB 743

Senate Bill 743 mandated that CEQA review of transportation impacts of proposed development projects no longer be based on delay and capacity methods such as delay and level of service and instead use another methodology. The Office of Planning and Research (OPR) is currently in the process of updating CEQA guidelines to these ends and has proposed that the impact methodology be based on vehicle miles travelled. At this time, OPR is finalizing its recommendations but no official procedures have been adopted at the statewide level. In anticipation of SB743 being implemented, the County of Los Angeles is in the process of developing procedures and methodologies but similarly has not yet finalized or adopted such procedures. The analysis in this study therefore follows the current County of Los Angeles Traffic Study Guidelines and is based on intersection level of service analysis.

Los Angeles County Methodology

Per the County of Los Angeles Traffic Impact Analysis guidelines, the Intersection Capacity Utilization (ICU) method of intersection analysis was used to obtain volume/capacity (V/C) ratios for each signalized study intersection in the county. A capacity of 1,600 vehicles per hour per lane and 2,880 vehicles per hour for dual left-turn lanes, and a ten percent yellow

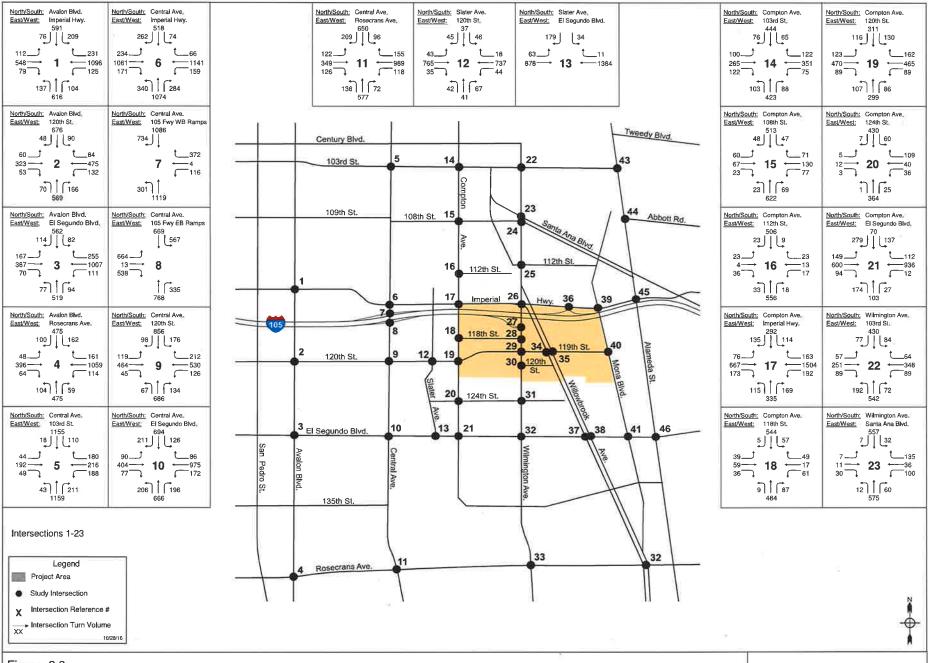


Figure 2.3 Existing Traffic Volumes - AM Peak Hour

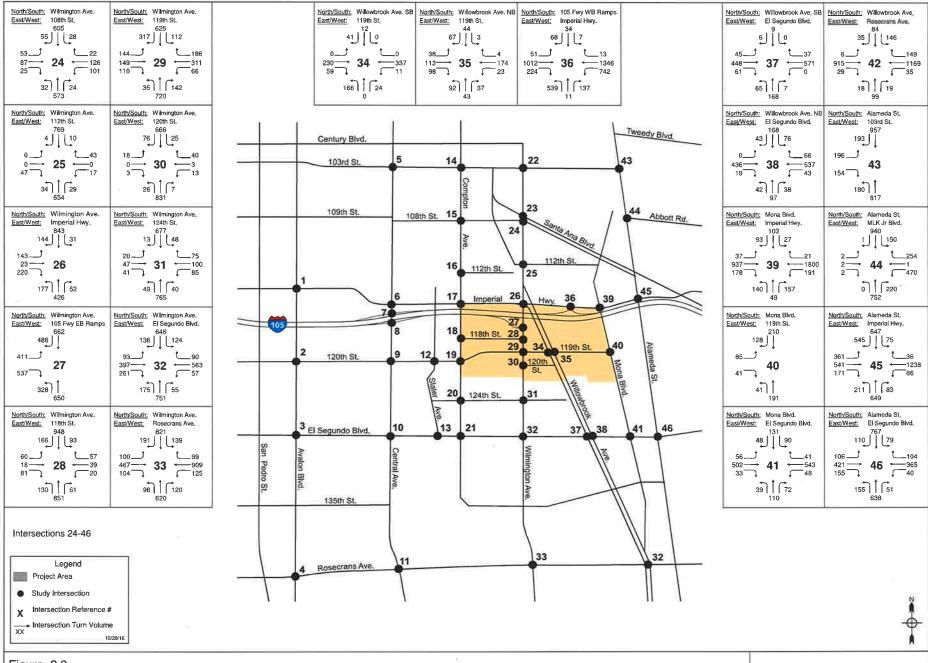


Figure 2.3
Existing Traffic Volumes - AM Peak Hour

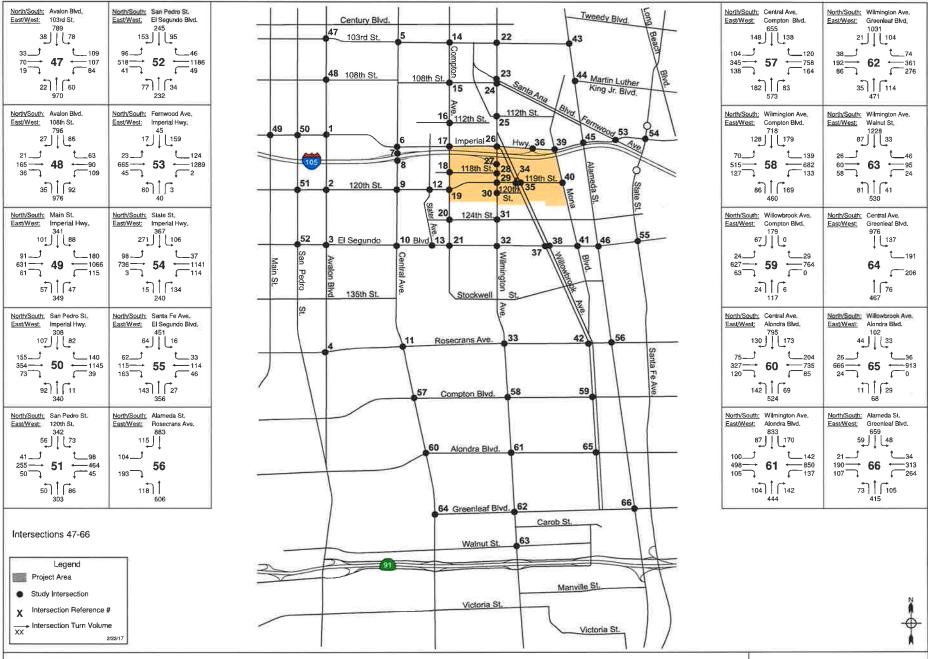


Figure 2.3
Existing Traffic Volumes - AM Peak Hour

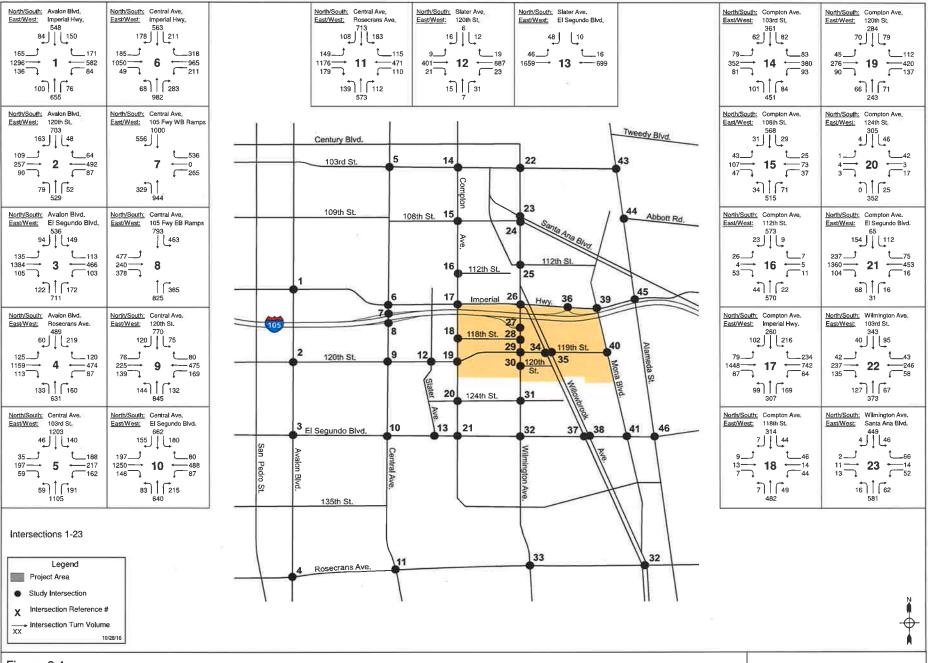


Figure 2.4
Existing Traffic Volumes - PM Peak Hour

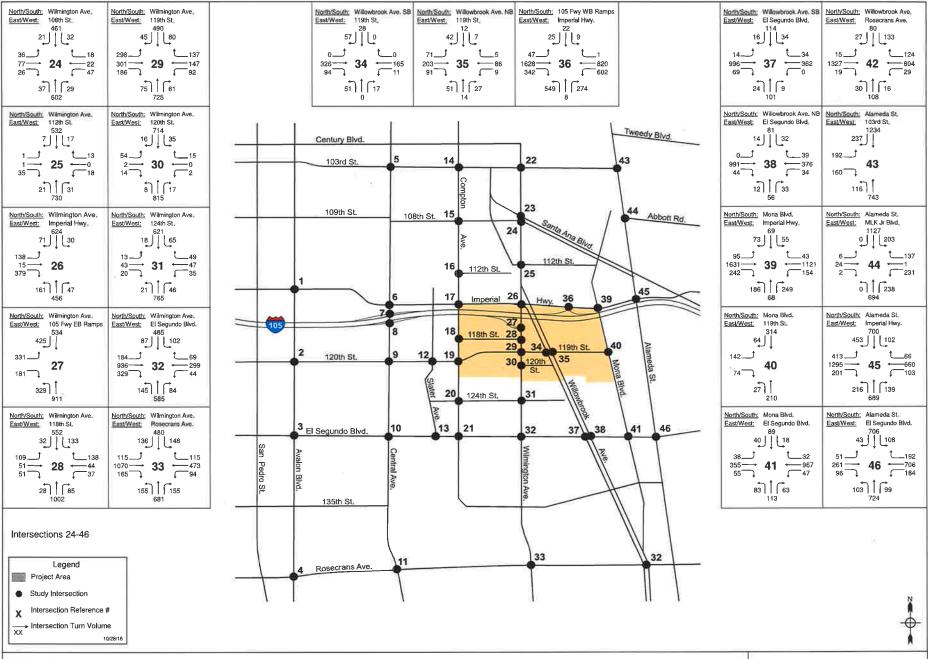


Figure 2.4
Existing Traffic Volumes - PM Peak Hour

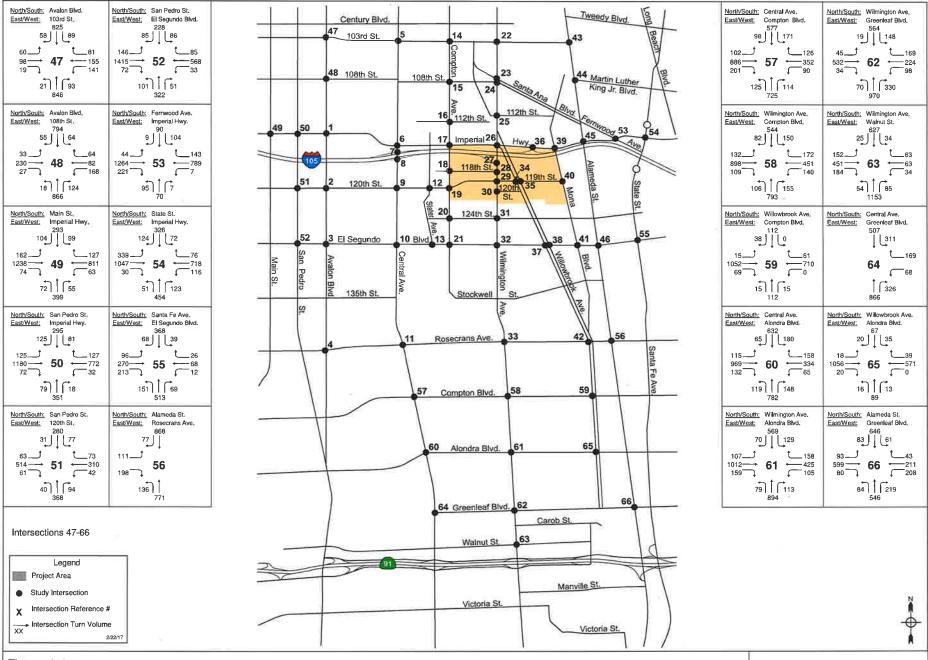


Figure 2.4
Existing Traffic Volumes - PM Peak Hour

Table 2.1 Level of Service Definitions for Signalized Intersections

Level of Service	Description	Volume to Capacity Ratio
A	Excellent operation. All approaches to the intersection appear quite open, turning movements are easily made, and nearly all drivers find freedom of operation.	<0.600
В	Very good operation. Many drivers begin to feel somewhat restricted within platoons of vehicles. This represents stable flow. An approach to an intersection may occasionally be fully utilized and traffic queues start to form.	0.601 – 0.700
С	Good operation. Occasionally drivers may have to wait for more than 60 seconds, and backups may develop behind turning vehicles. Most drivers feel somewhat restricted.	0.701 – 0.800
D	Fair operation. Cars are sometimes required to wait for more than 60 seconds during short peaks. There are no long-standing traffic queues. This level is typically associated with design practice for peak periods.	0.801 – 0.900
E	Poor operation. Some long-standing vehicular queues develop on critical approaches to intersections. Delays may be up to several minutes.	0.901 – 1.000
F	Forced flow. Represents jammed conditions. Backups from locations downstream or on the cross street may restrict or prevent movement of vehicles out of the intersections approach lanes; therefore, volumes carried are not predictable. Potential for stopand-go type traffic flow.	Over 1.000

Source: Highway Capacity Manual, Special Report 209, Transportation Research Board, Washington, D.C., 1985 and Interim Materials on Highway Capacity, MCHRP Circular 212, 1982.

Table 2.2 Level Of Service Definitions For Unsignalized Intersections

Level of Service	Average Control Delay (seconds/veh)
A B C D E F	0 to 10 >10 to 15 >15 to 25 >25 to 35 >35 to 50 >50

Source: *HCM2010 Highway Capacity Manual 2010*, Transportation Research Board, Washington, D.C.

clearance cycle was assumed in conducting the capacity analysis. For unsignalized intersections the Highway Capacity Manual (HCM) 2010 methodology was used.

City of Compton, and City of Lynwood Methodology

The County of Los Angeles methodology of ICU analysis was used to determine volume/capacity (V/C) ratios for each study intersection in the City of Compton and in the City of Lynwood.

City of Los Angeles

For intersections in the City of Los Angeles, intersection analysis was conducted using the "Critical Movement Analysis (Planning Method)" as described in "Transportation Research Circular 212, Transportation Research Board, Washington D.C. 1980", and as required by LADOT's Traffic Study Policy and Procedures, to obtain volume/capacity (V/C) ratios for each intersection. The City's CMA Spreadsheet was used for all intersection LOS calculations. For unsignalized intersections the Highway Capacity Manual (HCM) 2010 methodology was used.

Existing Conditions – Intersection Levels of Service

Table 2.3 summarizes the existing AM and PM peak hour V/C ratios and corresponding levels of service at the analyzed intersections. Intersection worksheets are shown in Appendix D.

AM Peak Hour

All of the studied intersections currently operate at LOS D or better during the AM peak hour, except the following two intersections:

25.	Wilmington Ave & 112 th St	LOS E
17.	Compton Ave & Imperial Hwy	LOS F

PM Peak Hour

All of the studied intersections currently operate at LOS D or better during the PM peak hour, except the following four intersections:

10.	Central Ave & El Segundo Blvd	LOS E
16.	Compton Ave & 112 th St	LOS E
25.	Wilmington Ave & 112 th St	LOS E
62.	Wilmington Ave & Greenleaf Blvd	LOS E

2.4 Existing Transit Service

The Specific Plan area is served by significant levels of transit including two Metro rail lines (Blue and Green Lines), seven regional bus lines, and five local shuttle routes. There are five Metro Local regional bus lines, one Compton Renaissance bus line and 1 GTrans (formerly Gardena Municipal Bus Lines) bus line, and also two LA County The Link shuttle bus lines, one Lynwood Breeze shuttle bus line and one LADOT DASH shuttle bus line, serving the Specific Plan area.

The focus of transit service is the Willowbrook/Rosa Parks Station which serves the Metro Blue and Green Lines and many of the bus lines. Regional rail and regional bus transit lines are shown in Figure 2.5, and shuttle bus routes are shown in Figure 2.6 and all transit lines are listed in Table 2.4 which shows the frequency of service (headways) during the peak periods.

Rail Transit Service

Metro Blue Line

The Willowbrook/Rosa Parks Station is served by the Metro Blue Line, which runs between Downtown Los Angeles and Downtown Long Beach. The Blue Line operates between approximately 4:00 am and 1:00 am, and until about 2:00 am on weekend nights. It operates every 6 to 12 minutes during weekday peak periods and at about 10 to 15 minutes on weekends. There is a transfer to the Metro Green Line at this station.

			Existing Conditions			
Interse	ection	Intersection Type	Weekda Peak		Weekda Peak	•
			V/C or (Delay)	LOS	V/C or (Delay)	LOS
Los	Angeles County				***	
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.726	С	0.844	D
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.652	В	0.804	С
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.899	D	0.925	Е
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.822	D	0.761	C
12.	Slater Ave & 120th St	Signalized	0.501	A	0.367	Α
17.	Compton Ave & Imperial Hwy [2]	Signalized	1.007	F	0.781	С
18.	Compton Ave & 118th St	Signalized	0.438	A	0.367	Α
19.	Compton Ave & 120th St	Signalized	0.574	Α	0.448	A
20.	Compton Ave & 124th St	Signalized	0.378	Α	0.287	A
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.657	В	0.654	В
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.848	D	0.680	В
28.	Wilmington Ave & 118th St	Signalized	0.641	В	0.527	Α
29.	Wilmington Ave & 120th St (West)	Signalized	0.840	D	0.766	С
30.	Wilmington Ave & 120th St (East)	Signalized	0.424	A	0.426	A
31.	Wilmington Ave & 124th St	Signalized	0.557	Α	0.485	Α
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.716	C	0.793	С
34.	Willowbrook Ave W & 119th Street	Signalized	0.447	A	0.436	Α
35.	Willowbrook Ave E & 119th Street	Signalized	0.375	A	0.359	Α
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.775	С	0.792	С
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.416	A	0.508	A
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.447	Α	0.507	A
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.730	С	0.825	D
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(13.5)	В	(17.0)	С
41.	Mona Blvd & El Segundo Blvd	Signalized	0.512	A	0.609	В
43.	Alameda St & 103rd St [4]	Signalized	0.790	С	0.852	D
45.	Alameda St & Imperial Hwy [4]	Signalized	0.772	С	0.799	С
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.765	С	0.898	D
52.	El Segundo Blvd & San Pedro St	Signalized	0.589	A	0.601	В
City	of Compton					,
13.	Slater Ave & El Segundo Blvd	Signalized	0.687	В	0.649	В
21.	Compton Ave & El Segundo Blvd	Signalized	0.804	С	0.706	С
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.854	D	0.847	D
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.693	В	0.719	C
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.592	A	0.700	В
56.	Alameda St & Rosecrans Ave	Signalized	0.606	В	0.604	В
57.	Cental Ave & W Compton Blvd	Signalized	0.758	С	0.802	С
58.	Wilmington Ave & W Compton Blvd	Signalized	0.702	В	0.888	D
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.532	Α	0.453	A
60.	Central Ave & Alondra Blvd	Signalized	0.754	С	0.842	D

			Existing Conditions			
Intersection		Intersection Type	Weekde Peak		Weekda Peak	
			V/C or LOS (Delay)		V/C or (Delay)	LOS
61.	Wilmington Blvd & Alondra Blvd	Signalized	0.825	D	0.877	D
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.797	С	0.911	Е
63.	Wilmington Ave & Walnut St	Signalized	0.595	A	0.785	С
64.	Central Ave & Greenleaf Blvd	Signalized	0.534	A	0.671	В
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.532	Α	0.526	Α
66.	Alameda St & Greenleaf Blvd	Signalized	0.628	В	0.723	С
City	of Lynwood					
44.	Alameda St & Abbott Rd	Signalized	0.660	В	0.624	В
53.	Imperial Hwy & Fernwood Ave	Signalized	0.732	С	0.755	С
54.	Imperial Hwy & State St	Signalized	0.738	С	0.785	С
City	of Los Angeles					
1.	Avalon Blvd & Imperial Hwy	Signalized *	0.747	С	0.713	С
2.	Avalon Blvd & 120th St	Signalized	0.592	A	0.672	В
5.	Central Ave & 103rd St	Signalized	0.637	В	0.664	В
6.	Central Ave & Imperial Hwy	Signalized	0.737	С	0.757	С
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.823	D
8.	Central Ave & I-105 e/b Ramps	Signalized	0.668	В	0.635	В
9.	Central Ave & 120th St	Signalized	0.753	С	0.690	В
14.	Compton Ave & 103rd St	Signalized	0.604	В	0.587	A
15.	Compton Ave & 108th St	Signalized	0.663	В	0.527	Α
16.	Compton Ave & 112th St	Unsignalized [5]	(31.0)	D	(38.5)	Е
22.	Wilmington Ave & 103rd St	Signalized	0.660	В	0.463	A
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.473	A	0.441	A
24.	Wilmington Ave & 108th St	Signalized	0.593	A	0.496	Α
25.	Wilmington Ave & 112th St	Unsignalized [5]	(44.5)	Е	(42.1)	Е
47.	Avalon Blvd & 103rd St	Signalized	0.441	A	0.475	Α
48.	Avalon Blvd & 108th St	Signalized	0.564	В	0.608	A
49.	Imperial Hwy & Main St	Signalized	0.590	В	0.632	A
50.	Imperial Hwy & San Pedro St	Signalized	0.661	В	0.697	В
51.	San Pedro St & 120th St	Signalized	0.528	Α	0.597	A
City	of Los Angeles & Los Angeles County [6]					
17.	Compton Ave & Imperial Hwy	Signalized	0.898	D	0.663	В
26.	Wilmington Ave & Imperial Hwy	Signalized	0.501	A	0.497	A
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.69	В	0.71	С
39.	Mona Blvd & Imperial Hwy	Signalized	0.601	В	0.704	C

Note:

- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.
- [6] Analyzed per City of Los Angeles methodology.

Metro Green Line

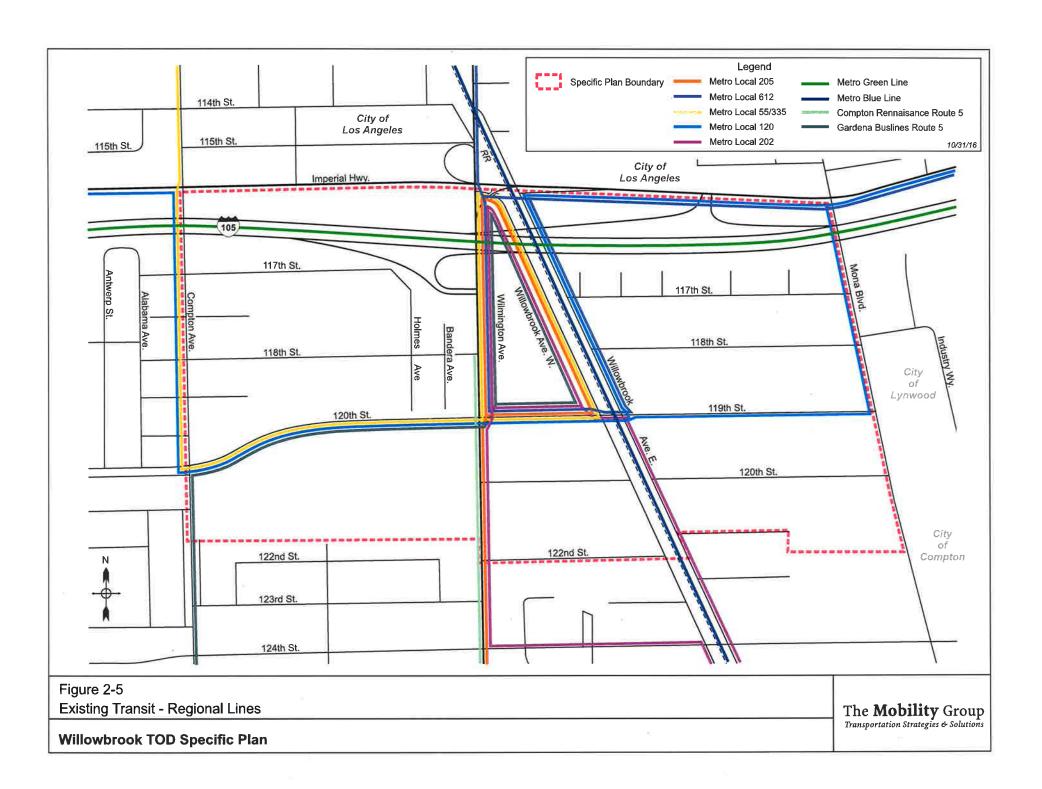
The Willowbrook/Rosa Parks Station is also served by the Metro Green Line, which runs between Redondo Beach and Norwalk. The Green Line operates between approximately 4:00 am and 12:00 am, and until about 2:00 am on weekend nights. It operates every 7 to 10 minutes during weekday peak periods and at about 15 minutes on weekends. There is a transfer to the Metro Blue Line at this station.

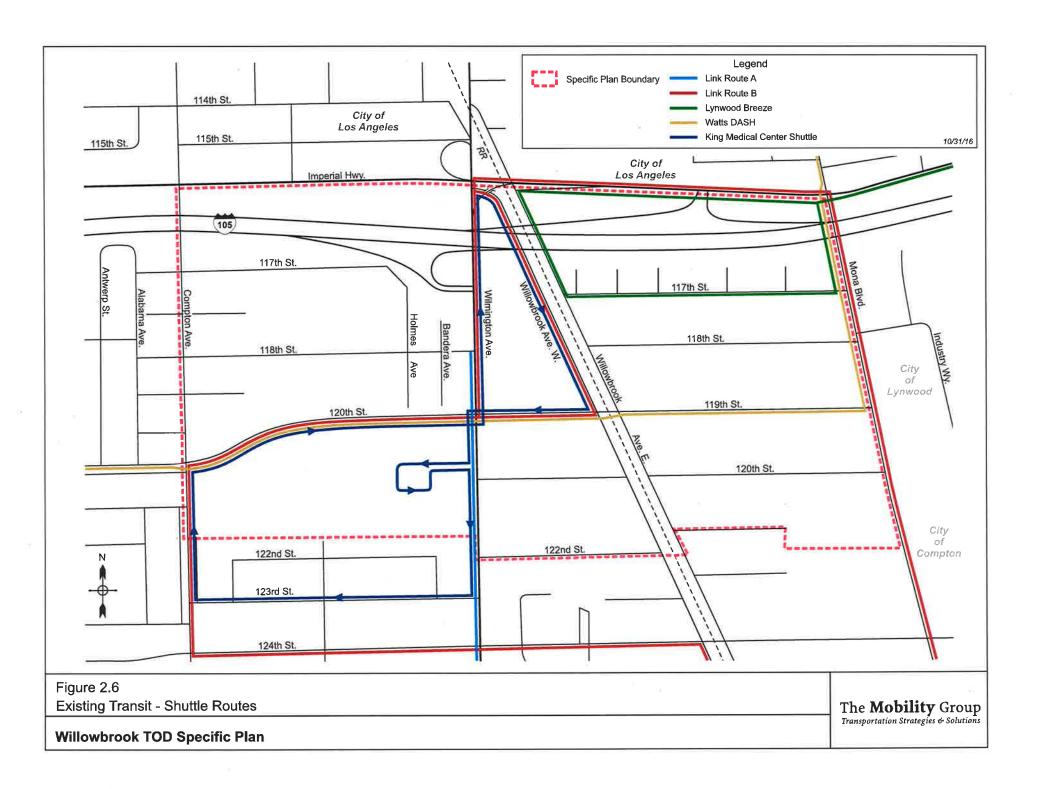
The Willowbrook/Rosa Parks Station

The Willowbrook/Rosa Parks station is located on the southeast corner of Wilmington Avenue and Imperial Highway. It is a three-level station where the ground level platform provides access to the Metro Blue Line, the second level is a mezzanine area connecting both platforms, and the third-level provides access to the Metro Green Line.

The station is also directly served by the following bus lines via off-street bus loading bays (the route names refer to communities not street names):

- Metro Local 55/355 Willowbrook to Downtown Los Angeles.
- Metro Local 120 Whittier to El Segundo.
- Metro Local 202 Wilmington to Willowbrook.
- Metro Local 205 Willowbrook to San Pedro.
- Gardena Municipal Bus Lines Route 5 Willowbrook to Hawthorne.
- Metro Local 612 Local Area Circulator Shuttle.
- Los Angeles County Link Route B Local Willowbrook Shuttle.
- Lynwood Breeze Route A Shuttle between Willowbrook and Lynwood.


Regional Bus Transit Service Serving the Specific Plan Area


Metro Local 55/355 runs between Willowbrook/Rosa Parks Station and Downtown Los Angeles via Wilmington Avenue in the study area. It operates at about 10-30 minute headways during weekday peak periods and at about 20-60 minute headways on weekends. It operates 24-hours.

Metro Local 120 runs between Whittier and El Segundo via Imperial Highway in the study area. It operates at about 30-40 minute headways during weekday peak periods and at 60 minute headways on weekends.

Metro Local 202 runs between Wilmington and Willowbrook/Rosa Parks Station via Willowbrook Avenue in the study area. It operates at about 50 to 60 minute headways during weekday peak periods and at about 60 minute headways overnight. There is no mid-day service and no service at weekends.

Route	Description	Approximate Headwa (minutes)	
	9,	AM Peak	PM Peak
Metro Rail			
Blue Line Green Line	Long Beach - Downtown Los Angeles Redondo Beach - Norwalk	6 8	6 8
Metro Local			
55/355 120 202 205 612	Willowbrook - Downtown Los Angeles El Segundo - Whittier Wilmington - Willowbrook San Pedro - Willowbrook Willowbrook - Huntington Park	20 40 60 30 60	13 40 60 40 60
LA County The Link			
Route A Route B KMC Shuttle	San Pedro St. & 135th St Hahn Plaza Mona Blvd. & Otis St Willowbrook Station King Medical Center - Willowbrook Station	60 30 20	60 30 20
Gardena Municipal			
GA 5	Hawthorne - Willowbrook	30	30
Compton			
C5	Compton - Willowbrook	60	0
Lynwood Breeze			
Route D	Willowbrook - Lynwood	30	30
LADOT DASH			
Dash Watts	Watts - Willowbrook	20	20

Metro Local 205 runs between Willowbrook/Rosa Parks Station and San Pedro via Wilmington Avenue in the study area. It operates at about 25 to 50 minute headways during weekday peak periods and at 55-60 minute headways on weekends.

Metro Local 612 runs as a circulator shuttle, connecting the Willowbrook/Rosa Parks Station to Lynwood, South Gate, Cudahy, Bell, Walnut Park, and Watts. It operates at about 60 minute headways every day.

GTrans (formerly Gardena Municipal Bus Lines) Route 5 runs between Willowbrook/Rosa Parks Station and Hawthorne via Wilmington Avenue in the study area. It operates at about 30 minute headways on weekdays.

Compton Renaissance Route 5 operates as a circulator shuttle between Willowbrook (Martin Luther King Jr. Hopsital) and Compton. Based on available schedules, it operates at about 60 minute headways between 8am and 3pm on weekdays and between 10am and 3pm on Saturdays.

Shuttle Bus Routes Serving the Specific Plan Area

Los Angeles County

Los Angeles County's The Link Route A is a clockwise loop linking Hahn Plaza, MLK Medical Center via Wilmington Avenue, El Segundo Boulevard, Central Avenue, Rosecrans Avenue, Broadway and Imperial Highway. It provides connections to the MLK Medical Center, Carver Park, the Magic Johnson Park, the Avalon Green Line Station and other points throughout Willowbrook. It operates at about 60 minute headways on weekdays and Saturdays.

Los Angeles County's The Link Route B runs as circulator shuttle throughout Willowbrook, mostly running along Willowbrook Avenue, Mona Boulevard, Wilmington Avenue, 120th Street, 124th Street, 126th Street and 130th Street. It provides connections to the MLK Medical Center, Drew University, Mona Park, Jefferson Elementary school, and the Willowbrook Rosa Parks Metro Station. It operates at about 30 minute headways on weekdays and Saturdays.

Los Angeles County's King Medical Center Shuttle runs between the Medical Center and the Willowbrook/Rosa Parks Station and also served the Hahn Shopping Center. It operates at 20 minute headways on weekdays and Saturdays.

Los Angeles DOT (DASH)

The DASH Watts shuttle (LDWTS) runs as a circulator shuttle connecting Willowbrook to areas throughout Watts, mainly via Mona Boulevard, 103rd Street, Wilmington Avenue, 92nd

Street, McKinley Avenue, Avalon Boulevard, and 120th Street. It operates at 20 minute headways on weekdays and Saturdays.

Lynwood Breeze

The Lynwood Breeze Route D shuttle runs between Willowbrook and Lynwood. It operates at about 30 minute headways on weekdays.

Transit Routes by Key Street

The streets with the most transit service are Wilmington Avenue, Willowbrook Avenue and 119th/120th Street. The lines that run along each street are listed below.

Wilmington Avenue

- Metro Local 202 Willowbrook to Wilmington.
- Metro Local 205 Willowbrook to San Pedro.
- Metro Local 612 Local Circulator Shuttle.
- Los Angeles County Link Route A Local Circulator Shuttle.
- Los Angeles County King Medical Center Shuttle Local Circulator Shuttle
- Compton Renaissance Route 5 Local Shuttle between Willowbrook and Compton.

Willowbrook Avenue

- Metro Local 202 Wilmington to Willowbrook.
- Metro Blue Line Downtown Long Beach to Downtown Los Angeles.

Imperial Highway

- Metro Local 120 Whittier to El Segundo.
- Lynwood Breeze Route D Shuttle Imperial/Wilmington Station and Lynwood.

120th Street

- Metro Local 55/355 Willowbrook to Downtown Los Angeles.
- Metro Local 120 Whittier to El Segundo.
- Gardena Municipal Bus Lines Route 5 Willowbrook to Hawthorne.
- Los Angeles County Link Route B Local Circulator Shuttle.
- Los Angeles County King Medical Center Shuttle Local Circulator Shuttle
- DASH Watts Shuttle Local Circulator Shuttle.

Routes Connecting the Martin Luther King Jr. Medical Center and the Charles R. Drew University Campus to the Willowbrook Rosa Parks Metro Station

The following transit routes run along 120th Street between Compton Avenue and Wilmington Avenue, and connect the Martin Luther King Jr. Medical Center and the Charles R. Drew University Campus to the Willowbrook Rosa Parks Metro Station.

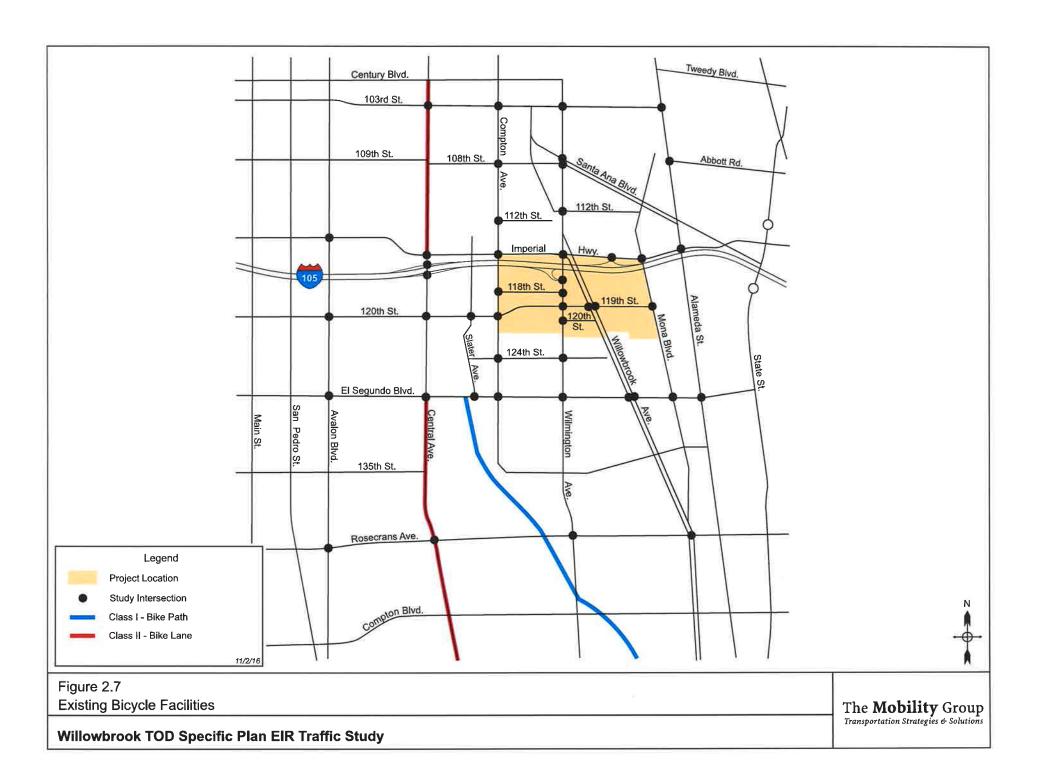
- Metro Local 55/355
- Metro Local 120
- Gardena Municipal Bus Lines Route 5
- The Link Route B
- King Medical Center Shuttle

Service frequencies for these routes are identified earlier in this section, and generally range from as low as 8-15 minutes in the peak periods for Route 55/355, to 30-60 minutes for the other routes on weekdays, and 30-60 minutes on Saturdays. The Route 5/355 operates 24 hours a day, the Route 120 operates up to about midnight. Only the two Metro Lines operate on Sundays. The Gardena Route 5 does not operate late evenings or weekends. The Link Route B and the King Medical Center Shuttle run 20-30 minute service frequencies, but do not operate evenings after 6pm or on Sundays.

2.5 Bicycle and Pedestrian Facilities

Bicycle Facilities

The Los Angeles County Bicycle Master Plan designates a countywide network of bicycle paths, bicycle-lanes, and bicycle routes in the area of the Project. The following designations are used by type of facility:


- Bicycle Paths (Class I) are paved right-of-way for exclusive use by bicyclists, pedestrians and other non-motorized modes of travel. They are physically separated from vehicular traffic.
- Bicycle Lanes (Class II) have an allocated portion of the roadway exclusive for bicycle travel, defined by pavement striping and signage. Bicycle lanes are one-way facilities on either side of the roadway. They are located adjacent to the curb, where there is no on-street parking and adjacent to the parking lane, where on-street parking exists.
- Bicycle Routes (Class III) provide shared use with motor vehicle traffic within the same traffic lane and are designated by signage.

There are no current bike paths, bike lanes, or bike routes in the Specific Plan area. The existing bicycle facilities in the study area are shown in Figure 2.7. There is a single Bicycle Path which runs along Compton Creek. There are also Bike Lanes on the following streets:

- Central Avenue (Between Century Boulevard and Imperial Highway)
- Central Avenue (Between El Segundo Boulevard and south of Compton Boulevard)

Pedestrian Facilities

Sidewalks exist on all streets in the Specific Plan Area. Pedestrian crosswalks exist at signalized intersections. There is a mid-block crosswalk on 120th Street midway between Compton Avenue & Wilmington Avenue, which is a signalized crosswalk. There are also two unsignalized crosswalks on 118th Street between Compton Avenue & Wilmington Avenue.

3. The Specific Plan - Transportation Characteristics

This section of the report describes the transportation characteristics of the proposed project (the Specific Plan). To set the context, the Specific Plan purpose and objectives are first described, followed by a summary of Specific Plan land uses. The resultant transportation characteristics of the Specific Plan are then discussed.

3.1 Specific Plan Purpose and Objectives

As identified in Chapter 1, the purpose of the Willowbrook TOD Specific Plan is to revitalize the community within the project area and to improve access to all modes of transportation, including transit, walking, and bicycling. Building off the goals and policies outlined in the General Plan, the Willowbrook TOD Specific Plan will encourage transit oriented development, promote active transportation and reduce vehicle miles travelled. The Specific Plan is anticipated to facilitate development, especially residential and employment-generating uses proximate to the Willowbrook/Rosa Parks Station.

The primary objectives of the Specific Plan are to identify land use options that include mixed uses, increased housing opportunities', and neighborhood–serving retail uses, In addition the Specific Plan is intended to foster a healthy community by improving pedestrian linkages between the Willowbrook/Rosa Parks Station, the Kenneth Hahn Plaza, the Martin Luther King Jr. Medical Center, the Charles R. Drew University of Medicine and Science, future mixed use areas, and existing residential neighborhoods.

3.2 Specific Plan Land Uses

For the purposes of the EIR analysis, land use forecasts were developed for the Specific Plan. These comprised land use types and quantities that could be added in the Specific Plan area and land use types and quantities that could be replaced (removed). A total of seven sub-areas were identified and divided into thirteen geographic zones. Land use projections made for each zone, and also aggregated to sub-areas. The sub-areas are shown in Figure 3.1. The thirteen zones are shown in Figure A-1 in Appendix A.

Land Use Changes in the Specific Plan

The Specific Plan includes three key land use areas: the Martin Luther King Jr. Medical Center, the Charles R. Drew University of Medicine and Science, and the remaining areas of the Specific Plan. Land use changes were forecast for all three components. Table 3.1 summaries the land use quantities by key type of use.

Martin Luther King Jr. Medical Center

An EIR for modification and expansion of the Medical Center was approved in 2010¹. The EIR identified two tiers of construction. Tier 1 is now complete, and is included in the existing traffic counts (comprising the baseline existing conditions for the traffic analysis). The EIR Traffic Study identified Tier 2 development assumptions totaling 1,814,695 sq. ft. with 100 DU's. For this Specific Plan, Tier 2 growth was updated to an amount considered more realistic for the current environment at 1,248,522 sq. ft. and 100 DU's (which represents 75% of the Tier 2 growth assumed in the EIR). This adjustment was made by by County staff in coordination with the Second Supervisorial District.

Charles R. Drew University of Medicine and Science (CDU) Master Plan.

The CDU Master Plan is also included in the Specific Plan land use forecasts. CDU provided information on their Master Plan for growth at the university, representing an increase of 825 students from 625 existing to 1,450 total, and an additional 70 dwelling units from 49 existing to 119 total.

Other Specific Plan Land Uses

Land use forecasts were also prepared for the remaining areas of the Specific Plan. These represent an increase of 1,945 residential dwelling units (DU'S), of which the vast majority are multi-family; and approximately 865,770 sq. ft. of commercial uses (comprised primarily of approximately 743,590 sq. ft. of office/R&D/business park/medical uses, and 122,185 sq. ft. of retail commercial uses)².

3.2 Specific Plan Trip Generation

Vehicular trip generation was estimated for the existing land uses and for the projected future land uses, to determine a net increase in trip generation. As described above, for purposes of traffic analysis, the Specific Plan area was divided into 13 geographic zones, and potential changes in land uses were identified for each zone.

Trip generation from the project was estimated using trip rates from Trip Generation Manual -9^{th} Edition (Institute of Transportation Engineers, 2012). However, ITE trip rates are generally for suburban stand-alone land uses with negligible transit use. They were thus adjusted to be more representative of the existing and proposed land uses in the Specific Plan area and a transit oriented district – where the proximity to transit allows some trips to be

¹ Traffic Study for the Martin Luther King Jr. Medical Center Campus Project, County of Los Angeles, July 2010.

² The breakdown of mixed use land use categories s to specific land use types was made in consultation with County staff.

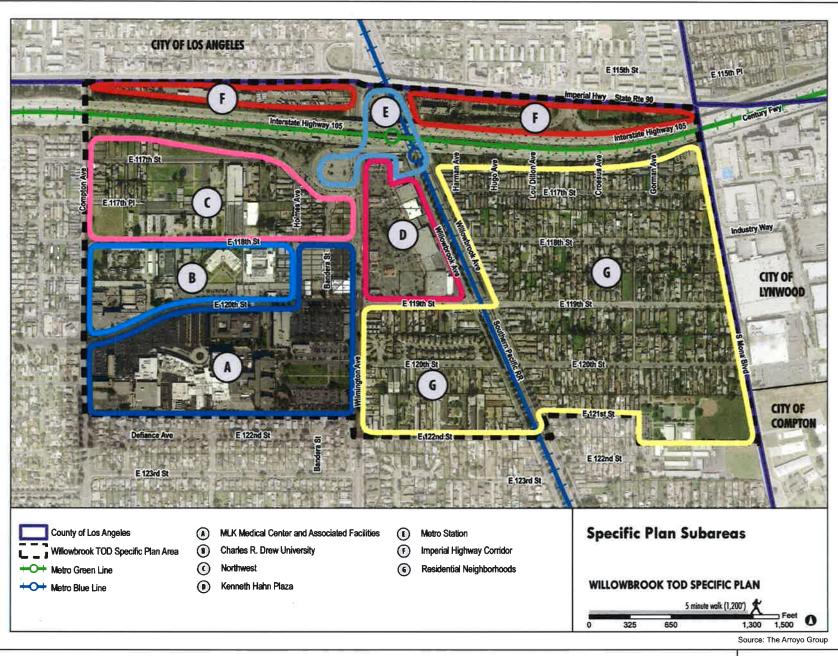


Figure 3.1 Specific Plan Sub-Areas

11/3/16

 Table 3.1
 Specific Plan Land Use Summary - By Type of Use

Category	Land Use	Existing	Future	Net Change
Martin Luther King Jr. Medical Campus	Single Family Housing (DU's)	0	100	100
	MLK Medical Campus (sf)	890,891	2,139,413	1,248,522
Charles R. Drew University	Multi-Family Housing (DU's) University Students	49 625	119 1,450	70 825
		477,842	772,990	295,148
Other Specifc Plan Land Uses	Single Family Housing (DU's) Multi-Family Housing (DU's)	347 572	609 1,987	262 1,415
	Senior Housing (DU's) General Office (sf)	0 8,408	105 393,745	105 385,337
	Business Park (sf) Medical Office (sf)	0 0	224,317 35,427	224,317 35,427
	R & D Office (sf) Restaurant-High Turnover (sf)	0 0	98,506 7,086	98,506 7,086
	Restaurant-Fast Food (sf) Retail (sf)	0 0	2,696 81,572	2,696 81,572
	Shopping Center (sf) Other/Miscellaneous/Parking (sf)	189,286 344,096	220,116 600,691	30,830 256,595
Total	Total Residential (DU's) Non-Residential (sf)	968 1,910,523	2,920 4,576,559	1,952 2,666,036

made by transit, where the proximity of land uses allows for some trips to be made by walking rather than driving, and where some of the trips are between destinations within the Specific Plan area and thus do not leave the area.

The following methodology was used to calculate trip generation for each of the three separate land use areas area in the Specific Plan.

Martin Luther King Jr. (MLK) Medical Center

Trip generation information for the Martin Luther King Jr. Medical Center was taken directly from the approved EIR for that project. As the Tier I development has been completed, it is already included in the existing conditions baseline and is reflected in the existing traffic counts conducted for the study. The Approved EIR Traffic Study identified Tier 2 development assumptions totaling 1,814,695 sq. ft. and associated trip generation totals. As discussed above, this Specific Plan assumes Tier 2 growth at 75% of that level. Trip generation was therefore calculated as 75% of the Tier 2 totals in the MLK EIR and input to the impact analyses described in later chapters.

CDU Master Plan

The Specific Plan includes the Master Plan projections for the CDU Master Plan provided by CDU, and totaling an increase of 825 students from 625 existing to 1,450 total, and an additional 70 dwelling units from 49 existing to 119 total. Trip generation estimates were developed for the CDU Master Plan based on ITE Trip Generation 9th Edition, with adjustment factors appropriate for the CDU campus and a TOD area (see further discussion below).

Remainder of the Specific Plan area (the "Non-MLK/CDU area")

The Specific Plan Project includes land use projections for the remainder of the Specific Plan area (the "Non-MLK/CDU area"), as described above.

Trip generation was generally calculated according to trip rates from ITE Trip Generation 9th Edition. The base trip rates are shown in Table A-1 in Appendix A. However, the typical methodology of estimating trip generation using trip rates from Institute of Transportation Engineers (ITE) data² does not adequately reflect the mixed use characteristics and the TOD environment of the proposed Project, because those trip rates were derived from data typically collected from stand-alone (single use) suburban sites, rather than sites with the characteristics of the Specific Plan area.

² Institute of Transportation Engineers, 9th Edition Trip Generation Manual, Washington D.C., 2012

The Specific Plan is in a heavily urbanized area with significant levels of transit service. As discussed at the beginning of this chapter, the purpose of the Specific Plan with respect to transportation is to "... improve access to all modes of transportation, including transit, walking and bicycling.... to encourage transit oriented development, and promote active transportation.... to facilitate development, especially residential and employment-generating uses proximate to the Willowbrook/Rosa Parks Station... identify land use options that include mixed uses, increased housing opportunities, and neighborhood-serving retail uses...and improve pedestrian linkages between the Willowbrook/Rosa Parks Station, Kenneth Hahn Plaza, Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, future mixed use areas, and existing residential neighborhoods".

The trip rates therefore required the following types of adjustments to reflect the characteristics of the Specific Plan area. These adjustments were developed in consultation with, and approved by, County staff.

Trips Internal to the Project

With a large mixed use Proposed Project area, there is a high potential for internal synergy between land uses, such that some trips will both start and end within the Project area itself – and thus will not leave the Specific Plan area. These will include people who live in the Project going to the retail, restaurant, and/or other commercial uses, or to the office uses if they both live and work in the Project. It will also include people who drive to the Project, but visit multiple destinations within the Project (for example office and retail, or retail and restaurant). Because these people will walk between those multiple destinations in the Project they will make only one vehicle trip rather than driving to each destination.

The adjustment factors to account for trips remaining internal to the Project area were based on a variety of sources. Studies conducted for the Florida Department of Transportation¹ documented internal trip capture rates at mixed use developments of 7% to 24% in the PM peak period. A research report from the Center for Urban Transportation² reported observed internal trip capture rates at mixed use developments of 9% to 14% in the AM peak period and 13% to 16% in the PM peak period. NCHRP Report 684³ observed trip capture rates of 11% to 31% in the AM peak and 33% to 44% in the PM peak .

The trip adjustment factors to be applied in this study are shown in Table A-2 in Appendix A. Internal trip capture rates of 5% to 15% were applied to commercial uses in the Specific Plan

The Mobility Group 40 May 4, 2017

¹ Tindale Oliver & Associates, Inc., Trip *Characteristics Studies of Multi Use Developments*. Report Prepared for Florida Department of Transportation, 1993.

Walter H. Keller Inc., Districtwide Trip Generation Study, Task 5, Final Report. Prepared for Florida Department of Transportation. 1995

² Center for Urban Transportation Research Final Report BDK84-977-10, *Trip Internalization in Mixed Use Developments*, April 2014.

³ NCHRP Report 684, Enhancing Internal Trip Capture Estimation for Mixed Use Developments, Transportation Research Board, 2011.

area, adjustment rates of 5% were applied to institutional uses, and adjustments of 10% were applied to residential uses. These are modest and conservatively low adjustments for internal capture when compared to the information documented above so are considered very reasonable for the Specific Plan area.

For the MLK Medical Center, this study used the internal trip capture rate of 15% utilized in the EIR for that project. For the CDU Master Plan, this study used an internal capture rate of 50% for the on-campus student housing in the peak hours due to the immediate proximity of the housing to campus facilities.

Trips Using Transit

The Project area is well served by transit, focused on the Willowbrook/Rosa Parks Station which serves both the Metro Blue Line and Metro Green Line. The Specific Plan area is served by three regional bus operators, and numerous shuttle bus routes. These operate a total of six regional bus lines and six shuttle lines. These high levels of transit service will result in a significant number of trips being made by transit.

There is increasing evidence that vehicle trip rates for urban mixed use projects and for transit-oriented developments (TOD's) are much lower than the more suburban based ITE trip rates. TCRP Report 128¹ documents that peak hour vehicle trip rates for residential TOD's are 50% lower than standard ITE rates. A Caltrans study² documented that peak hour trip rates in urban infill developments, including mixed use projects, were 28% lower than standard ITE rates for mid-rise residential uses, 50% lower for office uses, and 25 to 35% lower for quality restaurant uses, due to internal synergy, walkable proximity to other land uses, and proximity to transit.

The transit use adjustment factors that were applied in this study are shown in Table A-3 in Appendix A. These range from 15% to 25% for residential uses and 10% to 25% for the commercial uses, depending on proximity to the rail station and the type of mixed use development. These are conservatively on the low side when compared to the information documented above so are considered very reasonable for the Specific Plan area.

For the MLK Medical Center, this study used the transit use adjustment rate of 15% utilized in the EIR for that project. For the CDU Master Plan, this study used a transit use adjustment rate of 15% in the peak hours consistent with the rate for the MLK Medical Center and the adjustment rates for the TOD uses.

² Trip Generation Rates for Urban Infill Land Uses in California, Caltrans, 2009

The Mobility Group 41 May 4, 2017

¹ TCRP Report 128, Effects of TOD on Housing, Parking and Travel, Transportation Research Board, 2008

Trip Generation Totals

As shown in Table 3.2, the Project would add 3,139 new AM peak hour trips in the Specific Plan area and 3,832 new PM peak hour trips. (Detailed trip generation calculations are shown in Table A-4 for the AM peak hour and in Table A-5 for the PM peak hour in Appendix A).

As also shown in Table 3.2, approximately 43% of the new trips would be generated by the MLK Medical Center, 3% by CDU, and 54% by the other land uses in the Specific Plan area. Of all new trips, approximately 23% would be from residential uses and 77% from non-residential uses.

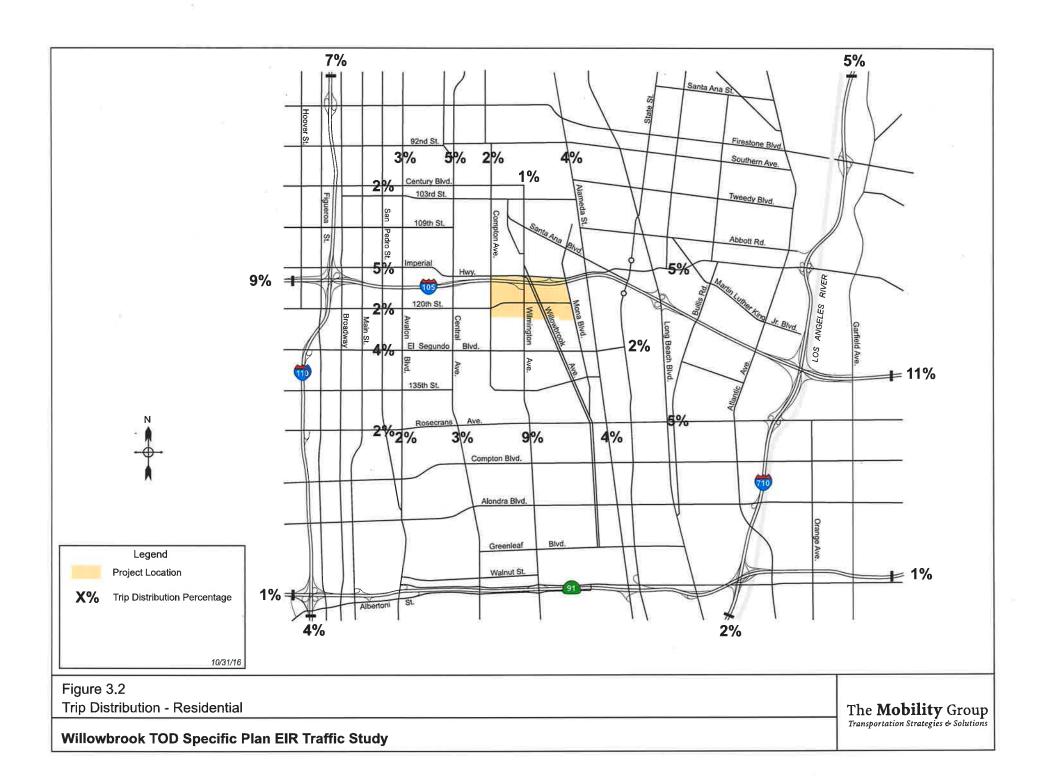
Table 3.2 Trip Generation Totals – By Key Land Use Area

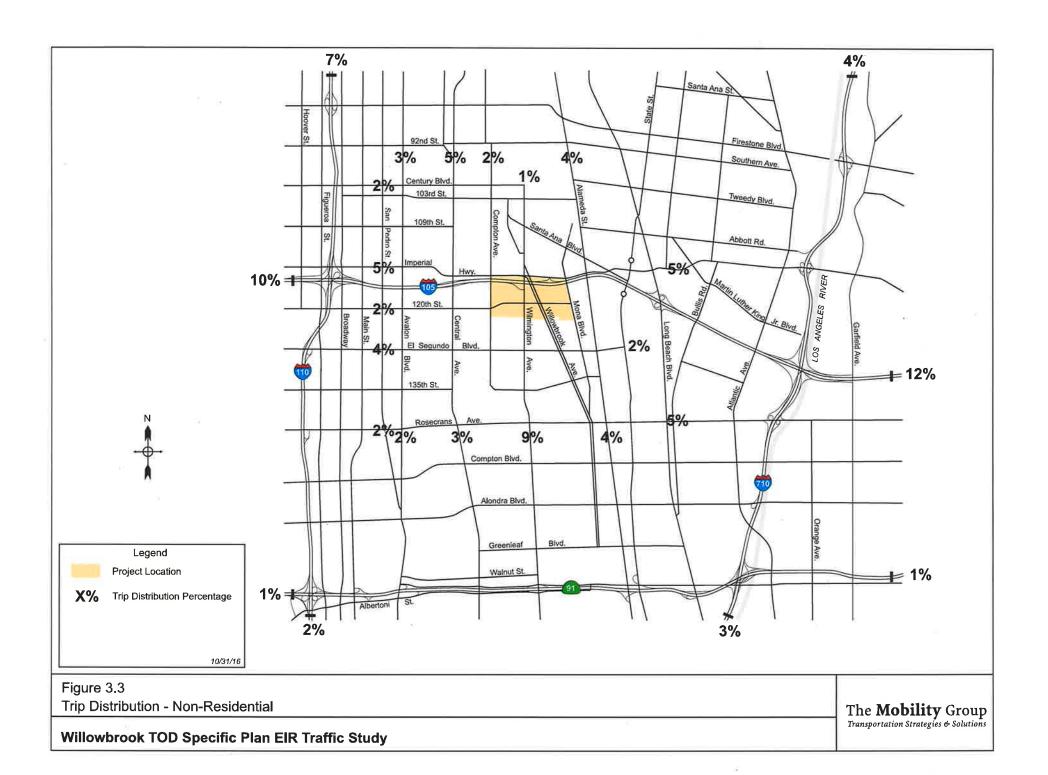
Component	AM Peak Hour	AM Peak Hour %	PM Peak Hour	PM Peak Hour %
MLK Medical Center	1,289	41%	1,684	44%
CDU	125	4%	126	3%
Specific Plan Remainder	1,725	55%	2,022	53%
Total	3,139		3,832	
Residential	718	23%	887	23%
Non-Residential	2,421	77%	2,945	77%

Table 3.3 shows the breakdown of trips by subarea of the Specific Plan. This shows that the vast majority of additional trips in the remainder of the Specific Plan area will be generated by the Northwest subarea, with relatively few trips being generated in other subareas.

As identified earlier in Chapter 2, the trip generation estimates are used to project traffic volumes and calculate intersection level of service. Vehicle miles travelled (VMT) are estimated and used in the Air Quality and Green House Gas analyses in other sections of the EIR. In general, the VMT for the Specific Plan is lower than would otherwise be the norm because of the TOD nature of the Specific Plan. As discussed above, proximity to the Metro station and transit and Specific Plan features to enhance bike and walk facilities will encourage and lead to higher use of transit, as well as walk/bike. Also, the land use densities and close proximities will increase internal synergies within the Specific Plan area with respect to trip making and, with some trips remaining inside the Specific Plan area, with less trips leaving the Specific Plan area. As also identified above, the traffic analysis estimated

Table 3.3 Trip Generation by Sub-Area


Sub-Area	Zones	AM Peak Hour		PM Peak Hour	
		Trips	% of Total	Trips	% of Total
A. MLK Medical Center	1, 2A, 2B	1,289	41%	1,684	44%
B. CDU	2C	125	4%	126	3%
C. Northwest	3A – 3G	1,307	42%	1,534	40%
D. Kenneth Hahn Plaza	4B	109	4%	188	5%
E. Metro Station	4A	24	1%	31	1%
F. Imperial Hwy Corridor	12 - 13	153	5%	209	6%
G. Residential Neighborhoods	5 - 11	46	2%	60	2%
Total		3,139	100%	3,832	100%


internal capture within the Specific Plan area of 5% to 15% for commercial uses, 5% for institutional uses, and 10% for residential uses. The traffic analysis also estimated transit use at 15% to 25% for residential uses, and 10% to 25% for commercial uses. Without the TOD features of the Specific Plan, the estimated VMT would be higher.

3.3 Specific Plan Trip Distribution

The trip distribution for the analysis is shown in Figure 3.2 for residential trips and Figure 3.3 for non-residential trips. These were derived from a select zone type analysis of the trip distribution information in the Los Angeles County Congestion Management Plan and are therefore consistent with County of Los Angeles guidelines and regional travel forecasting methodologies. This identified the regional distribution of trip origins and destinations.

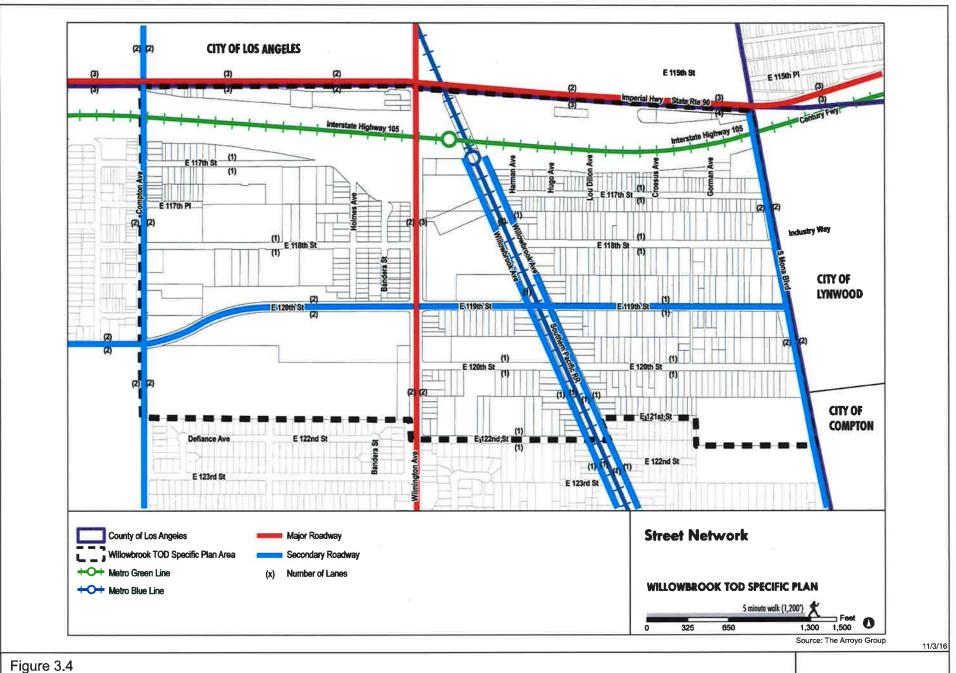
However, the regional proportion by freeway (derived from RSA 21 as a whole) was judged to be too high for the Specific Plan land uses (which are located in the southwest edge of the RSA) and which are focused on revitalization for the local community rather than creating a regional destination (see Specific Plan goals discussed earlier). Consideration was also taken of the type of land uses in the project, the likely origins and destinations of project residents and visitors, and the characteristics of the street system in the area of the project. Based on these considerations, the freeway/local split was therefore adjusted to 40% freeway and 60% local street to reflect the more locally oriented characteristics of the Specific Plan area and land uses and more locally oriented trips. This is consistent with the MLK Medical Center

EIR Traffic Study which forecast approximately 35% to the freeways. The local distribution of trips to local streets was also based on the CMP distribution data as well consideration of the population and employment in adjacent and nearby communities, roadway types serving the Specific Plan area and professional judgment. These distributions were developed in consultation with, and approved by, County staff.

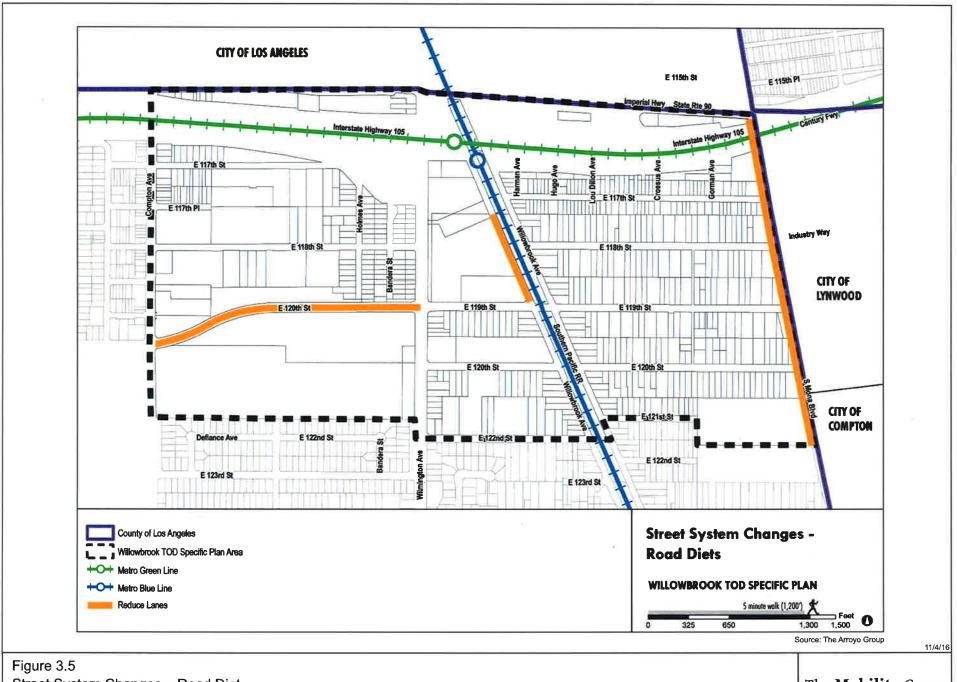
3.4 Transportation Improvements in the Specific Plan

The Mobility Element of the Specific Plan is described in detail in Chapter 4 of the Willowbrook TOD Specific Plan, so only a summary is provided here. The overall mobility goal in the Specific Plan area is to enhance connectivity and the ease of movements for non-auto transportation modes, particularly pedestrians and bicyclists. These enhancements will support healthy transportation options.

Roadway System


The roadway system, shown in Figure 3.4, provides the backbone circulation system for all modes of transportation. While historically street systems have been oriented to serving the automobile, the roadway system should provide a network of complete streets that provides for the safe and efficient circulation of transit, bicycles, and pedestrian as well as automobiles.

The existing street system will be largely maintained in its current configuration, with some changes/improvements designed to improve access and circulation, and walkability. The Major Roadways (as identified in the County General Plan) will continue to be Wilmington Avenue and Imperial Highway. Secondary Roadways (also identified in the County General Plan) will continue to be Compton Avenue, Willowbrook Avenue and Mona Boulevard in the north-south direction, and 120th Street/119th Street in the east-west direction. The number of traffic lanes and roadway lane configurations will generally remain the same, except where otherwise noted in the Specific Plan (for example where road diets will be implemented).


The following street enhancements, shown in Figure 3-5, are intended to improve circulation for bicycles and pedestrians in the Specific Plan area. These are also described in more detail in Sections 4.4 and 4.5 of the Specific Plan. They have been included in the impact analysis in Chapter 4 and Chapter 6 of this report.

Road Diet and Bicycle Lanes on 120th Street

The section of 120th Street between Compton Avenue & Wilmington Avenue, will be reduced from four lanes to three lanes, with a bicycle lane in each direction. This is part of the Willowbrook Area Access Improvement Project.

Street Network Willowbrook TOD Specific Plan EIR Traffic Study

Street System Changes - Road Diet

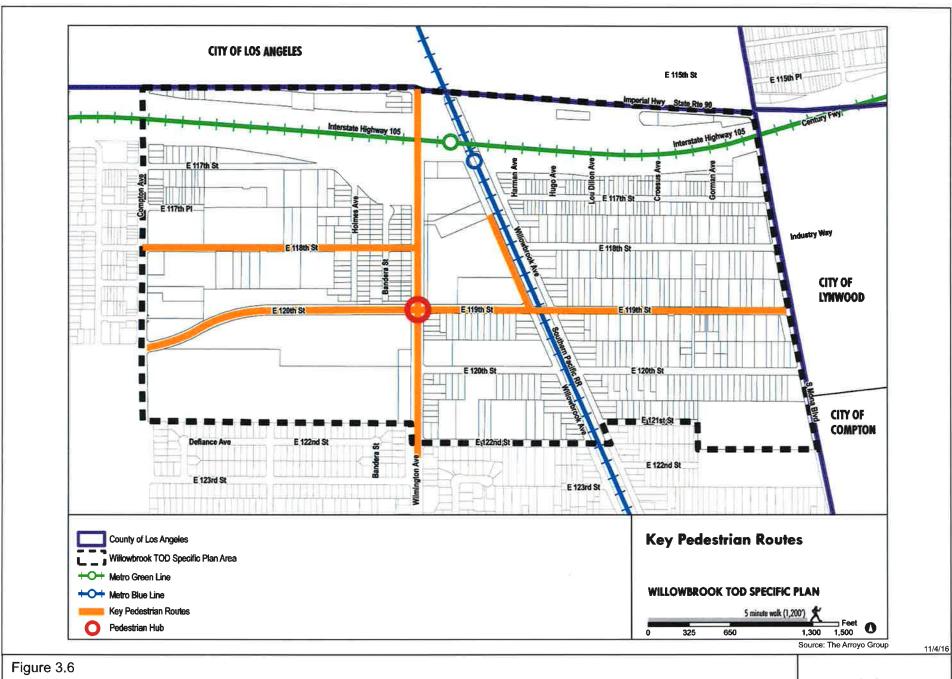
Willowbrook TOD Specific Plan EIR Traffic Study

Road Diet and Bicycle/Pedestrian Trail on Mona Boulevard

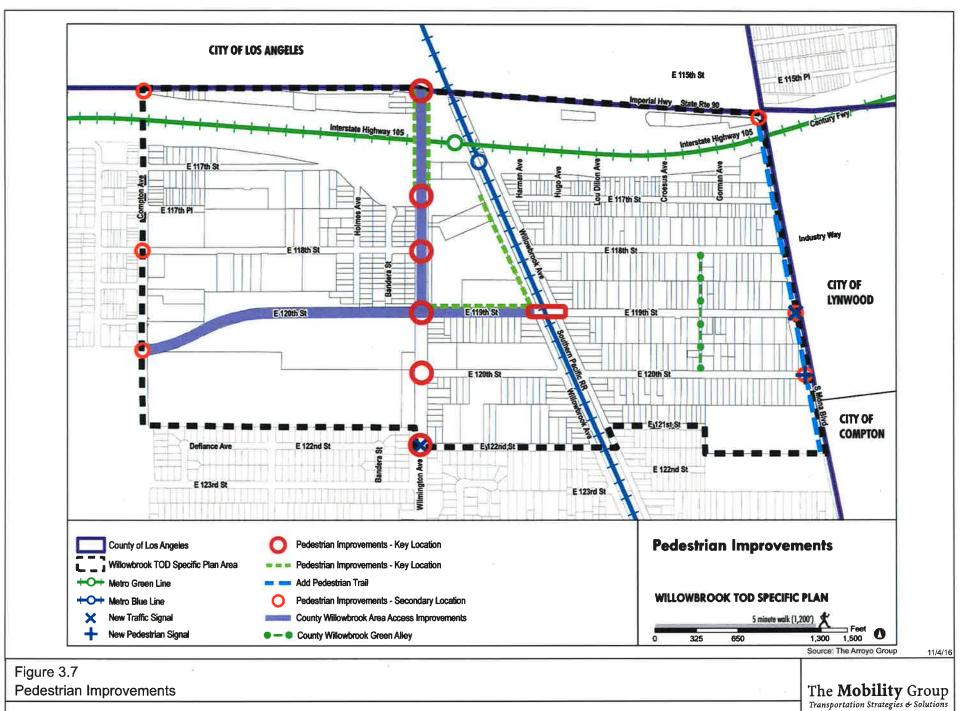
Mona Boulevard from the I-105 Freeway to 124th Street will be converted from a four lane street to a three lane street, and a pedestrian/bicycle trail installed on the west side of the street.

Willowbrook Avenue West

The section of Willowbrook Avenue West between the Willowbrook/Rosa Parks Metro Station and 119th Street, will be reduced from two lanes southbound to one lane southbound, and a bike path installed on the west side of the street.


Pedestrian Circulation

The key pedestrian routes in the Specific Plan Area are shown in Figure 3-6. The backbone of the pedestrian system is formed by Wilmington Avenue in the north-east direction and 120th/119th Street in the east-west direction. These corridors connect activity centers of the Willowbrook/Rosa Parks Station, the Kenneth Hahn Shopping Plaza, and the Martin Luther King Jr. Medical Center Campus. They also cross at the intersection of Wilmington Avenue and 120/119th Street – which is the functional pedestrian hub of the Specific Plan Area. Additional key elements of the pedestrian system are 118th Street between Compton Avenue and Wilmington Avenue - which connects the Charles Drew University campus to the rest of the Specific Plan Area, Willowbrook Avenue West between 119th Street & the Willowbrook/Rosa Parks Metro Station – providing access from residential areas to the station, and 119th Street between Willowbrook Avenue & Mona Boulevard – which provides access from the residential areas to the activity centers of the Specific Plan Area. Mona Boulevard also provides north-south pedestrian access on the east side of the Specific Plan Area including access to Mona Park, the Martin Luther King Elementary School and the Dr. Ralph Bunche Middle School.


Pedestrian Oriented Intersection Improvements

In order to enhance the pedestrian environment and to calm traffic, a number of pedestrian oriented intersection improvements will be implemented throughout the Specific Plan Area, where feasible. These will be based on a menu of improvements that includes the following:

- Adding high visibility crosswalks at intersections.
- Adding passive pedestrian detection and pedestrian push buttons for crosswalks at traffic signals at intersections.
- Adding pedestrian countdown pedestrian signals and audio signals to crosswalks at intersections.
- Adding advance stop bars to intersection approaches.
- Adding sidewalk bulbouts and extensions, or reducing curb returns, on intersection corners where feasible.

Key Pedestrian Routes Willowbrook TOD Specific Plan EIR Traffic Study

Willowbrook TOD Specific Plan EIR Traffic Study

These measures will facilitate pedestrian circulation by reducing the width of roadway for pedestrians to cross, providing additional sidewalk space, and making pedestrian crossings more visible to both pedestrians and motorists. Figure 3-7 shows the anticipated locations of such improvements. The specific improvements to be implemented at each location will be determined following detailed design studies to determine applicability and feasibility and the ultimate configuration. However curb extensions should not restrict the circulation of buses, trucks, emergency vehicles, and bicycles. As their exact nature is currently undefined, they are not included directly in this traffic study.

Improvements at Wilmington Avenue & I-105 Eastbound Ramps will add a crosswalk across Wilmington Avenue to facilitate access to the Metro Station. This is included in the traffic analysis.

The Specific Plan proposes to add new traffic signals at Wilmington Avenue & 122nd Street, and at Mona Avenue & 119th Street, to facilitate pedestrian crossings on long stretches of both streets currently without signalized crosswalks. Also to install a signalized pedestrian crosswalk on Mona Avenue & 120th Street, to facilitate pedestrians crossing to the Dr. Ralph Bunche Middle School. The specific improvements will be determined following detailed design studies to determine applicability, feasibility, and if warranted. As their exact nature is currently undefined, they are not included directly in this traffic study.

Bicycle Circulation

The Specific Plan Bicycle Network, shown in Figure 3.8, includes a combination of Class I, Class II and Class III facilities that connects activity centers and neighborhoods to the rail station, connects to adjacent communities, and provides a dedicated network for bicyclists to use safely and efficiently. The Bicycle Circulation System includes elements from, and is consistent with, the County's Bicycle Plan and the City of Los Angeles Bicycle Plan.

Class I bike paths will be implemented on Willowbrook Avenue (West) between 119th Street & Imperial Highway — to provide access to the rail station, and on Mona Avenue (east side) between Imperial Highway and 124th Street. The associated lane reductions are included in the following impact analyses, and shown in Figure B-1, in Appendix B.

Class II bike lanes will be implemented on 120th Street between Compton Avenue & Wilmington Avenue. The associated lane reductions are included in the following impact analyses, and shown in Figure B-1, in Appendix B. Class II Bike lanes are also proposed on Wilmington Avenue between 124th Street & 120th Street, but will not require any changes in traffic lanes. Class II Bike Lanes are also proposed on Imperial Highway between Compton Avenue & Mona Avenue. However, there are no design concepts or details available, so no changes to lane configurations have been incorporated into this study.

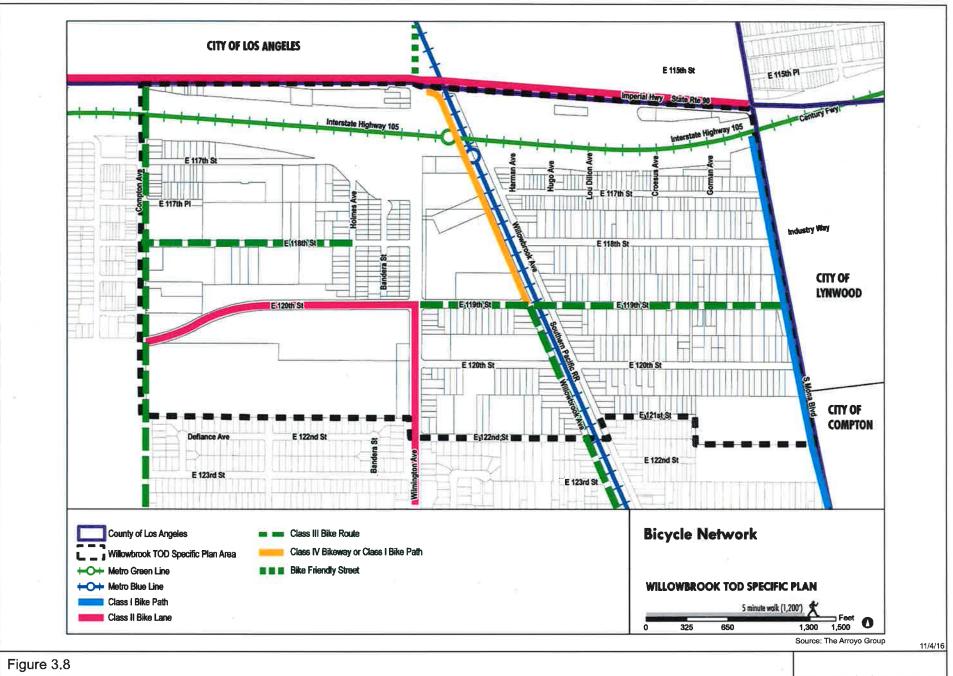
Not all streets can support bicycle lanes. Either there is insufficient width, or on-street parking is also an important asset to the function and economic well-being of the adjacent commercial uses or neighborhoods, so where there is insufficient roadway width to stripe bicycle lanes and to retain on-street parking, a connected network is achieved through the designation of Class III Bike Routes. Class III bike routes will be implemented on Compton Avenue, Willowbrook Avenue (West) south of 119th Street, 119th Street between Wilmington Avenue & Mona Avenue, and on 124th Street throughout the Specific Plan Area.

Transit Circulation

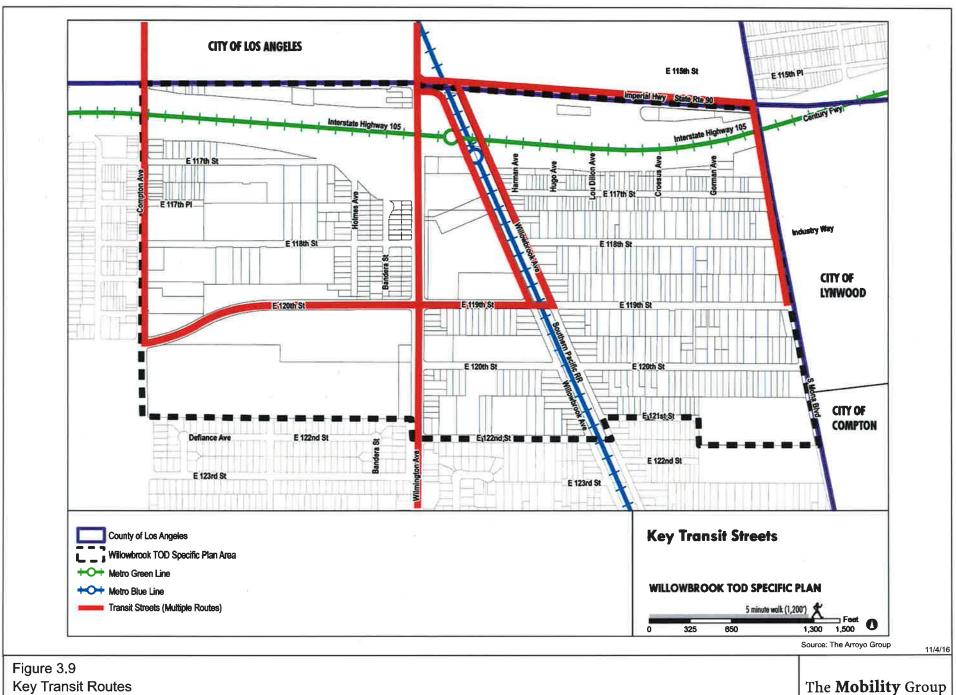
Key transit streets (with multiple bus routes) in the Specific Plan Area are shown in Figure 3.9. The Specific Plan anticipates that current bus routes will continue to serve the Specific Plan area focusing on the rail station.

Shuttle Routes

The Specific Plan also anticipates that the existing shuttle routes that are operated by the County, the Martin Luther King Jr. Medical Center and Charles Drew University will be continued in order to facilitate alternative modes of transportation, and provide critical access to the Medical Center for those without a car.


Additional shuttle routes are proposed to be added to serve new development in the North West Quadrant and connect the land uses to the Metro Station. These new shuttle services could be provided by the private sector as part of a comprehensive Transportation Demand Management Program (see below).

Transportation Demand Management


The Specific Plan identifies that a Transportation Demand Management Program will be developed by the County, to take advantage of the high level of transit service, and to reduce both vehicle trips and the number of parking spaces provided. Such programs would include the encouragement of use of transit, bicycling, walking, and ridesharing. These types of programs are generally most suitable and most effective for large employers and institutional uses, and office uses and could be attractive to employers in new office type land uses in the the North West Quadrant as they could reduce the capital costs needs of building parking. The Program should include the North West Quadrant, Charles Drew University, and the Martin Luther King Jr. Medical Center.

Transportation demand management and trip reductions strategies could include but not be limited to:

- Encouraging use of transit, including subsidizing transit passes
- Parking cash out programs

Bicycle Network Willowbrook TOD Specific Plan EIR Traffic Study

The **Mobility** Group Transportation Strategies & Solutions Willowbrook TOD Specific Plan EIR Traffic Study

- Encouraging rideshare
- Providing preferential parking for carpools
- Facilitating formation of carpools and vanpools
- Site and building design to facilitate use of transit, bicycling and walking

A Transportation Management Organization (TMO) could also be established to facilitate these programs at an area wide level and support individual employers and/or buildings in participating to the fullest extent possible.

3.5 Future Traffic Forecasts for The Specific Plan Project

The trip generation estimates for each zone (and summarized in Table 3.3) were assigned to to the roadway network using the trip distribution parameters described earlier, to obtain Specific Plan traffic volumes (Project Only) on the roadway network. The Project Only traffic volumes are shown in Figure 3.10 for the AM peak hour and in Figure 3.11 for the PM peak hour.

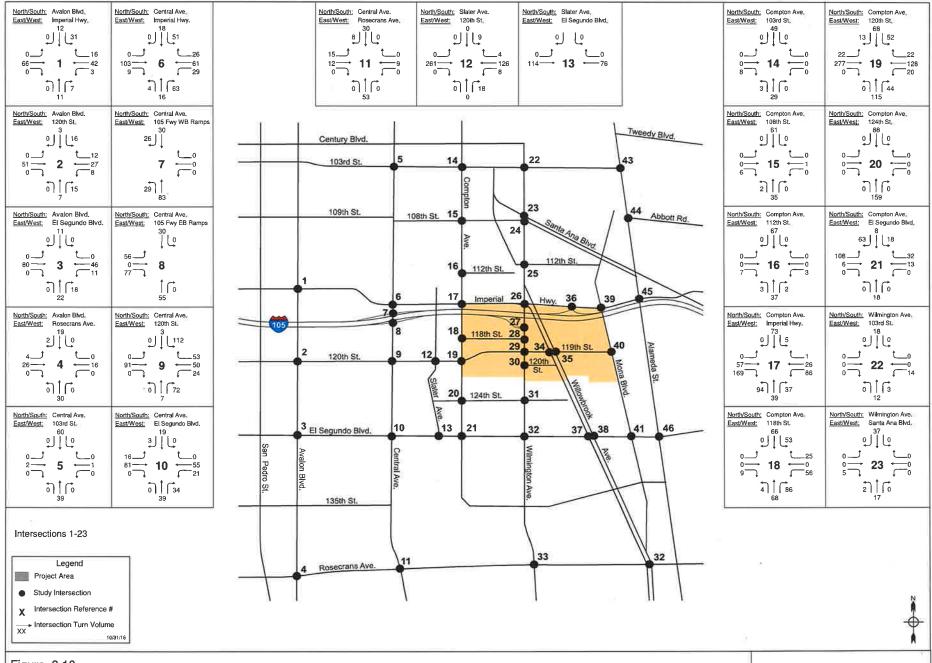


Figure 3.10
Project Only Traffic Volumes - AM Peak Hour

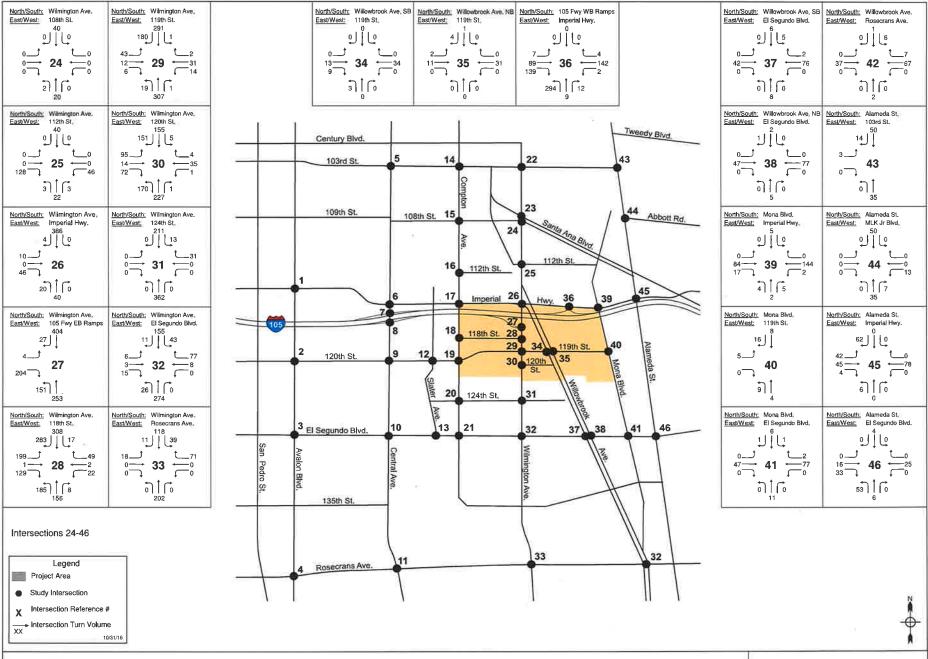


Figure 3.10 Project Only Traffic Volumes - AM Peak Hour

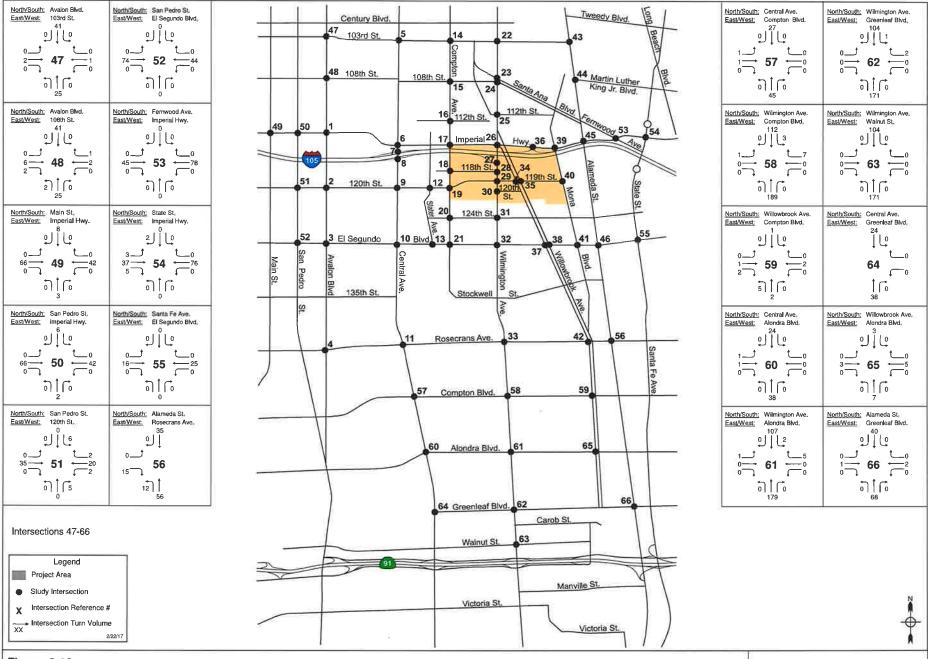


Figure 3.10 Project Only Traffic Volumes - AM Peak Hour

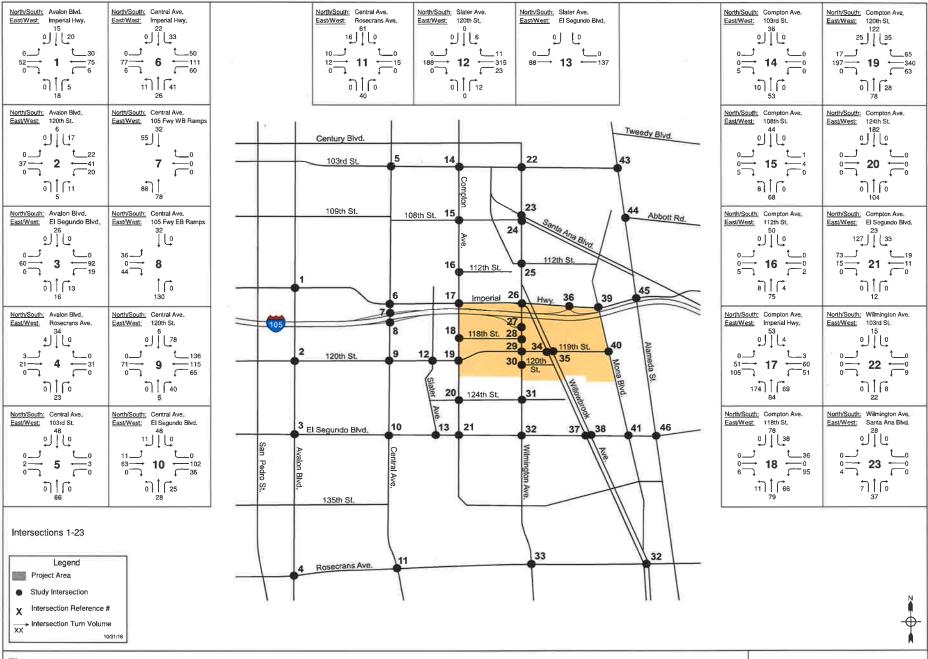


Figure 3.11 Project Only Traffic Volumes - PM Peak Hour

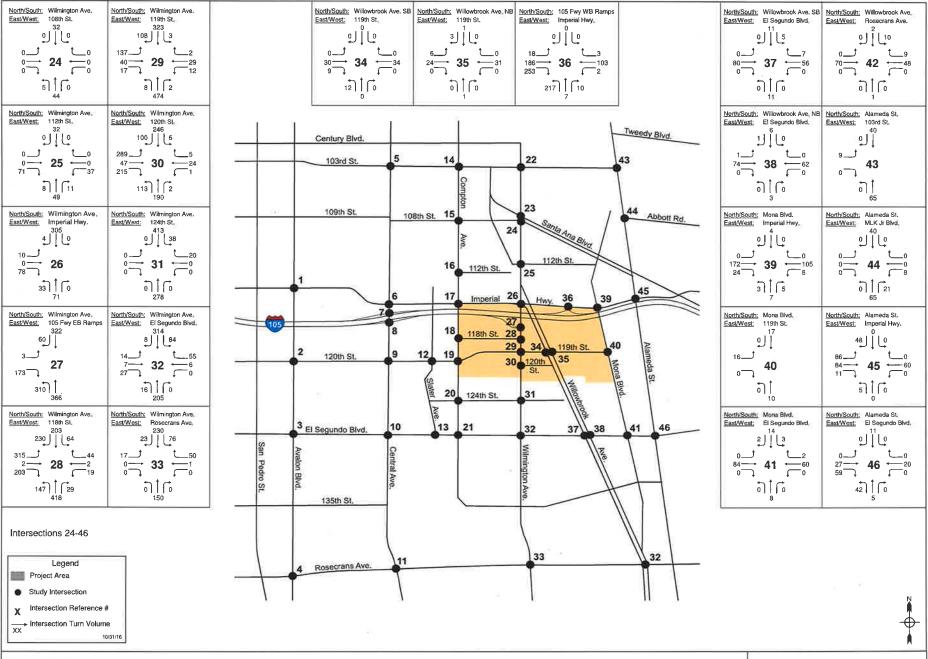


Figure 3.11
Project Only Traffic Volumes - PM Peak Hour

Figure 3.11
Project Only Traffic Volumes - PM Peak Hour

4. Existing With Project Conditions

This section of the report documents an analysis of potential Project impacts for the Existing With Project Condition. The Project trips estimated and described in Chapter 3, were added to the existing conditions traffic volumes and an impact analysis was conducted. The total Existing With Project peak hour traffic volumes are illustrated in Figures 4.1 and 4.2 for the AM and PM peak hours respectively.

The analysis then used the methodologies (as described in Chapter 2) and thresholds for significant impact appropriate to each of the different jurisdictions, to calculate intersection level of service and potential impacts.

4.1 Significant Impact Thresholds

The analysis used the following thresholds for determining significant traffic impacts.

Significant Impact Thresholds - County of Los Angeles

The County of Los Angeles Department of Public Works has established threshold criteria to determine if project has a significant impact at a study intersection. According to the criteria provided by the County of Los Angeles, a project impact is considered significant if the following conditions are met:

Pre-Project Conditions		Project-Related Increase			
LOS V/C Ratio		in V/C Ratio			
C	0.71 - 0.80	equal to or greater than 0.040			
D	D $0.81 - 0.90$ equal to or greater than 0.020				
E, F	0.91 or more	equal to or greater than 0.010			

For example, a project would not have a significant impact at an intersection if it operated at LOS D after the addition of project traffic and the incremental change in the V/C ratio is less than 0.020. However if the intersection operated at LOS F after the addition of project traffic and the incremental change in the V/C ratio is 0.010 or greater, then the project would be considered to have a significant impact.

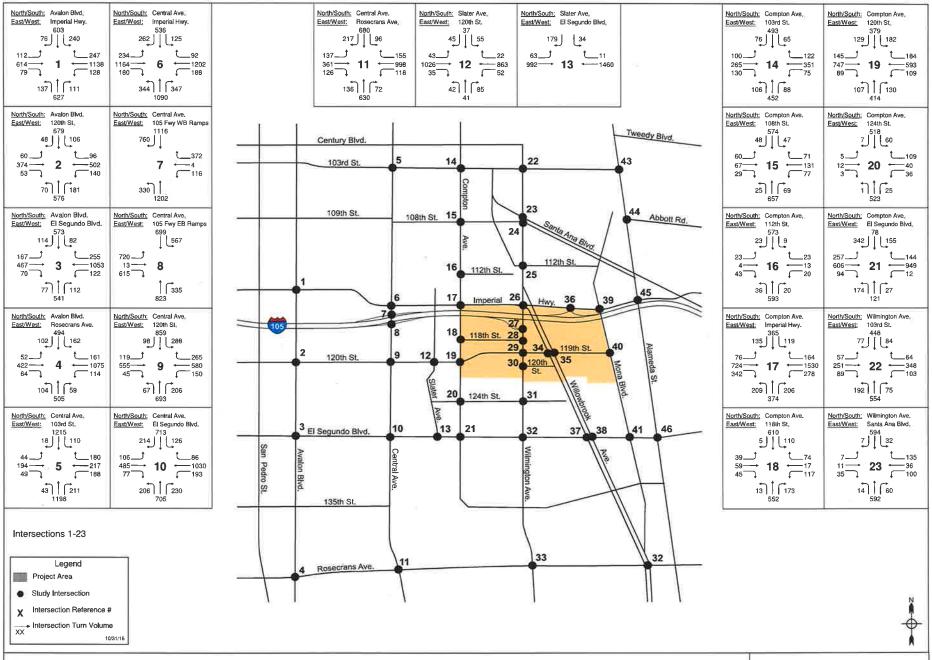


Figure 4.1
Existing With Project Traffic Volumes - AM Peak Hour

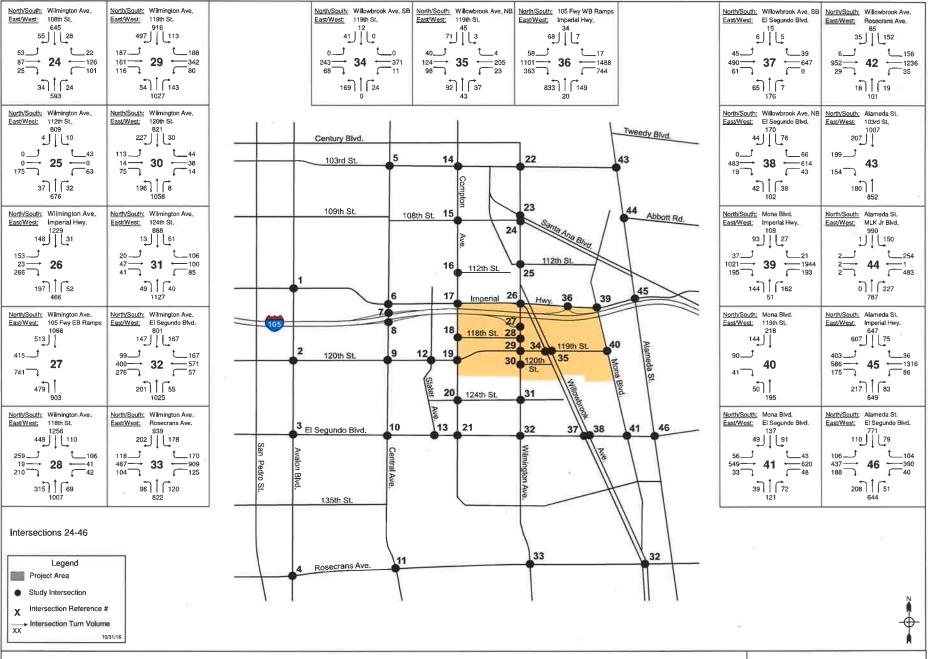


Figure 4.1
Existing With Project Traffic Volumes - AM Peak Hour

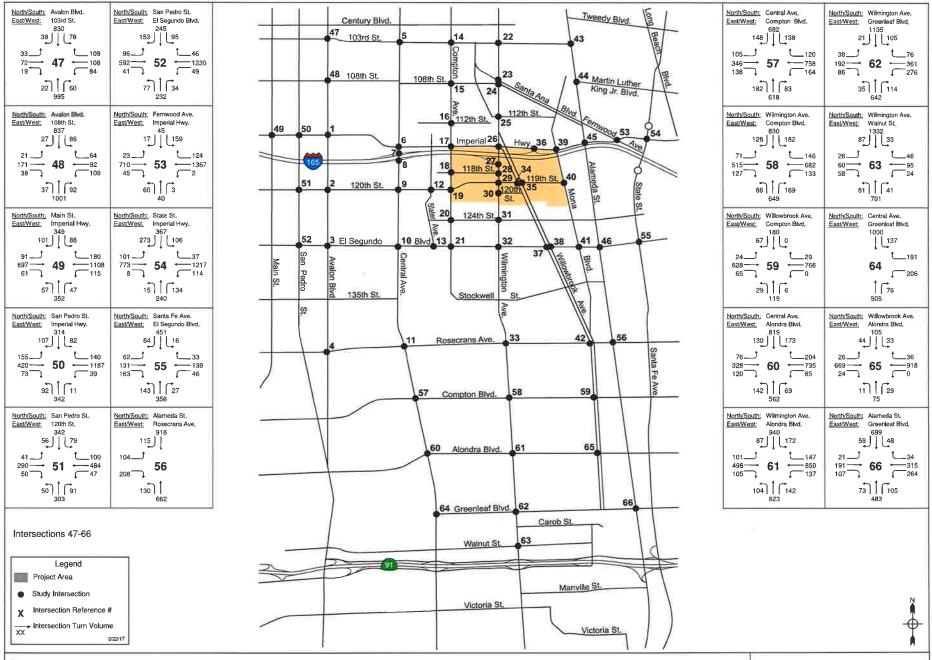


Figure 4.1
Existing With Project Traffic Volumes - AM Peak Hour

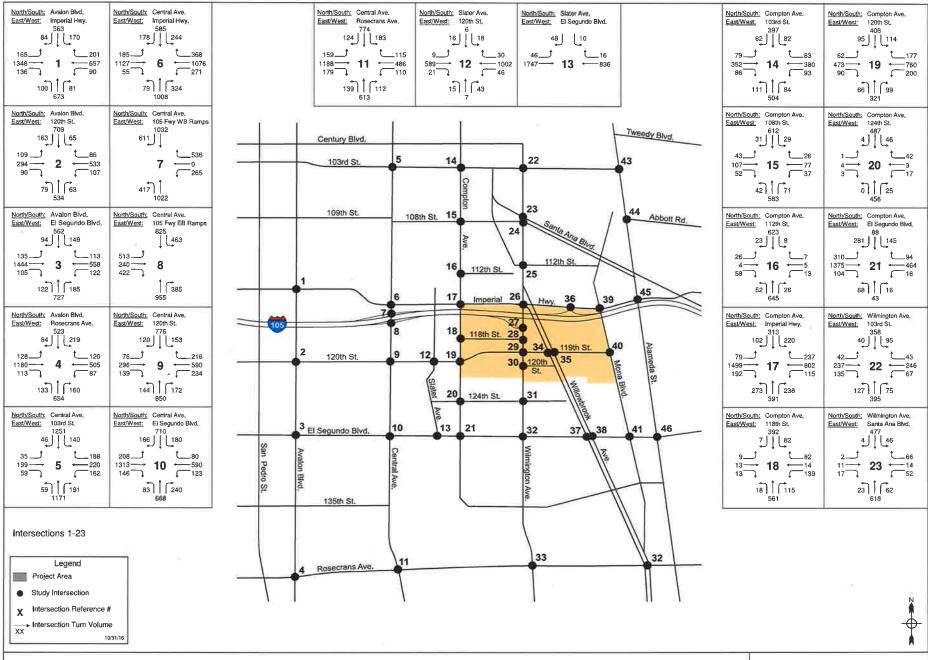


Figure 4.2
Existing With Project Traffic Volumes - PM Peak Hour

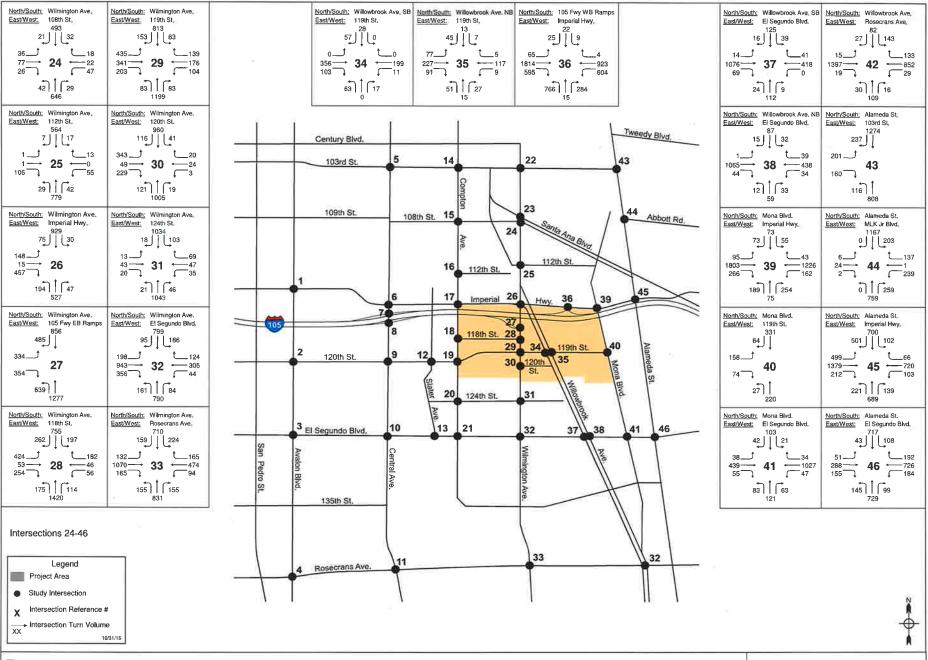


Figure 4.2
Existing With Project Traffic Volumes - PM Peak Hour

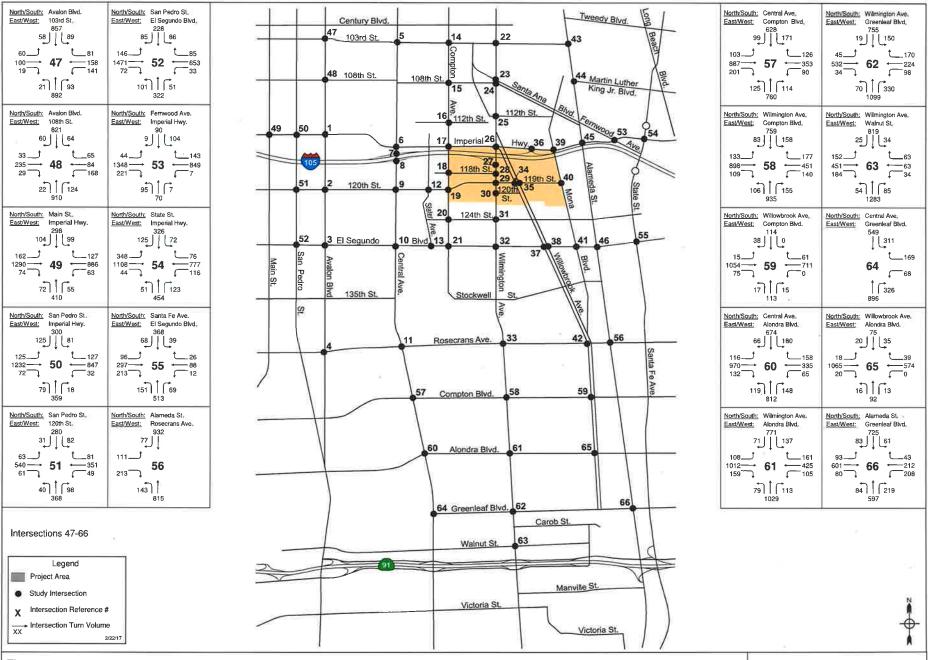


Figure 4.2
Existing With Project Traffic Volumes - PM Peak Hour

The County of Los Angeles does not have threshold criteria for determining significant impacts at unsignalized intersections. For the purposes of this study, a significant impact was assumed to occur if the Project caused the level of service for the minor (controlled) approach to worsen to LOS F, or if already LOS F to increase the delay by more than 10%, and if installation of a traffic signal would be warranted.

Significant Impact Thresholds - City of Compton and City of Lynwood

The Cities of Compton and Lynwood do not have published thresholds criteria to determine significant impact. The County of Los Angeles threshold criteria were therefore used in the analysis of intersections in Cities of Compton and Lynwood.

Significant Impact Thresholds - City of Los Angeles

LADOT has established threshold criteria to determine if project impacts are significant at an intersection. The City of Los Angeles considers an impact to be significant if the following criteria are met;

With Project Traffic		Project-Related Increase			
LOS V/C Ratio		in V/C Ratio			
C 0.701 – 0.800		equal to or greater than 0.040			
D 0.801 – 0.900		equal to or greater than 0.020			
E, F > 0.900		equal to or greater than 0.010			

Using these criteria, for example, a project would not have a significant impact at an intersection if it is operating at LOS C after the addition of project traffic and the incremental change in the volume/capacity (V/C) ratio is less than 0.040. However, in another example, if the intersection is operating at LOS E or LOS F and the incremental change in V/C ratio is 0.010 or greater, then the project would be considered to have a significant impact at that location.

The City of Los Angeles does not have threshold criteria for determining significant impacts at unsignalized intersections. For the purposes of this study, a significant impact was assumed to occur if the Project caused the level of service for the minor (controlled) approach to be either LOS E or LOS F and if installation of a traffic signal would be warranted.

4.2 Project Impact Analysis - Existing With Project

The intersection level of service analysis compared the V/C ratios at each intersection for the Existing Condition and the Existing With Project Condition, to determine the incremental difference in V/C ratios caused by the Project.

The results of the analysis is summarized in Table 4.1 for the AM peak hour and in Table 4.2 for the PM peak hour. These tables compare the level of service for Existing Conditions and Existing With Project Conditions, show the increase in V/C ratios at each intersection due to the Project, and identifies if the increase constitutes a significant impact. The intersection levels of service are also illustrated graphically in Figure 4.3 for the AM Peak Hour and Figure 4.4 for the PM Peak Hour.

County of Los Angeles Intersections - AM Peak Hour

The analysis summarized in Table 4.1 indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 20 of the 28 intersections analyzed in the County of Los Angeles. Table 4.1 also shows that there would be significant impacts at 12 intersections, as listed below.

11. Central Ave & Rosecrans Ave	LOS D
26. Wilmington Ave & Imperial Hwy	LOS D
32. Wilmington Ave & El Segundo Blvd	LOS D
45. Alameda St & Imperial Hwy	LOS D
46. Alameda St & El Segundo Blvd	LOS D
10. Central Ave & El Segundo Blvd	LOS E
19. Compton Ave & 120 th St	LOS E
29. Wilmington Ave & 120 th St (West)	LOS E
36. Imperial Hwy & I-105 w/b Ramps	LOS E
17. Compton Ave & Imperial Hwy	LOS F
27. Wilmington Ave & I-105 e/b Ramps	LOS F
28. Wilmington Ave & 118 th St	LOS F

Five of the impacted intersections would operate at LOS D or better, four would operate at LOS E, and three would operate at LOS F.

County of Los Angeles Intersections - PM Peak Hour

The analysis summarized in Table 4.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 19 of the 28 intersections analyzed in the County of Los Angeles. Table 4.2 also shows that there would be significant impacts at 13 intersections, as listed below.

30. Wilmington Ave & 120 th St (East)	LOS C
3. Avalon Blvd & Rosecrans Ave	LOS D
19. Compton Ave & 120 th St	LOS D
26. Wilmington Ave & Imperial Hwy	LOS D
39. Mona Blvd & Imperial Hwy	LOS D
43. Alameda St & 103 rd St	LOS D
10. Central Ave & El Segundo Blvd	LOS E
17. Compton Ave & Imperial Hwy	LOS E
27. Wilmington Ave & I-105 e/b Ramps	LOS E
29. Wilmington Ave & 120 th St (West)	LOS E
36. Imperial Hwy & I-105 w/b Ramps	LOS E
32. Wilmington Ave & El Segundo Blvd	LOS E
28. Wilmington Ave & 118 th St	LOS F

Six of the impacted intersections would operate at LOS D or better, six would operate at LOS E, and one would operate at LOS F.

City of Compton Intersections - AM Peak Hour

The analysis summarized in Table 4.1 indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 14 of the 16 intersections analyzed in the City of Compton. Table 4.1 also shows that there would be significant impacts at 4 intersections, as listed below.

61. Wilmington Ave & Alondra Blvd	LOS D
62. Wilmington Ave & Greenleaf Blvd	LOS D
21. Compton Ave & El Segundo Blvd	LOS E
33. Wilmington Ave & Rosecrans Ave	LOS E

City of Compton Intersections – PM Peak Hour

The analysis summarized in Table 4.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 13 of the 16 intersections analyzed in the City of Compton. Table 4.2 also shows that there would be significant impacts at 6 intersections, as listed below.

21. Compton Ave & El Segundo Blvd	LOS C
58. Wilmington Ave & W Compton Blvd	LOS D
63. Wilmington Ave & Walnut St	LOS D
33. Wilmington Ave & Rosecrans Ave	LOS E
61. Wilmington Ave & Alondra Blvd	LOS E
62. Wilmington Ave & Greenleaf Blvd	LOS E

City of Lynwood Intersections - AM Peak Hour

The analysis summarized in Table 4.1 indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at all 3 intersections analyzed in the City of Lynwood, and that the Project would not cause significant impacts at these intersections.

City of Lynwood Intersections - PM Peak Hour

The analysis summarized in Table 4.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at all 3 intersections analyzed in the City of Lynwood. Table 4.2 also shows that there would be a significant impact at 1 intersection, as listed below.

54. Imperial Hwy & State St

LOS D

City of Los Angeles Intersections – AM Peak Hour

The analysis summarized in Table 4.1 indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 17 of the 19 intersections analyzed in the City of Los Angeles. Table 4.1 also shows that there would be significant impacts at 5 intersections, as listed below.

1. Avalon Blvd & Imperial Hwy	LOS C
6. Central Ave & Imperial Hwy	LOS C
7. Central Ave & I-105 w/b Ramps	LOS D
9. Central Ave & 120 th St	LOS D
25. Wilmington Ave & 112 th St	LOS F

Four of the five impacted intersections would operate at LOS D or better. The intersection of Wilmington Ave & 112th St would operate at LOS F on the minor approach, and a traffic signal would be warranted.

City of Los Angeles Intersections - PM Peak Hour

The analysis summarized in Table 4.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 17 of the 19 intersections analyzed in the City of Los Angeles. Table 4.2 also shows that there would significant impacts at 6 intersections, as listed below.

1. Avalon Blvd & Imperial Hwy	LOS C
2. Avalon Blvd & 120 th St	LOS C

6. Central Ave & Imperial Hwy	LOS D
7. Central Ave & I-105 w/b Ramps	LOS D
9. Central Ave & 120 th St	LOS D
25. Wilmington Ave & 112 th St	LOS F

Five of the six impacted intersections would operate at LOS D or better. The intersection of Wilmington Ave & 112th St would operate at LOS F on the minor approach, and a traffic signal would be warranted.

City of Los Angeles Intersections - Shared With County of Los Angeles - AM Peak Hour

Four of the 28 intersections located in the County of Los Angeles and analyzed above with the County's impact thresholds have common jurisdiction with the City of Los Angeles. These intersections were also analyzed using the City of Los Angeles methodology and significant impact criteria.

The analysis summarized in Table 4.1 indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 3 of the 4 shared intersections analyzed for the City of Los Angeles. Table 4.1 also shows that there would significant impacts at 2 intersections, as listed below.

36. Imperial Hwy & I-105 w/b Ramps	LOS D
17. Compton Ave & Imperial Hwy	LOS F

These results are the same as the analysis under the County methodology, except that whereas under the County methodology there would be a significant impact at Intersection #26 at Wilmington Avenue & Imperial Highway, there would not be a significant impact under the City of Los Angeles methodology.

City of Los Angeles Intersections - Shared With County of Los Angeles - PM Peak Hour

The analysis summarized in Table 4.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at all 4 of the shared intersections analyzed for the City of Los Angeles. Table 4.2 also shows that there would significant impacts at 3 intersections, as listed below.

39. Mona Blvd & Imperial Hwy	LOS C
17. Compton Ave & Imperial Hwy	LOS D
36. Imperial Hwy & I-105 w/b Ramps	LOS D

These results are the same as the analysis under the County methodology, except that whereas under the County methodology there would be a significant impact at Intersection #26 at

Wilmington Avenue & Imperial Highway, there would not be a significant impact under the City of Los Angeles methodology.

Summary - All Intersections - AM Peak Hour

In summary, Table 4.1 shows that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 55 of the 66 total intersections analyzed. Table 4.1 also shows that there would significant impacts at 21 intersections.

Summary - All Intersections - PM Peak Hour

In summary, Table 4.2 shows that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at a 53 of the 66 total intersections analyzed. Table 4.1 also shows that there would significant impacts at 26 intersections.

	Intersection	Intersection Type	Existing Conditions		Existing + Project Conditions		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)	Impuer
Los	Angeles County						***	
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.726	C	0.739	С	0.013	No
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.652	В	0.667	В	0.015	No
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.899	D	0.933	Е	0.034	Yes
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.822	D	0.844	D	0.022	Yes
12.	Slater Ave & 120th St	Signalized	0.501	A	0.604	В	0.103	No
17.	Compton Ave & Imperial Hwy [2]	Signalized	1.007	F	1.120	F	0.113	Yes
18.	Compton Ave & 118th St	Signalized	0.438	A	0.561	A	0.123	No
19.	Compton Ave & 120th St	Signalized	0.574	A	0.919	Е	0.345	Yes
20.	Compton Ave & 124th St	Signalized	0.378	Α	0.428	Α	0.050	No
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.657	В	0.820	D	0.163	Yes
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.848	D	1.196	F	0.348	Yes
28.	Wilmington Ave & 118th St	Signalized	0.641	В	1.161	F	0.520	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.840	D	0.907	Е	0.067	Yes
30.	Wilmington Ave & 120th St (East)	Signalized	0.424	Α	0.681	В	0.257	No
31.	Wilmington Ave & 124th St	Signalized	0.557	A	0.697	В	0.140	No
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.716	С	0.834	D	0.118	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.447	A	0.478	A	0.031	No
35.	Willowbrook Ave E & 119th Street	Signalized	0.375	A	0.388	A	0.013	No
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.775	С	0.906	Е	0.131	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.416	A	0.448	A	0.032	No
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.447	A	0.473	A	0.026	No
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.730	C	0.766	С	0.036	No
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(13.5)	В	(15.4)	С	(1.9)	No
41.	Mona Blvd & El Segundo Blvd	Signalized	0.512	A	0.544	A -	0.032	No
43.	Alameda St & 103rd St [4]	Signalized	0.790	С	0.812	D	0,022	No
45.	Alameda St & Imperial Hwy [4]	Signalized	0.772	С	0.829	D	0.057	Yes
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.765	C	0.815	D	0.050	Yes
52.	El Segundo Blvd & San Pedro St	Signalized	0.589	A	0.598	A	0.009	No
	of Compton	o granie	0,00				1	
13.	Slater Ave & El Segundo Blvd	Signalized	0.687	В	0.710	С	0.023	No
21.	Compton Ave & El Segundo Blvd	Signalized	0.804	C	0.925	Е	0.121	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.854	D	0.927	E	0.073	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.693	В	0.721	$-\frac{2}{C}$	0.028	No
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.592	A	0.602	В	0.010	No
56.	Alameda St & Rosecrans Ave	Signalized	0.606	В	0.634	В	0.028	No
57.	Cental Ave & W Compton Blvd	Signalized	0.758	C	0.767	C	0.009	No No
57. 58.	Wilmington Ave & W Compton Blvd	Signalized	0.702	В	0.737	C	0.035	No
			0.702		0.737		0.004	No
59.	Willowbrook Ave & W Compton Blvd Central Ave & Alondra Blvd	Signalized Signalized	0.332	A C	0.336	A C	0.004	No
60.							0.008	
61.	Wilmington Blvd & Alondra Blvd	Signalized	0.825	D	0.861	D		Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.797	C	0.829	D	0.032	Yes
63.	Wilmington Ave & Walnut St	Signalized	0.595	A	0.627	В	0.032	No
64.	Central Ave & Greenleaf Blvd	Signalized	0.534	A	0.541	A	0.007	No
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.532	A	0.535	A	0.003	No
66.	Alameda St & Greenleaf Blvd	Signalized	0.628	В	0.641	В	0.013	No

	Intersection	Intersection Type	Existing Conditions		Existing + Project Conditions		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)	
City of	f Lynwood						*	
44.	Alameda St & Abbott Rd	Signalized	0.660	В	0.673	В	0.013	No
53.	Imperial Hwy & Fernwood Ave	Signalized	0.732	С	0.756	C	0.024	No
54.	Imperial Hwy & State St	Signalized	0.738	C	0.764	C	0.026	No
City of	Los Angeles						**	
1,	Avalon Blvd & Imperial Hwy	Signalized	0.747	С	0.790	С	0.043	Yes
2.	Avalon Blvd & 120th St	Signalized	0.592	Α	0.628	В	0.036	No
5.	Central Ave & 103rd St	Signalized	0.637	В	0.658	В	0.021	No
6.	Central Ave & Imperial Hwy	Signalized	0.737	С	0.784	C	0.047	Yes
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.852	D	0.029	Yes
8.	Central Ave & I-105 e/b Ramps	Signalized	0.668	В	0.699	В	0.031	No
9.	Central Ave & 120th St	Signalized	0.753	С	0.881	D	0.128	Yes
14.	Compton Ave & 103rd St	Signalized	0.604	В	0.688	В	0.084	No
15.	Compton Ave & 108th St	Signalized	0.663	В	0.669	В	0.006	No
16.	Compton Ave & 112th St	Unsignalized [5]	(31.0)	D	(42.5)	Е	(11.5)	No
22.	Wilmington Ave & 103rd St	Signalized	0.660	В	0.669	В	0.009	No
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.473	A	0.488	Α	0.015	No
24.	Wilmington Ave & 108th St	Signalized	0.593	Α	0.621	В	0.028	No
25.	Wilmington Ave & 112th St	Unsignalized [5]	(44.5)	Е	Overflow	F	Overflow	Yes
47.	Avalon Blvd & 103rd St	Signalized	0.441	Α	0.451	Α	0.010	No
48.	Avalon Blvd & 108th St	Signalized	0.564	Α	0.578	Α	0.014	No
49.	Imperial Hwy & Main St	Signalized	0.590	Α	0.601	В	0.011	No
50.	Imperial Hwy & San Pedro St	Signalized	0.661	В	0.673	В	0.012	No
51.	San Pedro St & 120th St	Signalized	0.528	A	0.541	Α	0.013	No
City of	F Los Angeles & Los Angeles County [6]						1	,
17.	Compton Ave & Imperial Hwy	Signalized	0.898	D	1.018	. F	0.120	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.501	Α	0.670	В	0.169	No
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.690	В	0.830	D	0.140	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.601	В	0.639	В	0.038	No

Note:

- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- $\cite{Model} [5] \ Unsignalized intersection show delay/LOS for controlled approach.$
- [6] Analyzed per City of Los Angeles methodology.

	Intersection	Intersection Type	Existing Conditions		Existing + Project Conditions		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)	
Los	Angeles County							
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.844	D	0.877	D	0.033	Yes
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.804	С	0.815	D	0.011	No
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.925	Е	0.983	Е	0.058	Yes
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.761	С	0.782	С	0.021	No
12.	Slater Ave & 120th St	Signalized	0.367	A	0.480	A	0.113	No
17.	Compton Ave & Imperial Hwy [2]	Signalized	0.781	С	0.954	Е	0.173	Yes
18.	Compton Ave & 118th St	Signalized	0.367	A	0.522	Α	0.155	No
19.	Compton Ave & 120th St	Signalized	0.448	A	0.817	D	0.369	Yes
20.	Compton Ave & 124th St	Signalized	0.287	A	0.319	Α	0.032	No
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.654	В	0.820	D	0.166	Yes
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.680	В	0.988	Е	0.308	Yes
28.	Wilmington Ave & 118th St	Signalized	0.527	Α	1.019	F	0.492	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.766	С	0.934	Е	0.168	Yes
30.	Wilmington Ave & 120th St (East)	Signalized	0.426	A	0.756	С	0.330	Yes
31.	Wilmington Ave & 124th St	Signalized	0.485	A	0.608	В	0.123	No
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.793	С	0.923	Е	0.130	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.436	Α	0.486	Α	0.050	No
35.	Willowbrook Ave E & 119th Street	Signalized	0.359	A	0.377	Α	0.018	No
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.792	С	0.918	Е	0.126	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.508	A	0.540	A	0.032	No
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.507	A	0.535	Α	0.028	No
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.825	D	0.875	D	0.050	Yes
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(17.0)	C	(21.6)	С	(4.6)	No
41.	Mona Blvd & El Segundo Blvd	Signalized	0.609	В	0.635	В	0.026	No
43.	Alameda St & 103rd St [4]	Signalized	0.852	D	0.872	D	0.020	Yes
45.	Alameda St & Imperial Hwy [4]	Signalized	0.799	C	0.818	D	0.019	No
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.898	D	0.912	Е	0.014	No
52.	El Segundo Blvd & San Pedro St	Signalized	0.601	В	0.612	В	0.011	No
City	of Compton						Já	1
13.	Slater Ave & El Segundo Blvd	Signalized	0.649	В	0.676	В	0.027	No
21.	Compton Ave & El Segundo Blvd	Signalized	0.706	С	0.790	C	0.084	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.847	D	0.941	Е	0.094	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.719	С	0.748	С	0.029	No
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.700	В	0.717	С	0.017	No
56.	Alameda St & Rosecrans Ave	Signalized	0.604	В	0.638	В	0.034	No
57.	Cental Ave & W Compton Blvd	Signalized	0.802	С	0.813	D	0.011	No
58.	Wilmington Ave & W Compton Blvd	Signalized	0.844	D	0.893	D	0.049	Yes
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.453	Α	0.456	Α	0.003	No
60.	Central Ave & Alondra Blvd	Signalized	0.888	D	0.898	D	0.010	No
61.	Wilmington Blvd & Alondra Blvd	Signalized	0.877	D	0.924	Е	0.047	Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.911	Е	0.952	Е	0.041	Yes
63.	Wilmington Ave & Walnut St	Signalized	0.785	С	0.825	D	0.040	Yes
64.	Central Ave & Greenleaf Blvd	Signalized	0.671	В	0.680	В	0.009	No
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.526	Α	0.530	Α	0.004	No
66.	Alameda St & Greenleaf Blvd	Signalized	0.723	C	0.748	С	0.025	No

	Intersection	Intersection Type	Existing Conditions		Existing + Project Conditions		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)	
City	of Lynwood							
44.	Alameda St & Abbott Rd	Signalized	0.624	В	0.651	В	0.027	No
53.	Imperial Hwy & Fernwood Ave	Signalized	0.755	С	0.781	C	0.026	No
54.	Imperial Hwy & State St	Signalized	0.785	C	0.809	D	0.024	Yes
City	of Los Angeles							
1.	Avalon Blvd & Imperial Hwy	Signalized	0.713	С	0.753	С	0.040	Yes
2.	Avalon Blvd & 120th St	Signalized	0.672	В	0.715	C	0.043	Yes
5.	Central Ave & 103rd St	Signalized	0.664	В	0.682	В	0.018	No
6.	Central Ave & Imperial Hwy	Signalized	0.757	С	0.818	D	0.061	Yes
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.896	D	0.073	Yes
8.	Central Ave & I-105 e/b Ramps	Signalized	0.635	В	0.654	В	0.019	No
9.	Central Ave & 120th St	Signalized	0.690	В	0.817	D	0.127	Yes
14.	Compton Ave & 103rd St	Signalized	0.587	A	0.604	В	0.017	No
15.	Compton Ave & 108th St	Signalized	0.527	Α	0.573	Α	0.046	No
16.	Compton Ave & 112th St	Unsignalized [5]	(38.5)	Е	(56.0)	F	(17.5)	No
22.	Wilmington Ave & 103rd St	Signalized	0.463	Α	0.477	Α	0.014	No
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.441	Α	0.469	Α	0.028	No
24.	Wilmington Ave & 108th St	Signalized	0.496	A	0.525	A	0.029	No
25.	Wilmington Ave & 112th St	Unsignalized [5]	(42.1)	Е	Overflow	F	Overflow	Yes
47.	Avalon Blvd & 103rd St	Signalized	0.475	A	0.491	Α	0.016	No
48.	Avalon Blvd & 108th St	Signalized	0.608	В	0.627	В	0.019	No
49.	Imperial Hwy & Main St	Signalized	0.632	В	0.651	В	0.019	No
50.	Imperial Hwy & San Pedro St	Signalized	0.697	В	0.721	C	0.024	No
51.	San Pedro St & 120th St	Signalized	0.597	Α	0.623	В	0.026	No
City	of Los Angeles & Los Angeles County [6]							
17.	Compton Ave & Imperial Hwy	Signalized	0.663	В	0.841	D	0.178	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.497	A	0.671	В	0.174	No
36	Imperial Hwy & I-105 w/b Ramps	Signalized	0.710	С	0.847	D	0.137	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.704	С	0.758	C	0.054	Yes

Note:

- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.
- [6] Analyzed per City of Los Angeles methodology.

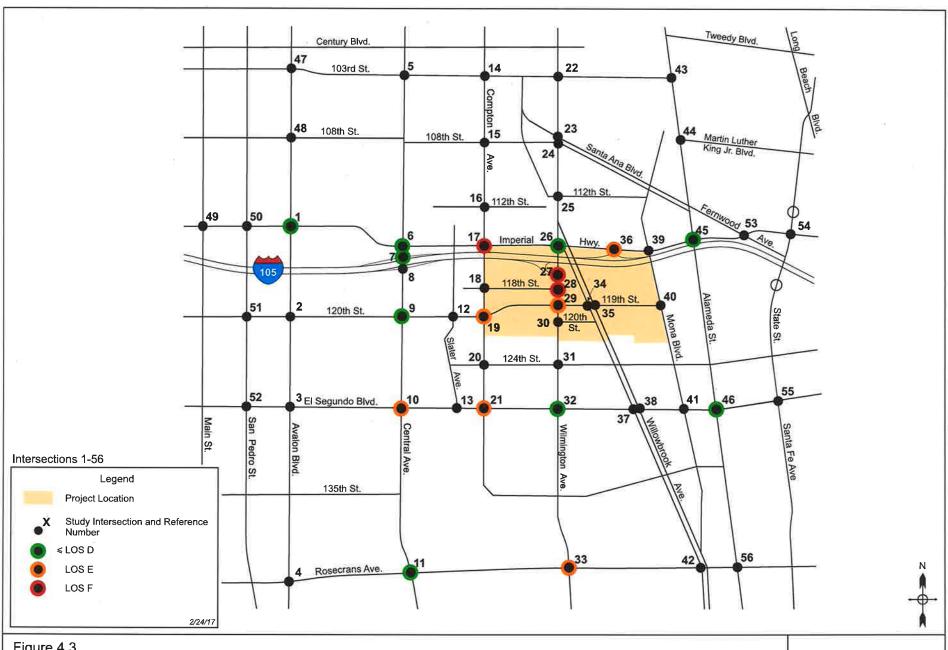
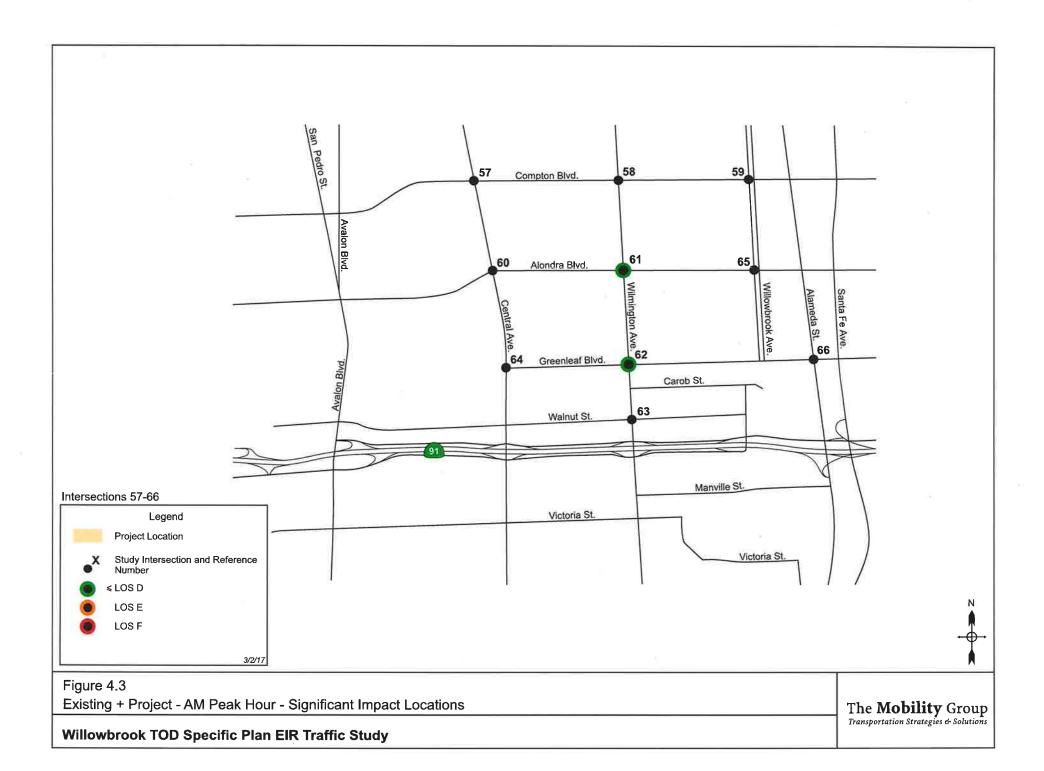
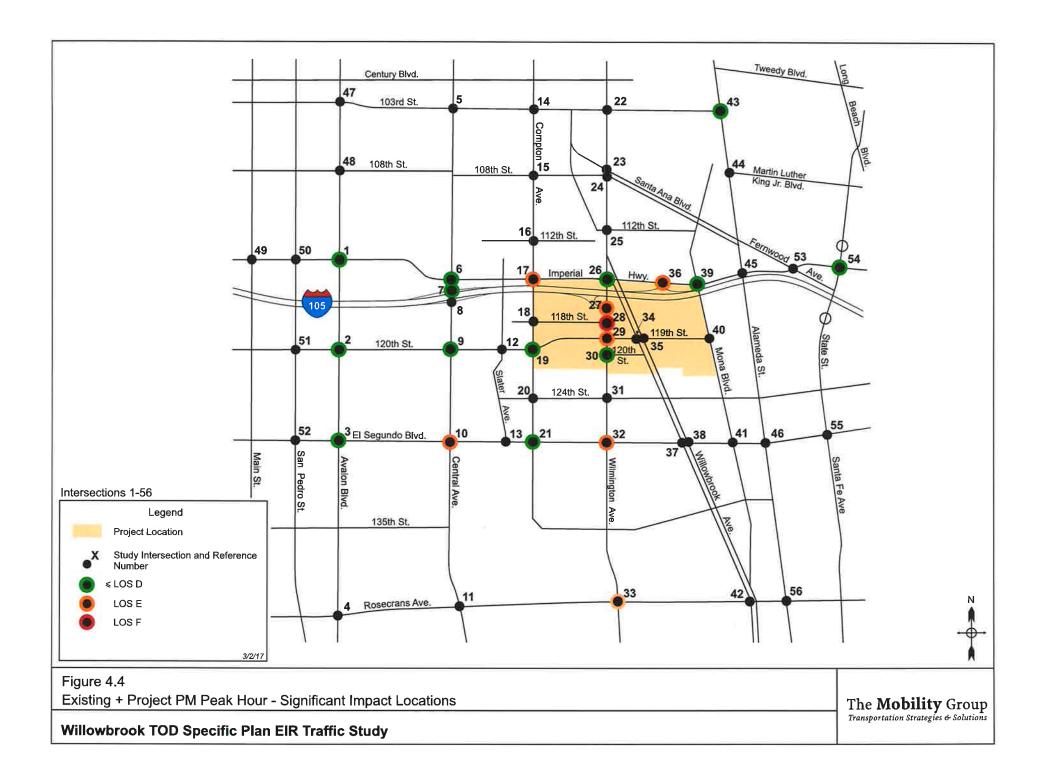
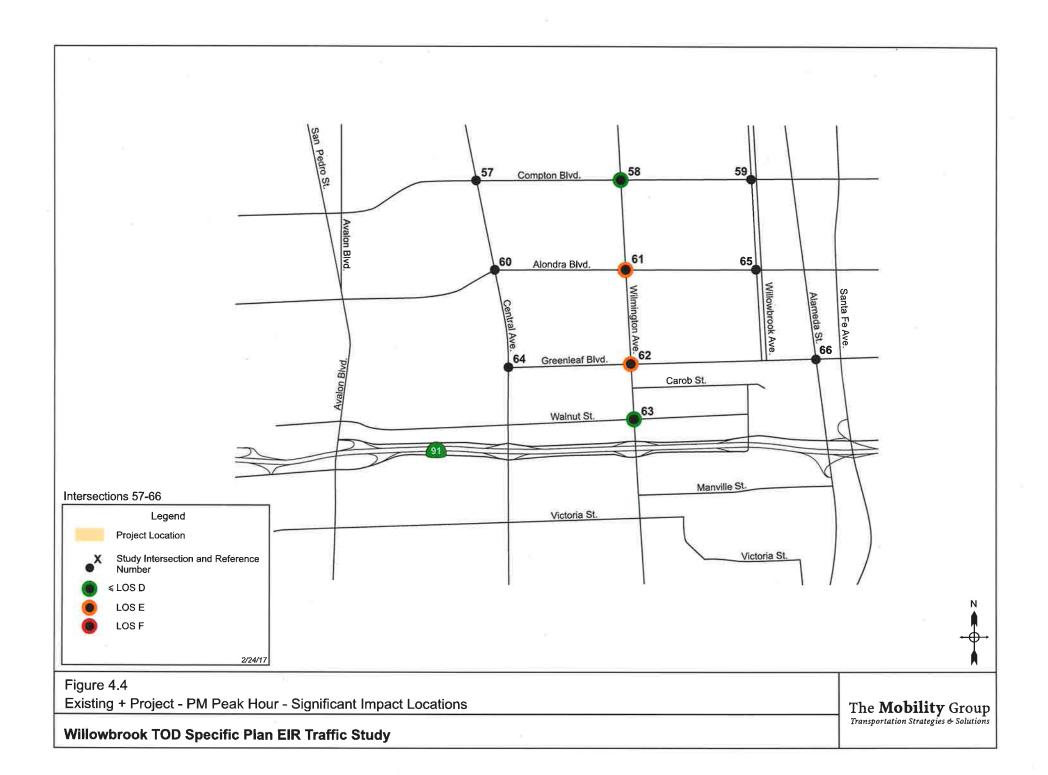





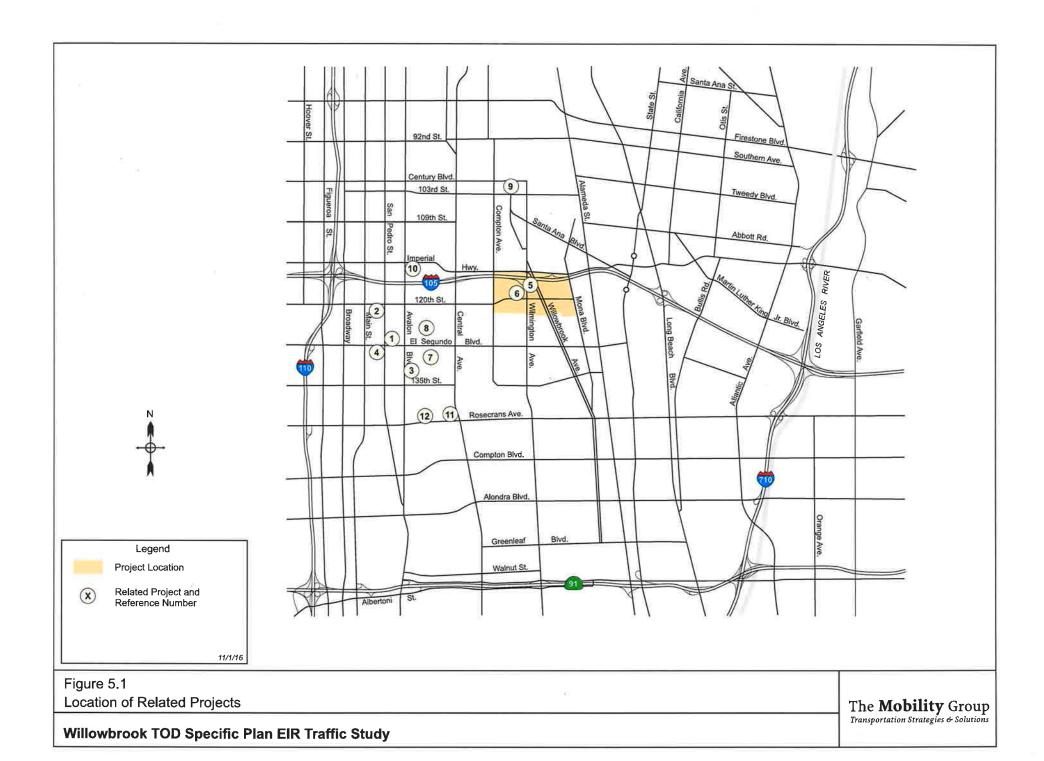
Figure 4.3
Existing + Project - AM Peak Hour - Significant Impact Locations

5. Future Conditions Background

The Traffic Study analyzes future conditions in Year 2035, the year representing build-out of the Specific Plan. This chapter describes data inputs and the development of traffic forecasts for that year.

5.1 Cumulative (Related) Projects

List of Cumulative Projects


The County of Los Angeles methodology requires that the trips from cumulative projects in the area of the Projects be considered in future conditions analyses. The following section of this chapter describes the process of estimating traffic from these related projects.

A list of proposed development projects that could affect traffic conditions in the Project Area by adding traffic volumes to study area intersections was prepared based on information provided by County of Los Angeles staff. The City of Los Angeles, City of Compton, and City of Lynwood were contacted for information regarding related projects and data was received from Los Angeles and Compton which were included in the Study. A total of 12 potential development projects were identified within an approximately 1.5-mile radius from the Project Site that are currently under construction, have received formal approval, or are under formal planning consideration and potentially could be in place by the year 2035 when the Project will be completed, and that could add traffic growth to the roadways in the study area. The locations of the cumulative projects are shown in Figure 5.1 and are listed in Table 5.1.

This approach is conservative in that not all of the related projects may be ultimately built, and for purposes of preparing a conservative analysis, no potential street improvements or transportation mitigation measures that might be associated with any of the related projects were included in the future conditions traffic analysis.

Cumulative Projects Trip Generation and Distribution

Trip generation estimates for the related projects were prepared, as shown in Table 5.1. These were generally taken from the environmental and/or traffic studies prepared for the individual projects. Where the information was not available from previous reports, the trip generation was estimated using trip rates from the Institute of Transportation Engineers (ITE) Trip generation, 9th Edition. These estimates are considered conservative in that they do not account for trip interaction between projects, and they do not in every case account for the possible use of non-auto modes such as transit, walk and bicycling.

2 3 4 5	Project Name	Location / Address	Juisdiction	Dec	eject Description	Daily	AM Peak Hour			Р	M Peak Hour	
Floject#	Project Name	Location / Address	Juisdiction	PIC	ject Description	Trips	In	Out	Total	Ín	Out	Total
1	Retail Extension R2013-02161	12726 S San Pedro St, Los Angeles	County of Los Angeles	2,100 s.f.	Retail	130	2	2	5	6	6	13
2	Condominiums TR070601	South Side of 121st St, Half Way between Main St and San Pedro St	County of Los Angeles	10 DU	Condominiums	58	1	4	4	3	2	5
3	Apartment Complex R2010-01629	13218 Avalon Blvd, Los Angeles	County of Los Angeles	54 DU	Apartments	359	6	22	28	22	12	33
4	Single Family Homes R2015-01957	215 & 277 E El Segundo Blvd, Los Angeles	County of Los Angeles	9 DU	Single Family Homes	86	2	5	7	6	3	9
5	Senior Housing & Library R2014-01830	11737 Wilmington Ave, Los Angeles	County of Los Angeles	109 DŲ	Apartments	337	7	13	20	12	12	24
				8,000 s.f.	Library	450	6	2	8	28	30	58
6	Medical Office R2006-00502	11815 Bandera St, Los Angeles	County of Los Angeles	48,000 s.f.	Medical Office	1,734	91	24	115	48	123	171
7	Housing	13024 Salinas Avenue, Willowbrook	County of Los Angeles	95 DU	Single Family Homes	904	18	53	71	60	35	95
8	Earvin "Magic" Johnson Recreation Area Redevelopment	905 E El Segundo Blvd, Los Angeles	County of Los Angeles	126 acres	Park Redevelopment	3,489	148	60	208	394	305	699
9	Movie Theater and education center 13310	10341 Graham Avenue	City of Los Angeles	1,000 seat	4 Screen Theater	1,530	0	0	0	25	35	60
				12,417 s.f.	School	290	26	5	31	17	10	27
10	COU Laundromat to 7 Eleven 42869	600 E Imperial Highway	City of Los Angeles	2,600 s.f.	Retail	849	42	43	85	30	29	59
11	Brickyard Industrial	NWC Central / Rosecrans	City of Compton	1,154,000 s.f.	Warehouse	2,350	38	11	49	38	111	149
12	Birtcher Goodmand Industrial	NEC McKinley / Rosecrans	City of Compton	102,000 s.f.	Industrial	756	54	13	67	18	53	71

Total	13,323	440	258	697	707	767	1,474
							l

Sources:

Los Angeles County data from Los Angeles County's Cumulative Project Report, 9/21/2015. City of Los Angeles data from Case Logging and Tracking Sysytem - Related Projects, 10/15/2015. City of Compton data received directly from City of Compton, 10/27/2015. Similarly, trip distribution estimates were also taken from the environmental/traffic studies conducted for the individual projects where available or were estimated based on an understanding of the type of the project, its location, the geographic distribution of population and employment from which project trips may be drawn, and the surrounding roadway and circulation system. It should be noted that because of the large geographic distribution of these projects, that not all of the related project trips would travel through all of the study area or traverse all of the study intersections.

5.2 Future Traffic Conditions – County of Los Angeles Intersections

The County of Los Angeles procedures require analysis for the following conditions:

- Existing Conditions
- Existing Plus Project Conditions
- Existing Plus Project Plus Cumulative Conditions

The Existing Conditions and Existing Plus Project Conditions have been analyzed in Chapter 2 and Chapter 4 respectively. In order to provide traffic forecasts for the Existing Plus Project Plus Cumulative Conditions, the trip estimates shown in Table 5.1 for cumulative projects were added to the roadway network and combined with existing traffic volumes and project traffic volumes to provide forecasts of Existing Plus Project Plus Cumulative traffic conditions in the study area in 2035, for both the AM and PM peak periods. This process was also conducted for intersections in the Cities of Compton and Lynwood.

5.3 Future Traffic Conditions – City of Los Angeles Intersections

The City of Los Angeles procedures require analysis for the following conditions:

- Existing Conditions
- Existing Plus Cumulative Conditions (Future Without Project)
- Existing Plus Cumulative Plus Project Conditions (Future With Project)

The Existing Conditions have been analyzed in Chapter 2. In order to develop the traffic forecasts for the Existing Plus Cumulative (Future Without Project) Conditions, two steps were required. Per the City's methodology, an ambient traffic growth was first calculated that represents a general growth in traffic volumes due to minor new developments in the Project Area, and regional growth and development outside the study area. A background growth projection was estimated from the Los Angeles Congestion Management Program (CMP) forecasts for the local area. The background growth for RSA 21 – in which the Willowbrook TOP area is located – for 2016 to 2035 growth is 1.097, representing an annual growth of 0.49% per year. The existing traffic counts were therefore adjusted upward by a total of 0.49

% a year for nineteen years (from 2016 to 2035) to represent the ambient growth to the Project completion year.

The trip estimates shown in Table 5.1 for cumulative projects were then also added to the roadway network and combined with the existing plus ambient traffic volumes to provide data for the Existing Plus Cumulative (Future Without Project) Conditions. The final step was then to add the Project trips (from Chapter 3) to the roadway network to obtain the traffic forecasts for the Existing Plus Cumulative Plus Project Conditions (Future With Project) traffic conditions in the study area in 2035, for both the AM and PM peak periods.

5.4 Cumulative Transportation Projects

In addition to the transportation improvements in the Specific Plan, a number of transportation improvements are planned by others for the future in the area of the Specific Plan

Willowbrook Area Access Improvements

This County of Los Angeles project will implement street enhancements on Wilmington Avenue between Imperial Highway & 120th Street (West), and on 120th Street between Willowbrook Avenue & Compton Avenue. Streetscape improvements will including paved crosswalks on Wilmington Avenue. A road diet on 120th Street will add bike lanes in each direction and reduce the number of traffic lanes from four to three between Wilmington & Compton on 120th Street. Left turn lanes will be retained at intersections. This project has been included in the Specific Plan and the roadway lane and configuration changes are incorporated into the future conditions analysis.

Willowbrook/Rosa Parks Station

A Metro Project is designed to improve the functionality, safety, security and circulation at the station. Metro is designing the improvements, and has conducted a separate environmental review¹. All improvements are on-site at the station, and there are no changes to street traffic movements or vehicular circulation patterns on adjacent streets. The station improvements are therefore not included in this study,

County of Los Angeles Bicycle Master Plan

This plan includes the following elements in the Specific Plan area.

¹ Willowbrook/Rosa Parks Station Improvement Project - Initial Study/Documented Categorical Exclusion, Metro,

May 2015.

Implement Class I Bike Facility in the Specific Plan area on:

• Willowbrook Avenue West between Metro Station and 119th Street. This would reduce the roadway from two southbound traffic lanes to one southbound traffic lane. Incorporated in study.

Implement Class II Bike Lanes in the Specific Plan area on:

- Wilmington Avenue, south of 119th Street
- Imperial Highway, between Compton Avenue & Wilmington Avenue
- 120th Street, between Compton Avenue & Wilmington Avenue.

These projects are included in the Specific Plan, and their incorporation into the traffic study is described in Chapter 3.

City of Los Angeles Bicycle Master Plan

This plan includes the following elements in the Specific Plan area.

Implement Class II Bike Lanes in the Specific Plan area on:

Imperial Highway, between Wilmington Avenue & Mona Avenue

This project is included in the Specific Plan, and its incorporation into the traffic study is described in Chapter 3.

Implement Class III Bike Routes in the Specific Plan area on:

• Wilmington Avenue north of Imperial Highway.

This implementation would not affect the number of traffic lanes, so no roadway configuration changes are incorporated in the traffic analysis.

6. Existing With Project With Cumulative Conditions

This section of the report documents an analysis of potential Project impacts for the Existing With Project With Cumulative Condition. The trip estimates generated by related projects shown in Table 5.1 were added to the roadway network and combined with the volumes used for the Existing Plus Project Conditions analyzed in Chapter 4, to forecast Future with Project With Cumulative Conditions traffic volumes, for both the AM and PM peak periods. The total Existing With Project With Cumulative peak hour traffic volumes are illustrated in Figures 6.1 and 6.2 for the AM and PM peak hours respectively.

The analysis then used the methodologies (as described in Chapter 2) and thresholds for significant impact appropriate to each of the different jurisdictions, to calculate intersection level of service and potential impacts. The analysis used the same thresholds described in Chapter 4 for determining significant traffic impacts.

6.1 Project Impact Analysis - Existing With Project With Cumulative

The intersection level of service analysis compared the V/C ratios at each intersection for the Existing Condition and the Existing With Project With Cumulative Condition, to determine the incremental difference in V/C ratios caused by the Project.

The results of the analysis is summarized in Table 6.1 for the AM peak hour and in Table 6.2 for the PM peak hour. These tables compare the level of service for Existing Conditions and Existing With Project With Cumulative Conditions, show the increase in V/C ratios at each intersection due to the Project, and identifies if the increase constitutes a significant impact. The intersection levels of service are also illustrated graphically in Figure 6.3 for the AM Peak Hour and Figure 6.4 for the PM Peak Hour.

County of Los Angeles Intersections - AM Peak Hour

The analysis summarized in Table 6.1 indicates that for the AM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at 21 of the 28 intersections analyzed in the County of Los Angeles. Table 6.1 also shows that there would significant impacts at 13 intersections, as listed below.

39. Mona Blvd & Imperial Hwy	LOS C
11. Central Ave & Rosecrans Ave	LOS D
26. Wilmington Ave & Imperial Hwy	LOS D
32. Wilmington Ave & El Segundo Blvd	LOS D

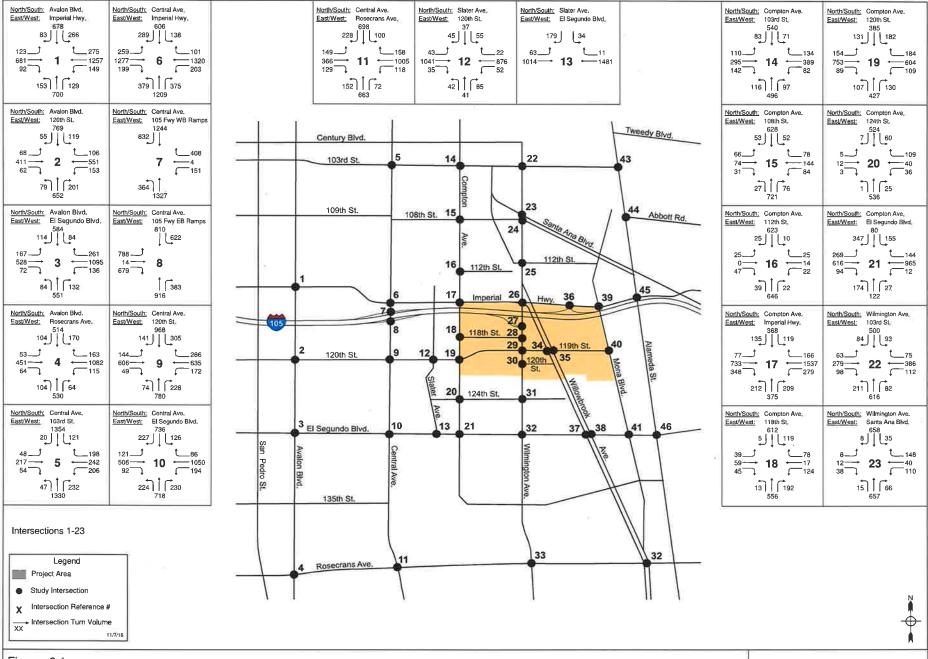


Figure 6.1
Existing With Project With Cumulative Traffic Volumes - AM Peak Hour

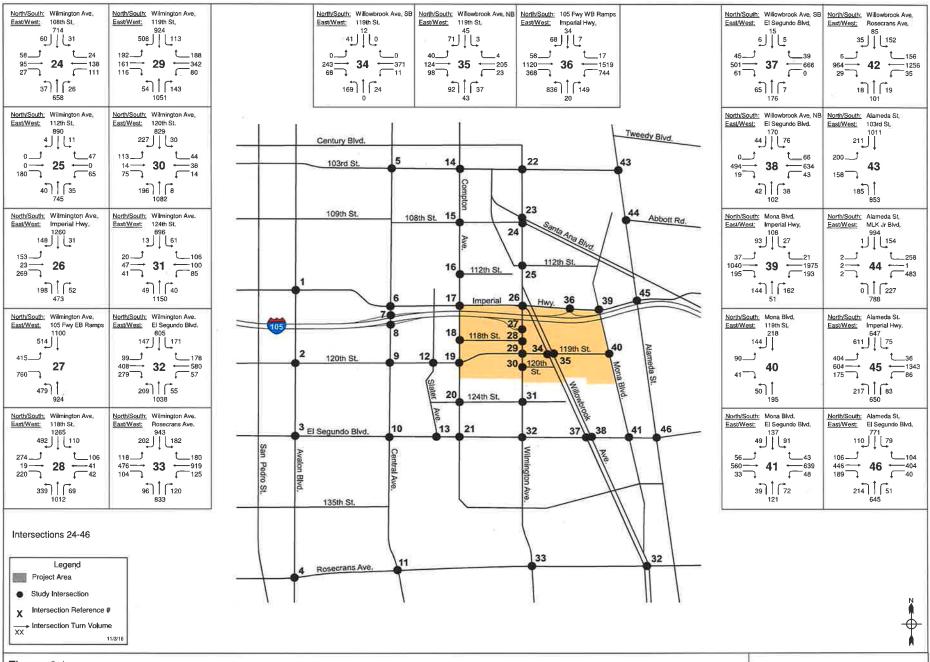


Figure 6.1
Existing With Project With Cumulative Traffic Volumes - AM Peak Hour

Figure 6.1
Existing With Project With Cumulative Traffic Volumes - AM Peak Hour

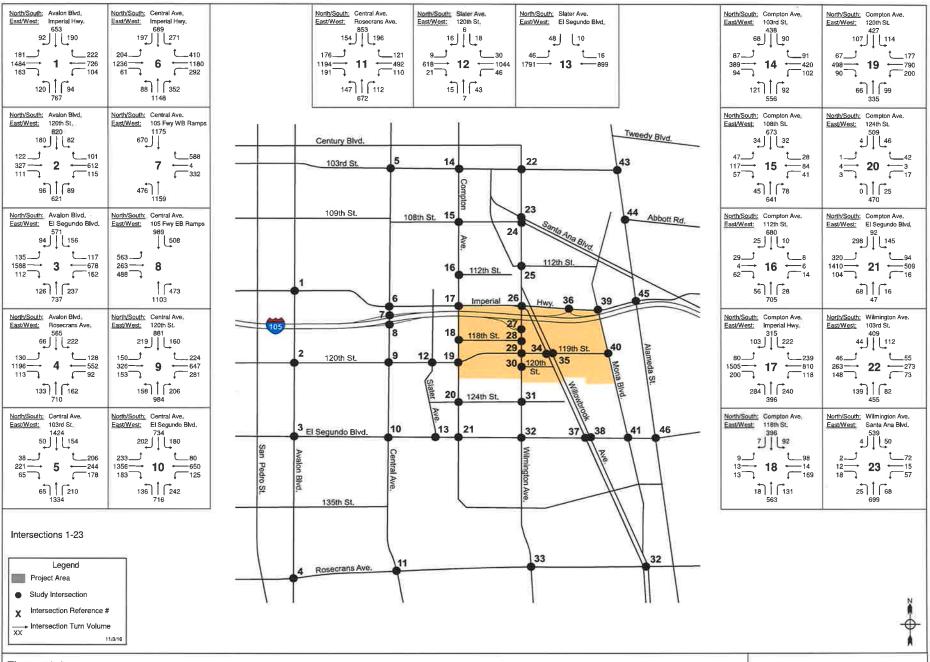


Figure 6.2
Existing With Project With Cumulative Traffic Volumes - PM Peak Hour

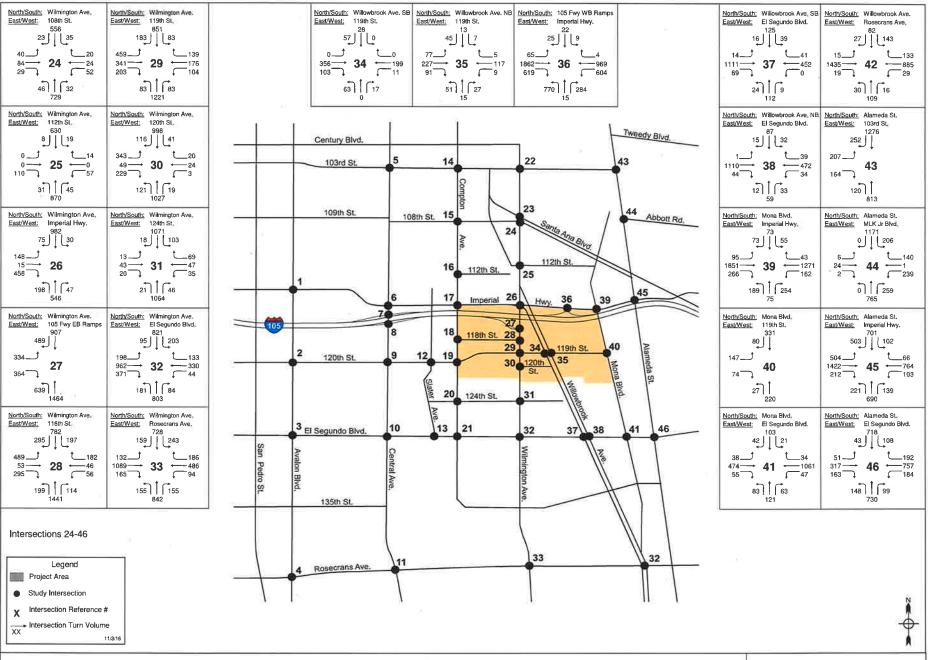


Figure 6.2
Existing With Project With Cumulative Traffic Volumes - PM Peak Hour

Figure 6.2
Existing With Project With Cumulative Traffic Volumes - PM Peak Hour

45. Alameda St & Imperial Hwy	LOS D
46. Alameda St & El Segundo Blvd	LOS D
10. Central Ave & El Segundo Blvd	LOS E
19. Compton Ave & 120 th St	LOS E
29. Wilmington Ave & 120 th St (West)	LOS E
36. Imperial Hwy & I-105 w/b Ramps	LOS E
17. Compton Ave & Imperial Hwy	LOS F
27. Wilmington Ave & I-105 e/b Ramps	LOS F
28. Wilmington Ave & 118 th St	LOS F

Six of the impacted intersections would operate at LOS D or better, four would operate at LOS E, and three would operate at LOS F.

County of Los Angeles Intersections - PM Peak Hour

The analysis summarized in Table 6.2 indicates that for the PM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at 19 of the 28 intersections analyzed in the County of Los Angeles. Table 6.2 also shows that there would significant impacts at 15 intersections, as listed below.

30. Wilmington Ave & 120 th St (East)	LOS C
11. Central Ave & Rosecrans Ave	LOS D
19. Compton Ave & 120 th St	LOS D
26. Wilmington Ave & Imperial Hwy	LOS D
39. Mona Blvd & Imperial Hwy	LOS D
43. Alameda St & 103 rd St	LOS D
3. Avalon Blvd & Rosecrans Ave	LOS E
17. Compton Ave & Imperial Hwy	LOS E
29. Wilmington Ave & 120 th St (West)	LOS E
32. Wilmington Ave & El Segundo Blvd	LOS E
36. Imperial Hwy & I-105 w/b Ramps	LOS E
46. Alameda St & El Segundo Blvd	LOS E
10. Central Ave & El Segundo Blvd	LOS F
27. Wilmington Ave & I-105 e/b Ramps	LOS F
28. Wilmington Ave & 118 th St	LOS F

Six of the impacted intersections would operate at LOS D or better, six would operate at LOS E, and three would operate at LOS F.

City of Compton Intersections – AM Peak Hour

The analysis summarized in Table 6.1 indicates that for the AM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at 14 of

the 16 intersections analyzed in the City of Compton. Table 6.1 also shows that there would significant impacts at 4 intersections, as listed below.

61. Wilmington Ave & Alondra Blvd	LOS D
62. Wilmington Ave & Greenleaf Blvd	LOS D
21. Compton Ave & El Segundo Blvd	LOS E
33. Wilmington Ave & Rosecrans Ave	LOS E

City of Compton Intersections - PM Peak Hour

The analysis summarized in Table 6.2 indicates that for the PM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at 12 of the 16 intersections analyzed in the City of Compton. Table 6.2 also shows that there would significant impacts at 9 intersections, as listed below.

42. Willowbrook Ave & Rosecrans Ave	LOS C
21. Compton Ave & El Segundo Blvd	LOS D
57. Central Ave & W Compton Blvd	LOS D
58. Wilmington Ave & W Compton Blvd	LOS D
63. Wilmington Ave & Walnut St	LOS D
33. Wilmington Ave & Rosecrans Ave	LOS E
60. Central Ave & Alondra Blvd	LOS E
61. Wilmington Ave & Alondra Blvd	LOS E
62. Wilmington Ave & Greenleaf Blvd	LOS E

City of Lynwood Intersections – AM Peak Hour

The analysis summarized in Table 6.1 indicates that for the AM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at all 3 intersections analyzed in the City of Lynwood, and that the Project would not cause a significant impact at these intersections.

City of Lynwood Intersections – PM Peak Hour

The analysis summarized in Table 6.2 indicates that for the PM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at all 3 intersections analyzed in the City of Lynwood. Table 6.2 also shows that there would a significant impact at 1 intersection, as listed below.

54. Imperial Hwy & State St LOS D

City of Los Angeles Intersections – AM Peak Hour

The analysis summarized in Table 6.1 compares the Future Without Project and Future With Project Conditions and indicates that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 15 of the 19 intersections analyzed in the City of Los Angeles. Table 6.1 also shows that there would significant impacts at 5 intersections, as listed below.

 Avalon Blvd & Imperial Hwy 	LOS D
6. Central Ave & Imperial Hwy	LOS D
7. Central Ave & I-105 w/b Ramps	LOS E
9. Central Ave & 120 th St	LOS E
25. Wilmington Ave & 112 th St	LOS F

Two of the impacted intersections would operate at LOS D or better, and two would operate at LOS E. The intersection of Wilmington Ave & 112th St would operate at LOS F on the minor approach, and a traffic signal would be warranted.

City of Los Angeles Intersections – PM Peak Hour

The analysis summarized in Table 6.2 compares the Future Without Project and Future With Project Conditions and indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 15 of the 19 intersections analyzed in the City of Los Angeles. Table 6.2 also shows that there would significant impacts at 6 intersections, as listed below.

2. Avalon Blvd & 120 th St	LOS C
1. Avalon Blvd & Imperial Hwy	LOS D
6. Central Ave & Imperial Hwy	LOS D
7. Central Ave & I-105 w/b Ramps	LOS E
9. Central Ave & 120 th St	LOS E
25. Wilmington Ave & 112 th St	LOS F

Three of the impacted intersections would operate at LOS D or better, and two would operate at LOS E. The intersection of Wilmington Ave & 112th St would operate at LOS F on the minor approach, and a traffic signal would be warranted.

City of Los Angeles Intersections – Shared With County of Los Angeles - AM Peak Hour

Four of the 66 intersections located in the County of Los Angeles and analyzed above with the County's impact thresholds have common jurisdiction with the City of Los Angeles. These intersections were also analyzed using the City of Los Angeles methodology and significant impact criteria.

The analysis summarized in Table 6.1 indicates that for the AM peak hour, with the addition of Project and Cumulative traffic the level of service would remain LOS D or better at 3 of the 4 shared intersections analyzed for the City of Los Angeles. Table 6.1 also shows that there would significant impacts at 3 intersections, as listed below.

26. Wilmington Ave & Imperial Hwy	LOS C
36. Imperial Hwy & I-105 w/b Ramps	LOS D
17. Compton Ave & Imperial Hwy	LOS F

These results are the same as the analysis under the County methodology, except that at Intersection #39 there would be a significant impact under the County methodology but not under the City methodology.

City of Los Angeles Intersections – Shared With County of Los Angeles - PM Peak Hour

The analysis summarized in Table 6.2 indicates that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 3 of the 4 of the shared intersections analyzed for the City of Los Angeles. Table 6.2 also shows that there would significant impacts at all 4 intersections, as listed below.

26. Wilmington Ave & Imperial Hwy	LOS C
17. Compton Ave & Imperial Hwy	LOS D
39. Mona Blvd & Imperial Hwy	LOS D
36. Imperial Hwy & I-105 w/b Ramps	LOS E

These results are the same as the analysis under the County methodology.

Summary - All Intersections - AM Peak Hour

In summary, Table 6.1 shows that for the AM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 53 of the 66 total intersections analyzed. Table 6.1 also shows that there would significant impacts at 22 intersections

Summary - All Intersections - PM Peak Hour

In summary, Table 6.2 shows that for the PM peak hour, with the addition of Project traffic the level of service would remain LOS D or better at 49 of the 66 total intersections analyzed. Table 6.2 also shows that there would significant impacts at 31 intersections

Intersection		Intersection Type	Existing C	Conditions	Existing -	+ Project itions	Change in V/C	Significant Impact		ect + Cumulative	Change in V/C	Significant Impact
			V/C or	LOS	V/C or	LOS	(Delay)		V/C or	LOS	(Delay)	
			(Delay)		(Delay)				(Delay)			
Los A	ngeles County											
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.726	С	0.739	С	0.013	No	0.757	С	0.031	No
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.652	В	0.667	В	0.015	No	0.684	В	0.032	No
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.899	D	0.933	Е	0.034	Yes	0.971	Е	0.072	Yes
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.822	D	0.844	D	0.022	Yes	0.870	D a	0.048	Yes
12.	Slater Ave & 120th St	Signalized	0.501	A	0.604	В	0.103	No	0.609	В	0.108	No
17.	Compton Ave & Imperial Hwy [2]	Signalized	1.007	F	1.120	F	0.113	Yes	1.127	F	0.120	Yes
18.	Compton Ave & 118th St	Signalized	0.438	A	0.561	A	0.123	No	0.579	A	0.141	No
19.	Compton Ave & 120th St	Signalized	0.574	A	0.919	E	0.345	Yes	0.926	Ē	0.352	Yes
20.	Compton Ave & 124th St	Signalized	0.378	A	0.428	A	0.050	No	0.432	A	0.054	No
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.657	В	0.820	D	0.163	Yes	0.832	D	0.175	Yes
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.848	D	1.196	F	0.348	Yes	1.128	F	0.280	Yes
28.	Wilmington Ave & 118th St	Signalized	0.641	В	1.161	F	0.520	Yes	1.208	F	0.567	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.840	D	0.907	Е	0.067	Yes	0.916	E	0.076	Yes
30.	Wilmington Ave & 120th St (East)	Signalized	0.424	Α	0.681	В	0.257	No	0.684	В	0.260	No
31.	Wilmington Ave & 124th St	Signalized	0.557	Α	0.697	В	0.140	No	0.705	С	0.148	No
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.716	С	0.834	D	0.118	Yes	0.847	D	0.131	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.447	A	0.478	A	0.031	No	0.478	A	0.031	No
35.	Willowbrook Ave E & 119th Street	Signalized	0.375	A	0.388	A	0.013	No	0.388	A	0.013	No
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.775	С	0.906	Е	0.131	Yes	0.910	Е	0.135	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.416	Α =	0.448	A	0.032	No	0.454	A	0.038	No
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.447	A	0.473	A	0.026	No	0.479	A	0.032	No
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.730	С	0.766	С	0.036	No	0.772	С	0.042	Yes
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(13.5)	В	(15.4)	С	(1.9)	No	(15.4)	С	(1.9)	No
41.	Mona Blvd & El Segundo Blvd	Signalized	0.512	A	0.544	A	0.032	No	0.550	A	0.038	No
43.	Alameda St & 103rd St [4]	Signalized	0.790	С	0.812	D	0.022	No	0.821	D	0.031	No
45.	Alameda St & Imperial Hwy [4]	Signalized	0.772	С	0.829	D	0.057	Yes	0.837	D	0.065	Yes
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.765	С	0.815	D	0.050	Yes	0.827	D	0.062	Yes
52.	El Segundo Blvd & San Pedro St	Signalized	0.589	A	0.598	A	0.009	No	0.611	В	0.022	No

	Intersection	Intersection Type	Intersection Type Existing Conditions		Existing + Project Conditions		Change Significant in V/C Impact	Existing + Project + Cumulative Conditions		Change in V/C	Significant Impact	
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS	(Delay)	
City of	Compton											
13.	Slater Ave & El Segundo Blvd	Signalized	0.687	В	0.710	С	0.023	No	0.717	С	0.030	No
21.	Compton Ave & El Segundo Blvd	Signalized	0.804	С	0.925	Е	0.121	Yes	0.940	E	0.136	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.854	D	0.927	Е	0.073	Yes	0.935	E	0.081	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.693	В	0.721	С	0.028	No	0.727	С	0.034	No
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.592	A	0.602	В	0.010	No	0.607	В	0.015	No
56.	Alameda St & Rosecrans Ave	Signalized	0.606	В	0.634	В	0.028	No	0.634	В	0.028	No
57.	Cental Ave & W Compton Blvd	Signalized	0.758	С	0.767	С	0.009	No	0.774	С	0.016	No
58.	Wilmington Ave & W Compton Blvd	Signalized	0.702	В	0.737	С	0.035	No	0.738	С	0,036	No
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.532	A	0.536	A	0.004	No	0.537	Α	0.005	No
60.	Central Ave & Alondra Blvd	Signalized	0.754	С	0.762	С	0.008	No	0.769	С	0.015	No
61.	Wilmington Blvd & Alondra Blvd	Signalized	0.825	D	0.861	D	0.036	Yes	0.862	D	0.037	Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.797	С	0.829	D	0.032	Yes	0.831	D	0.034	Yes
63.	Wilmington Ave & Walnut St	Signalized	0.595	A	0.627	В	0.032	No	0.628	В	0.033	No
64.	Central Ave & Greenleaf Blvd	Signalized	0.534	A	0.541	A	0.007	No	0.548	A	0.014	No
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.532	A	0.535	A	0.003	No	0.535	A	0.003	No
66.	Alameda St & Greenleaf Blvd	Signalized	0.628	В	0.641	В	0.013	No	0.641	В	0.013	No
City of	Lynwood							M				
44.	Alameda St & Abbott Rd	Signalized	0.660	В	0.673	В	0.013	No	0.679	В	0.019	No
53.	Imperial Hwy & Fernwood Ave	Signalized	0.732	С	0.756	С	0.024	No	0.764	С	0.032	No
54.	Imperial Hwy & State St	Signalized	0.738	С	0.764	С	0.026	No	0.773	С	0.035	No

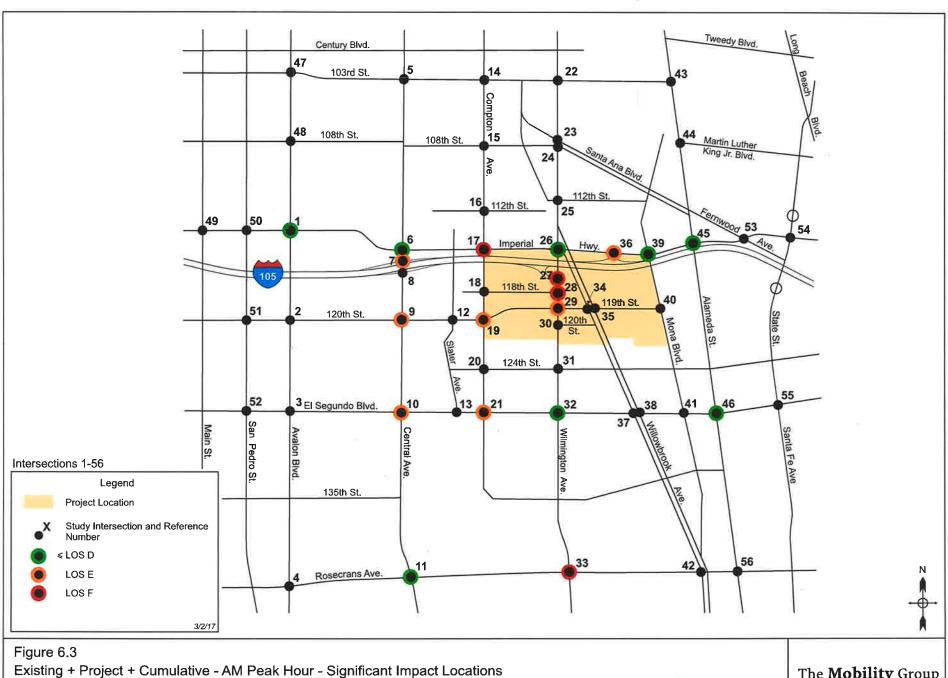
- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.

	Intersection	Intersection Type	Existing C	Conditions	Existing + . Cumulative		Existing + Proje Cumulative		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)	
City of	Los Angeles		(= 0.00)		(====,)		(= ===,)			
1.	Avalon Blvd & Imperial Hwy	Signalized	0.747	С	0.813	D	0.856	D	0.043	Yes
2.	Avalon Blvd & 120th St	Signalized	0.592	A	0.641	В	0.677	В	0.036	No
5.	Central Ave & 103rd St	Signalized	0.637	В	0.687	В	0.708	С	0.021	No
6.	Central Ave & Imperial Hwy	Signalized	0.737	С	0.796	С	0.843	D	0.047	Yes
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.881	D	0.911	Е	0.030	Yes
8.	Central Ave & I-105 e/b Ramps	Signalized	0.668	В	0.724	С	0.755	С	0.031	No
9.	Central Ave & 120th St	Signalized	0.753	С	0.825	D	0.959	Е	0.134	Yes
14.	Compton Ave & 103rd St	Signalized	0.604	В	0.643	В	0.662	В	0.019	No
15.	Compton Ave & 108th St	Signalized	0.663	В	0.707	С	0.732	С	0.025	No
16.	Compton Ave & 112th St	Unsignalized [1]	(31.0)	D	(41.4)	E	(61.6)	F	(20.2)	No
22.	Wilmington Ave & 103rd St	Signalized	0.660	В	0.714	С	0.723	С	0.009	No
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.473	A	0.503	A	0.517	Α	0.014	No
24.	Wilmington Ave & 108th St	Signalized	0.593	A	0.633	В	0.661	В	0.028	No
25.	Wilmington Ave & 112th St	Unsignalized [1]	(44.5)	Е	(78.0)	F	Overflow	F	Overflow	Yes
47.	Avalon Blvd & 103rd St	Signalized	0.441	A	0.469	A	0.479	A	0.010	No
48.	Avalon Blvd & 108th St	Signalized	0.564	A	0.604	В	0.617	В	0.013	No
49.	Imperial Hwy & Main St	Signalized	0.590	A	0.632	В	0.643	В	0.011	No
50.	Imperial Hwy & San Pedro St	Signalized	0.661	В	0.708	С	0.720	С	0.012	No
51.	San Pedro St & 120th St	Signalized	0.528	A	0.561	A	0.575	A	0.014	No
City of	Los Angeles & Los Angeles County [2]							<u>/</u>		
17.	Compton Ave & Imperial Hwy	Signalized	0.898	D	0.969	E	1.089	F	0.120	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.501	A	0.539	A	0.708	С	0.169	Yes
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.690	В	0.739	C	0.879	D	0.140	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.601	В	0.644	В	0.682	В	0.038	No

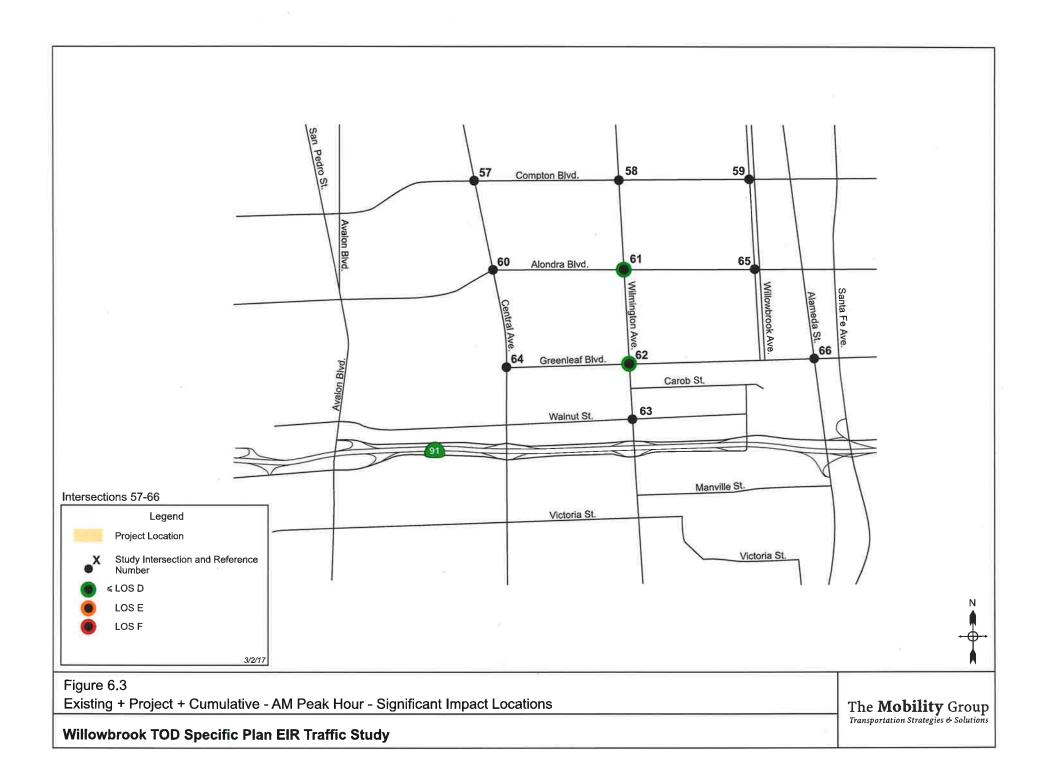
^[1] Unsignalized intersection show delay/LOS for controlled approach.

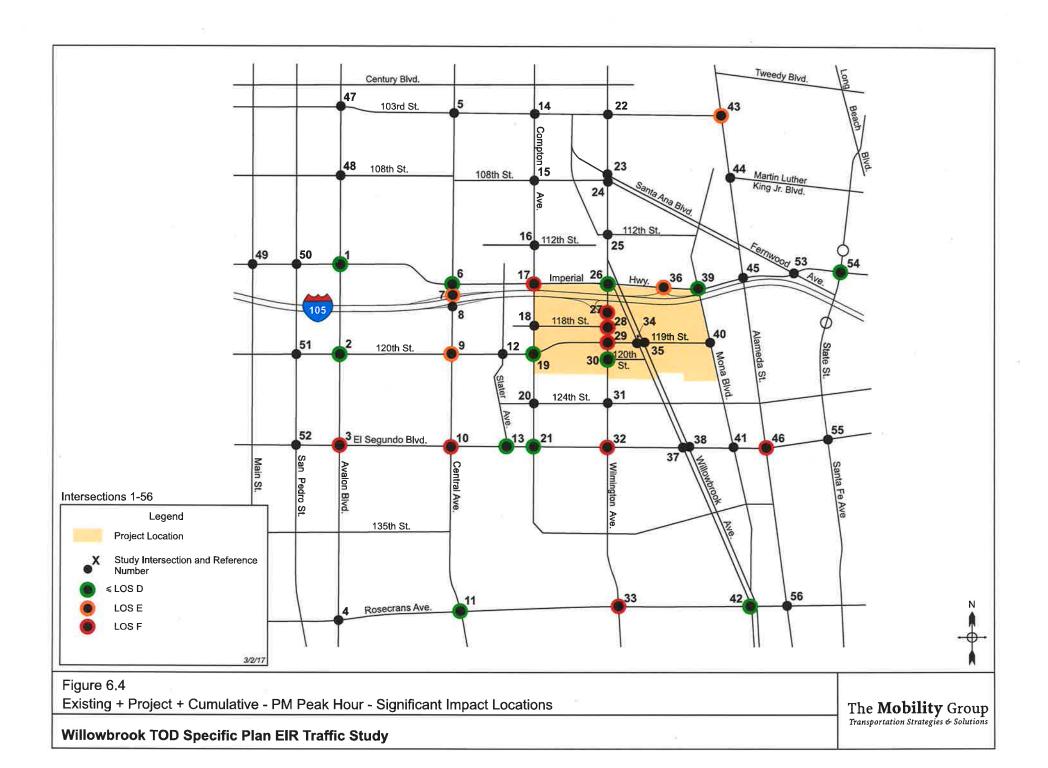
^[2] Analyzed per City of Los Angeles methodology.

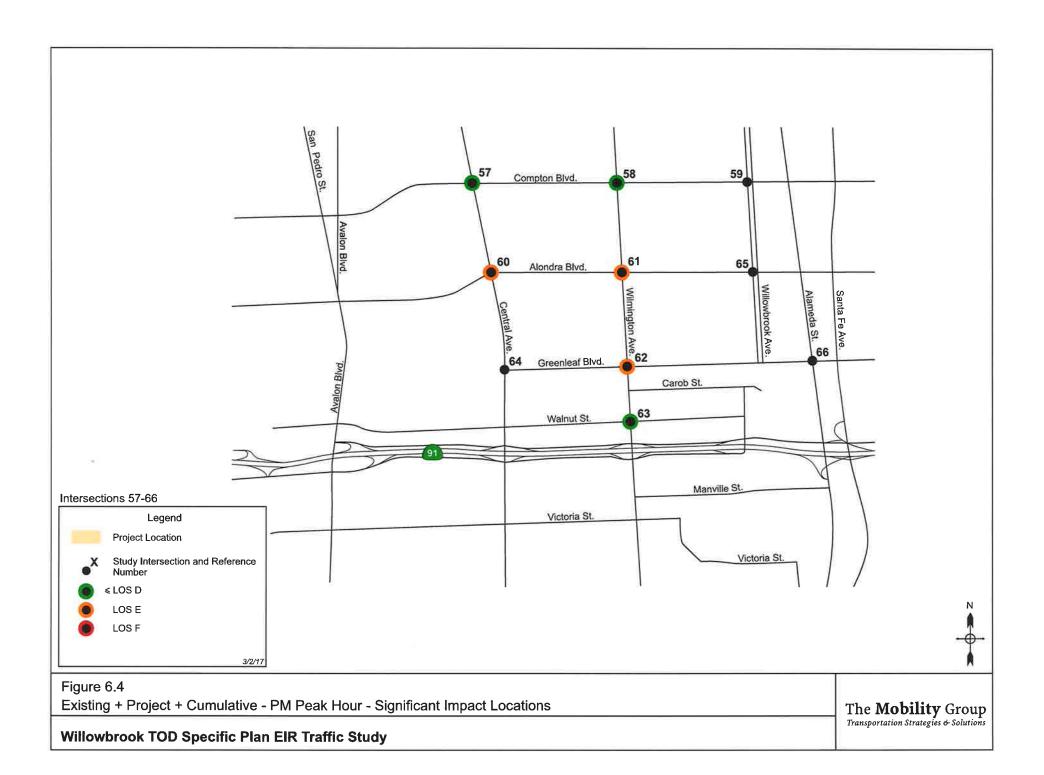
Intersection		Intersection Type	pe Existing Conditions		Existing + Project Conditions			Significant Impact	Existing + Proje Condi		Change in V/C	Significant Impact
			V/C or LOS		V/C or	LOS	(Delay)	Ітрасі	V/C or	LOS	(Delay)	Impaci
			(Delay)	LOS	(Delay)	LOS	(Detay)		(Delay)	LOS	(Deiuy)	
Los	Angeles County						1					di:
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.844	D	0.877	D	0.033	Yes	0.957	Е	0.113	Yes
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.804	С	0.815	D	0.011	No	0.842	D	0.038	No
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.925	Е	0.983	E	0.058	Yes	1.014	F	0.089	Yes
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.761	С	0.782	С	0.021	No	0.816	D	0.055	Yes
12.	Slater Ave & 120th St	Signalized	0.367	A	0.480	A	0.113	No	0.494	A	0.127	No
17.	Compton Ave & Imperial Hwy [2]	Signalized	0.781	С	0.954	Е	0.173	Yes	0.967	Е	0.186	Yes
18.	Compton Ave & 118th St	Signalized	0.367	A	0.522	A	0.155	No	0.562	Α	0.195	No
19.	Compton Ave & 120th St	Signalized	0.448	A	0.817	D	0.369	Yes	0.843	D	0.395	Yes
20.	Compton Ave & 124th St	Signalized	0.287	A	0.319	A	0.032	No	0.324	Α	0.037	No
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.654	В	0.820	D	0.166	Yes	0.840	D	0.186	Yes
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.680	В	0.988	Е	0.308	Yes	1.010	F	0.330	Yes
28.	Wilmington Ave & 118th St	Signalized	0.527	A	1.019	F	0.492	Yes	1.119	F	0.592	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.766	С	0.934	Е	0.168	Yes	0.956	Е	0.190	Yes
30.	Wilmington Ave & 120th St (East)	Signalized	0.426	A	0.756	С	0.330	Yes	0.767	С	0.341	Yes
31.	Wilmington Ave & 124th St	Signalized	0.485	A	0.608	В	0.123	No	0.614	В	0.129	No
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.793	С	0.923	Е	0.130	Yes	0.948	E	0.155	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.436	A	0.486	A	0.050	No	0.486	Α	0.050	No
35.	Willowbrook Ave E & 119th Street	Signalized	0.359	A	0.377	A	0.018	No	0.377	Α	0.018	No
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.792	С	0.918	Е	0.126	Yes	0.928	Е	0.136	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.508	A	0.540	A	0.032	No	0.551	Α	0.043	No
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.507	A	0.535	A	0.028	No	0.546	Α	0.039	No
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.825	D	0.875	D	0.050	Yes	0.885	D	0.060	Yes
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(17.0)	С	(21.6)	С	(4.6)	No	(21.6)	С	(4.6)	No
41.	Mona Blvd & El Segundo Blvd	Signalized	0.609	В	0.635	В	0.026	No	0.646	В	0.037	No
43.	Alameda St & 103rd St [4]	Signalized	0.852	D	0.872	D	0.020	Yes	0.884	D	0.032	Yes
45.	Alameda St & Imperial Hwy [4]	Signalized	0.799	С	0.818	D	0.019	No	0.828	D	0.029	No
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.898	D	0.912	Е	0.014	No	0.931	Е	0.033	Yes
52.	El Segundo Blvd & San Pedro St	Signalized	0.601	В	0.612	В	0.011	No	0.646	В	0.045	No


	Intersection Intersection Type		Existing C	Conditions		+ Project itions	Change in V/C	Significant Impact	Existing + Proje Cond	ect + Cumulative	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS	(Delay)	
City o	of Compton											
13.	Slater Ave & El Segundo Blvd	Signalized	0.649	В	0.676	В	0.027	No	0.690	В	0.041	No
21.	Compton Ave & El Segundo Blvd	Signalized	0.706	С	0.790	С	0.084	Yes	0.812	D	0.106	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.847	D	0.941	E	0.094	Yes	0.962	Е	0.115	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.719	С	0.748	С	0.029	No	0.760	С	0.041	Yes
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.700	В	0.717	С	0.017	No	0.735	С	0.035	No
56.	Alameda St & Rosecrans Ave	Signalized	0.604	В	0.638	В	0.034	No	0.641	В	0.037	No
57.	Cental Ave & W Compton Blvd	Signalized	0.802	С	0.813	D	0.011	No	0.836	D	0.034	Yes
58.	Wilmington Ave & W Compton Blvd	Signalized	0.844	D	0.893	D	0.049	Yes	0.897	D	0.053	Yes
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.453	A	0.456	A	0.003	No	0.457	A	0.004	No
60.	Central Ave & Alondra Blvd	Signalized	0.888	D	0.898	D	0.010	No	0.918	E	0.030	Yes
61.	Wilmington Blvd & Alondra Blvd	Signalized	0.877	D	0.924	Е	0.047	Yes	0.928	Е	0.051	Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.911	Е	0.952	E	0.041	Yes	0.956	Е	0.045	Yes
63.	Wilmington Ave & Walnut St	Signalized	0.785	С	0.825	D	0.040	Yes	0.829	D	0.044	Yes
64.	Central Ave & Greenleaf Blvd	Signalized	0.671	В	0.680	В	0.009	No	0.701	В	0.030	No
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.526	A	0.530	A	0.004	No	0.530	A	0.004	No
66.	Alameda St & Greenleaf Blvd	Signalized	0.723	С	0.748	С	0.025	No	0.751	С	0.028	No
City	of Lynwood						-					
44.	Alameda St & Abbott Rd	Signalized	0.624	В	0.651	В	0.027	No	0.657	В	0.033	No
53.	Imperial Hwy & Fernwood Ave	Signalized	0.755	С	0.781	C	0.026	No	0.794	С	0.039	No
54.	Imperial Hwy & State St	Signalized	0.785	С	0.809	D	0.024	Yes	0.823	D	0.038	Yes

- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.


	Intersection	Intersection Type	Existing C	Conditions	Existing + Cumulative		Existing + Proje Cumulative		Change in V/C	Significant Impact
			V/C or	LOS	V/C or	LOS	V/C or	LOS	(Delay)	
			(Delay)		(Delay)		(Delay)			
City of	Los Angeles									
1.	Avalon Blvd & Imperial Hwy	Signalized	0.713	С	0.787	С	0.827	D	0.040	Yes
2.	Avalon Blvd & 120th St	Signalized	0.672	В	0.744	С	0.787	С	0.043	Yes
5.	Central Ave & 103rd St	Signalized	0.664	В	0.725	С	0.743	С	0.018	No
6.	Central Ave & Imperial Hwy	Signalized	0.757	С	0.831	D	0.893	D	0.062	Yes
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.894	D	0.967	Е	0.073	Yes
8.	Central Ave & I-105 e/b Ramps	Signalized	0.635	В	0.716	С	0.735	С	0.019	No
9.	Central Ave & 120th St	Signalized	0.690	В	0.825	D	0.935	E	0.110	Yes
14.	Compton Ave & 103rd St	Signalized	0.587	A	0.625	В	0.643	В	0.018	No
15.	Compton Ave & 108th St	Signalized	0.527	A	0.559	A	0.605	В	0.046	No
16.	Compton Ave & 112th St	Unsignalized [1]	(38.5)	Е	(51.5)	F	(84.1)	F	(32.6)	No
22.	Wilmington Ave & 103rd St	Signalized	0.463	A	0.513	A	0.527	A	0.014	No
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.441	A	0.477	A	0.504	A	0.027	No
24.	Wilmington Ave & 108th St	Signalized	0.496	A	0.538	A	0.567	A	0.029	No
25.	Wilmington Ave & 112th St	Unsignalized [1]	(42.1)	Е	(67.2)	F	Overflow	F	Overflow	Yes
47.	Avalon Blvd & 103rd St	Signalized	0.475	A	0.511	A	0.528	A	0.017	No
48.	Avalon Blvd & 108th St	Signalized	0.608	В	0.657	В	0.677	В	0.020	No
49.	Imperial Hwy & Main St	Signalized	0.632	В	0.691	В	0.710	С	0.019	No
50.	Imperial Hwy & San Pedro St	Signalized	0.697	В	0.752	С	0.776	С	0.024	No
51.	San Pedro St & 120th St	Signalized	0.597	A	0.647	В	0.672	В	0.025	No
City of	Los Angeles & Los Angeles County [2]									
17.	Compton Ave & Imperial Hwy	Signalized	0.663	В	0.714	С	0.893	D	0.179	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.497	A	0.543	A	0.718	С	0.175	Yes
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.710	С	0.767	С	0.904	Е	0.137	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.704	С	0.760	С	0.814	D	0.054	Yes


^[1] Unsignalized intersection show delay/LOS for controlled approach.


^[2] Analyzed per City of Los Angeles methodology.

Willowbrook TOD Specific Plan EIR Traffic Study

6.2 Project Impacts – CMP Analysis

The Los Angeles County Congestion Management Program (CMP) requires that new development projects analyze potential project impacts on CMP monitoring locations, if an EIR is prepared for the Project. When a CMP analysis is needed, the CMP methodology requires that the Traffic Study analyze traffic conditions at all CMP arterial monitoring intersections where the Project will add 50 or more trips during either the AM or PM weekday peak hours of adjacent street traffic. The CMP also requires that traffic studies analyze mainline freeway monitoring stations where the Project will add 150 or more trips in either direction during either AM or PM weekday peak hours. If, based on these criteria, the Traffic Study identifies no facilities for study, then no further traffic analysis is required.

CMP Arterial Monitoring Locations

A review of the CMP indicated the following arterial monitoring stations that are closest to the Project Site:

- Manchester Ave & Vermont Ave
- Manchester Ave & Avalon Blvd
- Alameda St & Firestone Blvd
- Alameda St & Imperial Hwy
- Alameda St & W Compton Blvd
- Alameda St SR-91 EB Ramps

The additional trips added by the Project at these intersections are shown Table 6.3 below.

The closest monitoring locations to the Project site are at the Alameda St & Imperial Hwy, Alameda St & Firestone Blvd, Alameda St & W Compton Blvd, and Manchester Ave & Avalon Blvd intersections which are located approximately four miles or less from the Project Site. The other monitoring locations at Alameda St & the SR-91 EB Ramps, and at Manchester Ave & Vermont Ave, are located further away from and between four and six miles from the Project Site.

Based on the trip generation and trip distribution characteristics of the Project as described in Chapter 3, the number of Project trips that would be added to these locations was calculated and is shown in Table 6.3. For locations further from the Project site, Project trips will disperse onto an increasing number of roadways so the incremental addition of trips will reduce with distance from the Project.

As can be seen in Table 6.3, the Project will add 50 or more trips to four CMP monitoring locations, which would exceed the threshold to require analysis. Further analysis of these four locations was therefore conducted.

Table 6.3 CMP Arterial Analysis – Number of Trips Added by Project

Monitoring Location	No. of Trips Ac	dded by Project
	AM	PM
Alameda St & Firestone Blvd	77	92
Alameda St & Imperial Hwy	237	294
Alameda St & W Compton Blvd	58	67
Alameda St SR-91 EB Ramps	37	43
Manchester Ave & Avalon Blvd	40	47
Manchester Ave & Vermont Ave	0	0

Significant Impact Thresholds

The impact analysis used the Los Angeles County CMP threshold of significance, which states that a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02), causing LOS F (V/C > 1.00); if the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02).

Impact Analysis

The analysis was based on existing traffic counts, forecasts of Future Without Project traffic volumes using the methodology described in Chapter 5, and the addition of Proposed Project trips as described in Chapter 3, to analyze the Future With Project conditions. The analysis of the four CMP intersections identified above is summarized in Table 6.4. As shown in Table 6.4, while the Project would increase the V/C rates at the intersections, the level of service would not change except at one location, and the incremental increase in V/C ratio would be less than the significant impact threshold of 0.02. Based on this analysis, the Project would not cause any significant traffic impacts at any of the four CMP monitoring intersections.

CMP Freeway Monitoring Stations

A review of the CMP also indicated the following freeway monitoring stations that are nearest to the Project Site.

Table 6.4 Future With Project Conditions - CMP Intersection Analysis - AM Peak Hour

No.	CMP Intersection	Existing (Existing Conditions		Future Without		Future With Project		Significant
		(20	(2016)		Project Conditions		Conditions		Impact
		V/C	LOS	V/C	LOS	V/C	LOS		
1	Alameda St & Firestone Blvd	0.899	D	0.972	Е	0.981	Е	0.009	No
2	Alameda St & Imperial Hwy	0.772	С	0.858	D	0.899	D	0.041	No
3	Alameda St & W Compton Blvd	0.659	В	0.716	С	0.725	С	0.009	No
4	Alameda St & SR-91 EB Ramps	0.582	A	0.583	A	0,595	A	0.012	No

Table 6.4 Future With Project Conditions - CMP Intersection Analysis - PM Peak Hour

No.	CMP Intersection		Existing Conditions		Future Without		Future With Project		Significant
		(20	16)	Project Conditions		Conditions		in V/C	Impact
		V/C	LOS	V/C	LOS	V/C	LOS		
1	Alameda St & Firestone Blvd	0.924	Е	1.003	F	1.018	F	0.015	No
2	Alameda St & Imperial Hwy	0.799	С	0.876	D	0.891	D	0.015	No
3	Alameda St & W Compton Blvd	0.637	В	0.694	В	0.705	С	0.011	No
4	Alameda St & SR-91 EB Ramps	0.829	D	0.899	D	0.899	D	0.000	No

- I-105 East of Crenshaw Blvd, West of Vermont Ave
- I-105 West of I-710, East of Harris Ave
- I-105 East of Bellflower Blvd, West of I-605
- I-110 at Manchester Blvd
- I-710 North of I-105, North of Firestone Blvd
- I-710 North of I-405, South of Del Amo Blvd
- SR-91 East of Alameda St / Santa Fe Ave

None of these locations are located close to the Project Site. The closest (I-105 West of I-710, East of Harris Ave) is located 4.0 miles from the Project Site and the second closest (I-105 East of Crenshaw Blvd) is located about 5.0 miles from the Project Site. The remaining stations are located considerable distances from the Project Site (up to 9.8 miles).

The number of Project vehicle trips expected to pass through these stations was estimated based on the Project trip generation and distribution discussed in Chapter 3. The additional trips added by the Project at these locations are shown in Table 6.5 below.

The incremental volumes are above the CMP threshold of 150 trips at four locations listed in Table 6.5. Further analysis was therefore conducted at those locations.

Significant Impact Thresholds

The impact analysis used the Los Angeles County CMP threshold of significance, which states that a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02), causing LOS F (V/C > 1.00); if the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C \geq 0.02).

Impact Analysis

Existing traffic volumes on these freeway segments in the A.M. and P.M. peak hours were obtained from the 2010 Congestion Management Program for Los Angeles County (LACMTA). Freeway levels of service are determined by calculating demand/capacity ratios per the definitions shown in Table 6.6

Existing Conditions levels of service were calculated for each freeway segment using a capacity of 2,000 vehicles per hour per freeway mainline lane (as per the 2010 Congestion Management Program). The 2035 Future Without Project base freeway traffic volumes were projected by factoring existing volumes by the regional growth factors discussed in Chapter 5. Trips from the Project were assigned to the freeway system using the Project trip generation and the Project trip distribution discussed in Chapter 3. The number of Project vehicle trips

Willowbrook TOD Project Traffic Study

Table 6.5 CMP Freeway Analysis – Number of Trips Added by Project

Monitoring Location	Direction	No. of Trips A	dded by Project
		AM	PM
I-105 e/o Crenshaw Blvd, w/o Vermont Ave	EB	131	158
	WB	133	160
I-105 w/o Jct Rte 710, e/o Harris Ave	EB	179	370
	WB	310	237
I-105 e/o Bellflower Blvd, w/o Rte 605	EB	137	304
	WB	262	185
I-110 at Manchester Blvd	NB	73	150
	SB	131	96
I-710 n/o Rte 105, n/o Firestone Blvd	NB	35	52
	SB	45	41
I-710 n/o Jct Rte 405, s/o Del Amo Blvd	NB	32	22
S/O DOI / MITO DIVO	SB	17	34
SR-91 e/o Alameda St / Santa Fe Ave	EB	17	32
,2	WB	31	20

expected to pass through the CMP monitoring locations closest to the Project was estimated based on the methodology described above. The CMP freeway impact analysis at the four locations is shown in Table 6.7 for the AM peak hour and in Table 6.8 for the PM peak hour.

In the AM peak hour, the addition of vehicle trips generated by the Project would cause significant impacts according to CMP criteria at two freeway monitoring locations, at:

- I-105 westbound (West of I-710, East of Harris Ave)
- I-105 westbound (East of Bellflower Blvd. West of I-605)

The Project would cause an increase in V/C of 0.031 and 0.032 at these locations, slightly above the threshold of 0.020 for a significant impact.

Table 6.6 Level of Service Definitions for Freeway Mainline Segments

Level of Service	Demand/Capacity Ratio
A	0.00 - 0.35
В	>0.35 - 0.54
С	>0.54 – 0.77
D	>0.77 – 0.93
Е	>0.93 – 1.00
F (0)	>1.00 – 1.25
F (1)	>1.25 – 1.35
F (2)	>1.35 – 1.45
F (3)	>1.45

Source: Draft 2010 Congestion Management Plan for Los Angeles County, LACMTA, 2010.

In the PM peak hour, the addition of vehicle trips generated by the Project would cause significant impacts according to CMP criteria at four freeway monitoring locations, at:

- I-105 eastbound (West of I-710, East of Harris Ave)
- I-105 westbound (West of I-710, East of Harris Ave)
- I-105 eastbound (East of Bellflower Blvd. West of I-605)
- I-105 westbound (East of Bellflower Blvd. West of I-605)

The Project would cause an increase in V/C of between 0.023 and 0.038 at these locations, slightly above the threshold of 0.020 for a significant impact. The freeway would be operating at LOS F at these locations without the Project.

CMP Transit Impact Analysis

As an EIR is being prepared for the Project, an analysis of potential Project impacts on the transit system was also performed, per the CMP requirements and guidelines.

Significant Impact Thresholds

For the purposes of this traffic study, the following criterion was established to determine if there would be any significant transit impacts due to the Project:

The capacity of the transit system serving the Project area would be substantially exceeded.

		£:			ing Condi Year 2016		11	Without I	-	Futur	e With Pro (Year	_	litions	Increase	Significant
No.	Location	Dir	Capacity	Hourly Volume ¹	D/C	LOS	Hourly Volume	D/C	LOS	Project Trips	Hourly Volume	D/C	LOS	in D/C	Impact?
1	I-105 (East of Crenshaw Blvd.,	EB	10,000	8,711	0.871	D	9,586	0.959	Е	131	9,717	0.972	Е	0.013	No
1	West of Vermont Ave.)	WB	10,000	12,901	1.290	F(1)	14,169	1.417	F(2)	133	14,302	1.430	F(2)	0.012	No
2	I-105 (West of I-710, East of Harris	ЕВ	10,000	9,042	0.904	D	9,934	0.993	E	179	10,113	1.011	F(0)	0.017	No
2	Ave.)	WB	10,000	13,011	1.301	F(1)	14,300	1.430	F(2)	310	14,610	1.461	F(3)	0.031	Yes
3	I-105 (East of Bellflower Blvd.	EB	8,000	6,726	0.841	D	7,391	0.924	D	137	7,528	0.941	Е	0.016	No
3	West of I-605)	WB	8,000	10,255	1.282	F(1)	11,271	1.409	F(2)	262	11,533	1.442	F(2)	0.032	Yes
1	I 110 (at Manahastar Plyd)	NB	12,000	12,625	1.052	F(0)	13,865	1.155	F(0)	73	13,938	1.161	F(0)	0.006	No
4	I-110 (at Manchester Blvd.)	SB	12,000	11,899	0.992	Е	13,080	1.090	F(0)	131	13,211	1.101	F(0)	0.010	No

^{1.} Existing Traffic volumes calculated using volumes from "Existing Conditions from 2010 Congestion Management Program for LA County", factored to 2016 using growth factors for Regional Statistical Area 21 (Vernon).

3 . T	,	6.			ting Condi Year 2016		11	Without I	· ·	Futur	e With Pro (Year	-	litions	Increase	Significant
No.	Location	Dir	Capacity	Hourly Volume ¹	D/C	LOS	Hourly Volume	D/C	LOS	Project Trips	Hourly Volume	D/C	LOS	in D/C	Impact?
1	I-105 (East of Crenshaw Blvd.,	EB	10,000	13,122	1.312	F(1)	14,444	1.444	F(2)	158	14,602	1.460	F(3)	0.016	No
1	West of Vermont Ave.)	WB	10,000	8,601	0.860	D	9,488	0.949	Е	160	9,648	0.965	Е	0.016	No
2	I-105 (West of I-710, East of Harris	ЕВ	10,000	13,673	1.367	F(2)	15,054	1.505	F(3)	370	15,424	1.542	F(3)	0.037	Yes
2	Ave.)	WB	10,000	9,152	0.915	D	10,085	1.008	F(0)	237	10,322	1.032	F(0)	0.024	Yes
3	I-105 (East of Bellflower Blvd.	ЕВ	8,000	12,791	1.599	F(3)	14,074	1.759	F(3)	304	14,378	1.797	F(3)	0.038	Yes
3	West of I-605)	WB	8,000	9,814	1.227	F(0)	10,807	1.351	F(2)	185	10,992	1.374	F(2)	0.023	Yes
4	L 110 (at Manahastar Plyd)	NB	12,000	12,791	1.066	F(0)	14,081	1.173	F(0)	150	14,231	1.186	F(0)	0.012	No
4	I-110 (at Manchester Blvd.)	SB	12,000	12,978	1.082	F(0)	14,281	1.190	F(0)	96	14,377	1.198	F(0)	0.008	No

^{1.} Existing Traffic volumes calculated using volumes from "Existing Conditions from 2010 Congestion Management Program for LA County", factored to 2016 using growth factors for Regional Statistical Area 21 (Vernon).

Transit Analysis

The number of transit trips that would be generated by the Project was estimated based on the trip generation methodology described in Chapter 3. The estimate of base vehicle trips for each Project land use in Table A-4 and Table A-5 (excluding internal trips) was converted to person trips by applying a conversion factor of 1.4, as per CMP guidelines. The person trip numbers were then multiplied by the estimated percent taking transit for each land use, as previously discussed in Chapter 3 and identified in Tables A-4 and Table A-5. These numbers are project specific and more appropriate than the default countywide guidelines in the CMP as they reflect the estimated transit use that would occur for the Project because of its location near numerous transit lines.

The estimated number of transit trips for the CMP analysis is shown in Table 6.9. In the AM peak hour the Project would generate an estimated 873 net additional transit trips (521 inbound trips and 352 outbound trips), and in the PM peak hour approximately 1,094 additional transit trips (462 inbound and 632 outbound), as shown in Table 6.9. The highest number of additional transit trips would therefore occur in the PM peak hour.

Based on the information presented in Chapter 2 on the existing transit services in the Specific Plan area, the peak hour capacity of the transit system serving the Project Site is approximately 7,920 persons per direction. The highest directional volume of peak hour trips added by the Project would be 632 trips, which would represent approximately 8% of the total transit capacity during the peak hour. Based on a discussion with Metro, Project's projected increase in transit ridership of approximately 8% would not exceed the existing capacity of the transit system and the project would result in less than significant impact on transit services¹.

The Mobility Group 117 May 4, 2017

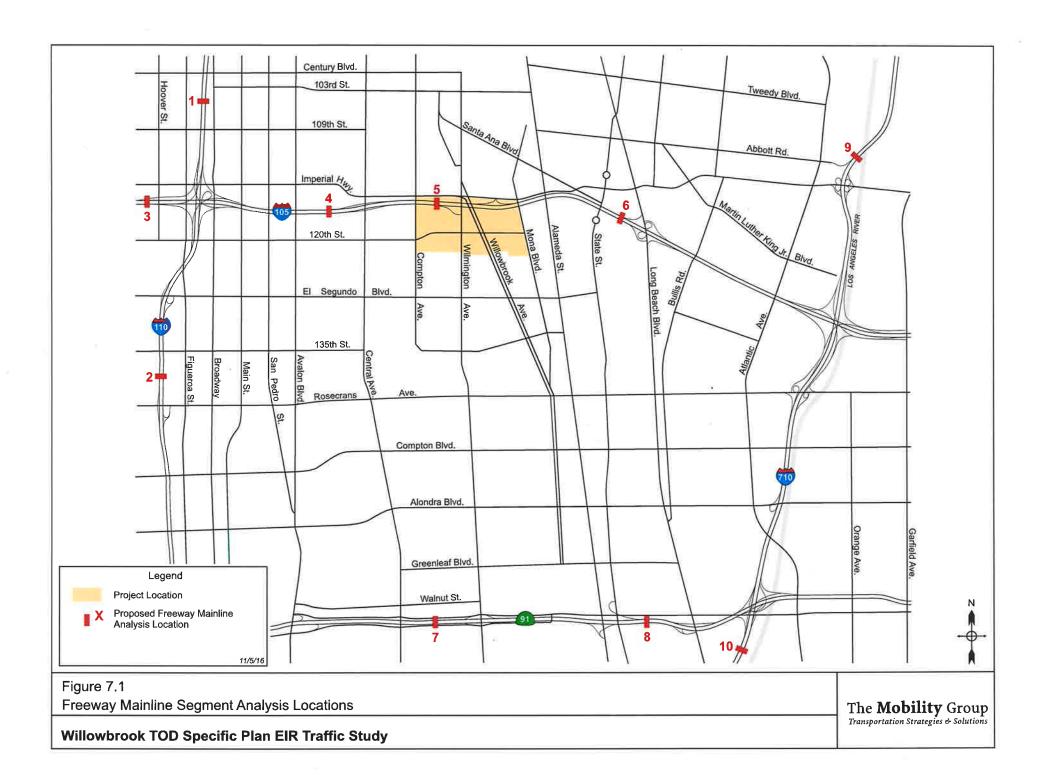
Green, Scott. Metro. 2017. Email received by County of Los Angeles Regional Planning on April 11, 2017.

Component			Trans	it Trips		
	AM	Peak Ho	our	PM	Peak He	our
	Total	In	Out	Total	In	Out
MLK Medical Center	326	218	108	433	161	272
CDU	31	23	8	31	11	20
Specific Plan Remainder	516	280	236	630	290	340
Total	873	521	352	1,094	462	632
Residential	231	50	181	286	186	100
Non-Residential	642	471	171	808	276	532

7. Freeway Analysis

This section of the report presents an analysis of the freeway system in the area of the Proposed Project. The analysis of the state highway facilities was conducted according to analysis locations and methodologies agreed with Caltrans, and follows the Caltrans Traffic Study Guidelines and measures of effectiveness.

It addresses freeway mainline locations (segments) and freeway off-ramps in locations that would most likely be affected by Project traffic. The traffic forecasts used in the analysis are consistent with those developed in Chapter 4 and Chapter 6 and use the trip generation and trip distribution information described earlier in Chapter 3. Similarly, the analysis focuses on the Existing With Project and Future With Project Conditions (for the year 2025).


7.1 Freeway Mainline Segments

The analysis addresses ten freeway mainline segments on the I-110, I-105, I-710, and SR-91 freeways that are closest to, and that provide regional access to, the Project site. Figure 7.1 illustrates the location of study locations.

Methodology

Existing traffic volumes on these freeway segments for the AM peak hour and PM peak hour time periods were provided by Caltrans. These 2015 volumes were factored by 1% to represent 2016 volumes. Future Without Project Condition Future year 2035 freeway traffic volumes were developed from the traffic projections described in Chapter 5 including ambient/regional growth and the cumulative projects identified for the area. Future With Project Condition traffic volumes were obtained by adding trips generated by the Project to forecasts for the freeway system for the Future Without Condition, based on the trip generation and trip distribution information described in Chapter 3.

Level of service for freeway segments is based on the total volume of traffic, or demand, traveling along a freeway segment compared to the capacity of that specific location. A lane capacity of 2,000 vehicles per hour per lane (vphpl) for a freeway mainline lane was used Auxiliary lanes were not included in the analysis. The overall capacity of a specific freeway segment was calculated by multiplying the lane capacity by the total number of lanes in that

segment. Freeway level of service (LOS) was then determined by comparing the total number of vehicles traveling along a specific freeway segment to the capacity of that segment as calculated above. These demand/capacity (D/C) ratios are then rated for levels of service using the definitions shown in Table 7-1.

Freeway Segment Analysis

Caltrans does not have published criteria for determination of significant impacts on freeway mainline segments. Caltrans endeavors to maintain a target LOS at the transition between LOS C and LOS D on State highway facilities, and to maintain the existing LOS in cases where a facility is operating at less than the target LOS. For the purposes of this study, the threshold that was used was that a significant impact would occur if the Project causes a worsening of the level of service to LOS D on a segment, or if the level of service was already LOS D that if the Project causes a change (worsening) in the level of service.

Existing With Project Conditions

The freeway segment analysis is summarized in Tables 7.2 and 7.3, which show the levels of service and demand/capacity (D/C) ratios for Existing Conditions, and Existing With Project conditions for the AM peak hour and the PM peak hour respectively. These tables also show the number of trips that would be added by the Project to each freeway segment. The following discussion refers to a location as one direction (i.e. twenty locations for ten freeway segments).

AM Peak Hour

In the AM peak hour, the Project would add between 12 and 342 trips to the freeway segments analyzed depending on location and direction. The highest volume increases (ranging from 141 to 342 trips) would occur at seven locations on I-105 between Avalon Boulevard and Long Beach Boulevard. At nine of the remaining fourteen locations the volume increase would be less than 50 trips.

The increase in trips due to the Project on freeway segments would range from 0.2 percent to 6.4 percent. The increase would be approximately 4% to 6% at four locations, less than 2% at thirteen locations, and less than 1% at nine locations.

The increase in D/C ratios would range from 0.001 to 0.052. At five locations the increase would be more than 0.025. At nine of the remaining 15 locations the increase would be less than 0.010.

The level of service would not change at any mainline freeway segment due to the Project, except at one location – the I-110 southbound between 135th St & Rosecrans Ave where it

Table 7.1 Level of Service Definitions for Freeway Segments

Level of Service	Demand/Capacity Ratio	Flow Conditions
A	0.00 – 0.35	Highest quality of service. Free traffic flow, low volumes and densities. Little or no restriction on maneuverability or speed.
В	0.36 – 0.54	Stable traffic flow, speed becoming slightly restricted. Low restriction on maneuverability.
С	0.55 - 0.77	Stable traffic flow, but less freedom to select speed, change lanes, or pass. Density increasing.
D	0.78 – 0.93	Approaching unstable flow. Speeds tolerable but subject to sudden and considerable variation. Less maneuverability and driver comfort.
Е	0.94 – 1.00	Unstable traffic flow with rapidly fluctuating speeds and flow rates. Short headways, low maneuverability and low driver comfort.
F (0)	1.01 – 1.25	Forced traffic flow. Speed and flow may be greatly reduced with high densities.
F (1)	1.26 – 1.35	Forced traffic flow. Severe congested conditions prevail for more than one hour. Speed and flow may drop to zero with high densities.
F (2)	1.36 – 1.45	Forced traffic flow. Severe congested conditions prevail for more than one hour. Speed and flow may drop to zero with high densities.
F (3)	> 1.45	Forced traffic flow. Severe congested conditions prevail for more than one hour. Speed and flow may drop to zero with high densities.

Source: 2010 Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, July 2010.

2		ć	/Punoqu Ontponud	No of		Exist	Existing Conditions (Year 2016)	tions)	Existi	Existing Plus Project Conditions (Year 2016)	oject Cond 2016)	litions	ncrease	% Increase
o Z	Location	Dir		Lanes	Capacity	Hourly Volume ¹	D/C	SOT	Project Trips	Hourly	D/C	SOT	in D/C	Volume due to Project
_	1-110 between Century Blvd and	NB	Outbound	4G+2E	8,000	6,697	0.837	Q	73	6,770	0.846	D	0.008	1.1%
	109th St	SB	Inbound	5G+2E	10,000	8,811	0.881	Q	131	8,942	0,894	D	0.012	1.5%
c	1-110 between 135th St and	NB	Punoqui	4G+IE	8,000	7,987	0.998	ш	62	8,049	900"1	F(0)	0.007	0.8%
1	Rosecrans Ave	SB	Outbound	4G+1E	8,000	8,566	1.071	F(0)	40	8,606	1.076	F(0)	0.005	0.5%
"	I-105 between Vermont Ave and	EB	punoqui	3G+1HOV	000,9	3,819	0.637	Ö	170	3,989	0.665	၁	0.028	4.5%
0	Hoover St	WB	Outbound	3G+1HOV	000*9	6,225	1.038	F(0)	94	6,319	1.053	F(0)	0.015	1.5%
_	I-105 between Avalon Blvd and	EB	punoqui	3G+1HOV+1A	7,000	7,029	1.004	F(0)	342	7,371	1.053	F(0)	0.048	4.9%
r	Central Ave	WB	Outbound	4G+1HOV	8,000	6,846	0.856	Q	961	7,042	0.880	D	0.024	2.9%
ų	I-105 between Compton Ave and	EB	punoqui	3G+1HOV	6,000	5,190	0.865	Ω	209	5,399	0.900	D	0.035	4.0%
2	Wilmington Ave	WB	Outbound	3G+1H0V	6,000	4,946	0.824	О	141	5,087	0.848	D	0,023	2.9%
,	I-105 between State St and Long	EB	Outbound	3G+1HOV	6,000	4,852	608"0	Q	179	5,031	0.839	D	0:030	3.7%
9	Beach Blvd	WB	punoquI	3G+1HOV	6,000	4,899	0.817	Q	314	5,213	698.0	D	0.052	6.4%
,	SR-91 between Central Ave and	EB	Jnbound	4G+1HOV	8,000	5,747	0.718	O	22	5,769	0.721	O	0.002	0.4%
-	Wilmington Ave	WB	Outbound	4G+1HOV	8,000	7,651	0.956	ш	12	7,663	0.958	ш	0.001	0.2%
G	SR-91 between Santa Fe Ave and	EB	Outbound	5G+1HOV	10,000	6,446	0.645	Ü	23	6,469	0,647	၁	0.002	0.4%
o	Long Beach Blvd	WB	punoquJ	5G+1HOV	10,000	8,321	0.832	Д	47	8,368	0.837	D	0.004	%9.0
d	I-710 between Firestone Blvd and	NB	Outbound	46	8,000	6,032	0.754	C	35	6,067	0.758	C	0.004	0.6%
	Abbott Rd	SB	punoquI	46	8,000	4,131	0.516	В	45	4,176	0.522	В	0.005	1.1%
9	I-710 between Del Amo Blvd and	NB	Inbound	5G	10,000	5,817	0.582	O	48	5,865	0.587	C	0.005	0.8%
2	Long Beach Blvd	SB	Outbound	4G	8,000	7,605	0.951	्ध	23	7,628	0.954	ш	0.003	0.3%

Notes:

1. Traffic volumes for Existing Conditions from Caltrans, 2015. Growth factor of 1% per annum applied for 2016 volumes...

Capearty Hourity DC LOS Project Hourity DC LOS Froject Hourity DC LOS Trips Volume DC LOS 8,000 7,633 0.962 E 150 7,843 0.980 E 0.009 8,000 7,632 0.957 E 52 7,704 0.863 E 0.009 V 6,000 7,634 0.992 E 77 8,011 1,001 F(0) 0.009 V 6,000 3,777 0,630 C 1123 3,900 0,650 E 0.009 V 6,000 5,619 0,932 E 257 6,921 0,989 E 0.009 V 6,000 5,649 0,881 D 177 5,377 0,886 D 0.009 V 6,000 5,044 0,841 D 254 5,278 0,886 D 0.009 V 6,000	;		į	Inbound/ Outbound	No of		Exist (Existing Conditions (Year 2016)	ions)	Existi	Existing Plus Project Conditions (Year 2016)	oject Cond 2016)	itions	Increase	% Increase
House Hous	o.	Location	DIC		Lanes	Сараситу	Hourly Volume ¹	D/C	гоз	Project Trips	Hourly	D/C	SOT	in D/C	Volume due to Project
10,000 State 1,000 State	-	I-110 between Century Blvd and	NB	Outbound	4G+2E	8,000	7,693	0,962	Э	150	7,843	0.980	Э	0.018	1.9%
Note the control of	-]	109th St	SB	punoquI	5G+2E	10,000	8,144	0.814	D	96	8,240	0.824	Q	600.0	1.2%
Fig. Control			9		0.00	000	1	0	4	Ş	t	0	ı		Š
Signature Sign	2	I-110 between 135th St and Rosecrans Ave	S G	Inbound	40 + 1E	000,8	7,652	0.957	a ı	75	7,704	0.963	п <u>ў</u>	0.006	0.7%
Holover St			Se l	Outbound	4C+1E	8,000	0	766.0	ū	"	8,011	100	F(0)	6000	1.0%
Hoover St House House State St House	,	I-105 between Vermont Ave and	EB	Inbound	3G+1HOV	000'9	3,777	0.630	၁	123	3,900	0.650	O	0,020	3,3%
Ligs between Avalon Blyd and Round 3G+1HOV+1A 7,000 6,664 0,952 E 257 6,921 0,989 E 0,037	2	Hoover St	WB	Outbound	3G+1HOV	000'9	5,619	0.937	ш	195	5,814	696:0	ш	0,032	3.5%
Lids between Avalon Blvd and Re Inbound AG+IHOV A 7,000 6,649 0,952 E 257 6,981 0,891 E 0,0039 C C C C C C C C C							0								
Central Ave WB Outbound 4C+HOV 6,000 6,200 0,811 D 397 6,887 0,861 D 0,009 L-105 between Compton Ave and WB Outbound 3G+HOV 6,000 6,200 0,887 D 177 5,377 0,896 D 0,0091 WIlmington Ave MB Inbound 3G+HOV 6,000 6,200 0,887 D 177 5,377 0,896 D 0,0091 SR-91 between State St and Long WB Inbound 4G+HOV 8,000 6,248 0,819 D 128 6,238 0,838 D 0,0099 SR-91 between Central Ave and WB Inbound 3G+HOV 8,000 6,248 0,819 D 128 6,238 0,838 D 0,0099 WIlmington Ave MIlmington Ave MB Outbound 3G+HOV 10,000 6,248 0,839 C 31 7,414 0,741 C 0,000 6,234 0,339 D 0,0099 L-10 between Firestone Blvd and AG 8,000 6,326 0,835 C 32 6,339 D 0,009 D 0,0009 L-10 between Del Anno Blvd and AG 8,000 6,326 0,835 C 32 6,338 0,535 B 14,278 0,838 D 0,009 D 0,0009 L-10 between Del Anno Blvd and AG 8,000 6,326 0,838 C 33 6,486 0,899 D 0,000 D 0,0009 L-10 between Del Anno Blvd and AG 8,000 6,316 0,802 D 0,802 D 0,0009 L-10 between Del Anno Blvd and AG 8,000 6,416 0,802 D 0,803 D 0,0009	_	I-105 between Avalon Blvd and	EB	DunoquI	3G+1HOV+1A	7,000	6,664	0,952	Э	257	6,921	0.989	Э	0.037	3.9%
Linds between Compton Ave and We loubound 3G+1HOV 6,000 6,200 0,867 D 177 5,377 0,896 D 0,029	r	Central Ave	WB	Outbound	4G+1HOV	8,000	6,490	0.811	D	397	6,887	0.861	D	0.049	6.1%
Fig. 2000 Fig. 2000 Fig. 200 Fig. 20							0								
Heach Blvd Sate	٧	I-105 between Compton Ave and	EB	punoquI	3G+1H0V	900,9	5,200	0.867	۵	177	5,377	968'0	D	0.029	3.4%
1-105 between State St and Long Beach Blvd Beach Bl	•	Wilmington Ave	WB	Outbound	3G+1HOV	000'9	4,824	0.804	O	254	5,078	0.846	Ω	0.041	5.3%
1-105 between State St and Long EB Outbound 3G+1HOV 6,000 6,548 0.771 D 234 5,278 0,883 D 0,003 3G+1HOV 6,000 5,044 0.841 D 234 5,278 0,880 D 0,003 3G+1HOV 8,000 6,548 0,819 D 15 6,563 0,820 D 0,003 3G+1HOV 8,000 6,548 0,819 D 15 6,563 0,820 D 0,003 3G+31 between Central Ave and Wilmington Ave WB Outbound 4G+1HOV 10,000 6,525 0,633 C 51 7,414 0,741 C 0,000 4-710 between Pirestone Blvd and WB Inbound 4G 8,000 6,316 0,530 D 30 30 6,555 C 30 4-710 between Del Amo Blvd and WB Inbound 5G+1HOV 10,000 6,257 0,530 C 30 6,555 C 30 C 0,003 4-710 between Del Amo Blvd and WB Inbound 5G 10,000 6,826 C 32 6,838 C 6,838 C 6,838 C 6,839 D 0,000 4-710 between Del Amo Blvd and WB Inbound 4G 8,000 6,826 C 32 6,838 C 6,838 C 6,838 C 6,838 D 0,000 4-710 between Del Amo Blvd and WB Inbound 4G 8,000 6,826 C 32 6,858 C 6,858 C 6,838 D 0,000 4-710 between Del Amo Blvd and WB Inbound 4G 8,000 6,826 C 32 6,469 0,899 D 0,000 4-710 between Del Amo Blvd 5G 0,000 C 0,000 C 0,000 C 0,000 4-710 between Del Amo Blvd 5G 0,000 C 0							0								
Beach Blvd WB Inbound 3G+1HOV 6,000 5,044 0.841 D 234 5,278 0,880 D 0.0039 SR-91 between Central Aye and Vilmington Ave EB Inbound 4G+1HOV 8,000 6,548 0.819 D 15 6,563 0,820 D 0.001 SR-91 between Central Aye and Vilmington Ave WB Outbound 4G+1HOV 8,000 6,214 0.777 D 25 6,239 0.780 D 0.001 SR-91 between Santa Fe Aye and Vilmington Ave EB Outbound 5G+1HOV 10,000 7,363 0.736 C 51 7,414 0.741 C 0.003 L710 between Firestone Blvd and Awe NB Inbound 4G 8,000 6,031 0.754 C 51 7,414 0.741 C 0.003 L710 between Firestone Blvd and Awe NB Inbound 4G 8,000 6,237 0.530 B 41 4,278 0.755 B 0.003 D <	7	I-105 between State St and Long	EB	Outbound	3G+1HOV	000'9	4,625	0.771	D	370	4,995	0.833	D	0.062	8.0%
SR-91 between Central Ave and Abbott Rd bound Abbott Rd between Del Amo Blvd and Abbott Rd beach Blvd beach B	>	Beach Blvd	WB	Dunodul	3G+1H0V	6,000	5,044	0.841	D	234	5,278	0.880	D	0.039	4.6%
SR-91 between Central Ave and Wilmington Ave EB Inbound 4G+1HOV 8,000 6,548 0.819 D 15 6,563 0.820 D 0.001 Wilmington Ave WB Outbound 4G+1HOV 8,000 6,214 0.777 D 25 6,239 0.780 D 0.003 SR-91 between Santa Fe Ave and Long Beach Blvd EB Outbound 5G+1HOV 10,000 7,363 C 51 7,414 0,741 C 0.004 Long Beach Blvd WB Inbound 5G+1HOV 10,000 6,525 0,653 C 30 6,555 0,656 C 0,000 Long Beach Blvd NB Inbound 4G 8,000 6,031 0,734 C 52 6,083 C 6,083 C 0,000 Long Beach Blvd NB Inbound 4G 8,000 6,437 0,530 B 41 4,278 0,535 B 0,000 Long Beach Blvd NB 10,000							0								
Wilmington Ave WB Outbound 4G+1HOV 8,000 6,214 0.777 D 25 6,239 0.780 D 0.003 SR-91 between Santa Fe Ave and Long Beach Blvd EB Outbound 5G+1HOV 10,000 7,363 0.736 C 51 7,414 0,741 C 0.004 Long Beach Blvd WB Inbound 5G+1HOV 10,000 6,525 0,653 C 50 6,003 C 0,004 C 0,003 C 0,003 <td>1</td> <td>SR-91 between Central Ave and</td> <td>EB</td> <td>Inbound</td> <td>4G+1HOV</td> <td>8,000</td> <td>6,548</td> <td>0.819</td> <td>Q</td> <td>15</td> <td>6,563</td> <td>0.820</td> <td>D</td> <td>0.001</td> <td>0.2%</td>	1	SR-91 between Central Ave and	EB	Inbound	4G+1HOV	8,000	6,548	0.819	Q	15	6,563	0.820	D	0.001	0.2%
SR-91 between Santa Fe Ave and Abbott Rd Long Beach Blvd Each IHOV 10,000 7,363 0.736 C 51 7,414 0.741 C 0.004 Long Beach Blvd WB Inbound 5G+1HOV 10,000 6,525 0.653 C 30 6,555 0,656 C 0.003 L-710 between Firestone Blvd and Abbott Rd SB Inbound 4G 8,000 6,031 0.754 C 52 6,083 0,760 C 0,006 L-710 between Del Amo Blvd and Slvd and		Wilmington Ave	WB	Outbound	4G+1HOV	8,000	6,214	0.777	О	25	6,239	0.780	D	0.003	0.4%
SR.91 between Santa Fe Ave and Long Beach Blvd EB Outbound SG+1HOV 10,000 7,363 0,736 C 51 7,414 0,741 C 0,004 Long Beach Blvd WB Inbound 5G+1HOV 10,000 6,525 0,653 C 30 6,555 0,656 C 0,003 F.710 between Firestone Blvd and Abbott Rd SB Inbound 4G 8,000 6,031 0,754 C 52 6,083 0,760 C 0,006 L.710 between Del Amo Blvd and Slvd a												Ì			
Long Beach Blvd WB Inbound 5G+1HOV 10,000 6,525 0.653 C 30 6,535 0.656 C 0,003 I-710 between Firestone Blvd and Abbott Rd SB Inbound 4G 8,000 6,031 0.754 C 52 6.083 0,760 C 0,006 Hong Beach Blvd SB Inbound 4G 8,000 6,826 0.683 C 32 6,858 0.686 C 0,003 Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 0.899 D 0.007	00	SR-91 between Santa Fe Ave and	EB	Outbound	5G+1HOV	10,000	7,363	0.736	ပ	51	7,414	0.741	ပ	0.004	0.7%
I-710 between Firestone Blvd and Abbott Rd Long Beach Blvd NB Inbound 4G 8,000 6,031 0.754 C 52 6,083 0,760 C 0,006 L-710 between Del Amo Blvd and Sg Outbound NB Inbound 5G 10,000 6,826 0.683 C 32 6,838 C 0.003 Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 0.809 D 0.007		Long Beach Blvd	WB	punoquI	5G+1HOV	10,000	6,525	0.653	၁	30	6,555	0.656	C	0.003	0.5%
I-710 between Firestone Blvd and Abbott Rd NB Inbound 4G 8,000 6,031 0.754 C 6.083 0.760 C 0.006 Abbott Rd SB Inbound 4G 8,000 4,237 0.530 B 41 4,278 0.535 B 0.005 L710 between Del Amo Blvd and SB Inbound 5G 10,000 6,826 0.683 C 32 6,838 C 0.003 Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 D 0.809 D 0.007															
Abbott Rd SB Inbound 4G 8,000 4,237 0.530 B 41,78 0.535 B 0.005 L710 between Del Amo Blvd and Sg NB Inbound 5G 10,000 6,826 0.683 C 32 6,858 0.686 C 0.003 Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 0.899 D 0.007	0	I-710 between Firestone Blvd and	NB	Outbound	46	8,000	6,031	0.754	C	52	6,083	092.0	၁	900'0	%6.0
L-710 between Del Amo Blvd and So Durbound SG Durbound 16,000 6,826 0.683 C 32 6,838 C 0.003 Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 0.809 D 0.007		Abbott Rd	SB	punoquj	46	8,000	4,237	0.530	В	4	4,278	0.535	В	0.005	1.0%
Long Beach Blvd SB Outbound 4G 8,000 6,416 0.802 D 53 6,469 0.809 D 0.007		1-710 between Del Amo Blyd and	NB NB	punoquI	56	10,000	6,826	0.683	O	32	6,858	989"0	Ü	0.003	0.5%
	<u> </u>	Long Beach Blvd	SB	Outbound	46	8,000	6,416	0.802	Q	53	6,469	0.809	D	0.007	0.8%

Notes:

1. Traffic volumes for Existing Conditions from Caltrans, 2015. Growth factor of 1% per annum applied for 2016 volumes.

would change from LOS E to LOS F. The Project would therefore cause one significant freeway mainline segment impact in the AM peak hour under Existing Plus Project Conditions.

PM Peak Hour

In the PM peak hour, the Project would add between 15 and 397 trips to the freeway segments analyzed depending on location and direction. The highest volume increases (ranging from 177 to 397 trips) would occur at seven locations on I-105 between Avalon Boulevard and Long Beach Boulevard. At eleven of the remaining fourteen locations the volume increase would be less than 100 trips.

The increase in trips due to the Project on freeway segments would range from 0.2 percent to 8.0 percent. The increase would be approximately 4% to 8% at four locations, less than 2% at twelve locations, and less than 1% at eight locations.

The increase in D/C ratios would range from 0.001 to 0.062. At five locations the increase would be more than 0.035. At eleven of the remaining 15 locations the increase would be less than 0.010.

The level of service would not change at any mainline freeway segment due to the Project, except at I-110 southbound between 135th St & Rosecrans Ave where it would change from LOS E to LOS F. The Project would therefore cause one significant freeway mainline segment impact in the PM peak hour under Existing Plus Project Conditions

Future With Project Conditions (Includes Cumulative Trips)

The freeway segment analysis is summarized in Tables 7.4 and 7.5, which show the levels of service and demand/capacity (D/C) ratios for Existing Conditions, Future Without Project Conditions, and Future With Project conditions for the AM peak hour and the PM peak hour respectively. The Future With Project conditions include cumulative trips. These tables also show the number of trips that would be added by the Project to each freeway segment.

AM Peak Hour

In the AM peak hour, the Project would add between 12 and 342 trips to the freeway segments analyzed depending on location and direction. The highest volume increases (ranging from 141 to 342 trips) would occur at seven locations on I-105 between Avalon Boulevard and Long Beach Boulevard. At nine of the remaining fourteen locations the volume increase would be less than 50 trips.

Freeway Segment Level of Service - Future With Project - Weekday AM Peak Hour Table 7.4

;		i	Inbound/ Outbound	No of		Exis (Existing Conditions (Year 2016)	itions ()	Future Condit	Future Without Project Conditions (Year 2035)	roject 2035)	Futur	Future With Project Conditions (Year 2035)	ject Cond 2035)	tions	Increase	% Increase
No.	Location	Dir		Lanes	Capacity	Hourly Volume ¹	D/C	807	Hourly Volume	D/C	SOT	Project Trips	Hourly Volume	D/C	SOT	in D/C	Volume due to Project
-	I-110 between Century Blvd and	NB	Outbound	4G+2E	8,000	6,697	0.837	D	7,321	0.915	D	73	7,394	0.924	D	0.009	1.1%
-	109th St	SB	punoquI	5G+2E	10,000	8,811	0.881	۵	9,638	0.964	ш	131	692'6	726.0	ш	0.013	1.5%
r	1-110 between 135th St and	NB R	Inbound	4G+1E	8,000	7,987	0.998	ш	8,733	1.092	F(0)	62	8,795	1.099	F(0)	900'0	0.8%
4	Rosecrans Ave	SB	Outbound	4G+1E	8,000	8,566	1.071	F(0)	9,367	1.171	F(0)	40	9,407	1,176	F(0)	0.004	0.5%
,	I-105 between Vermont Ave and	EB	Inbound	3G+1HOV	000'9	3,819	0.637	O	4,197	669"0	C	170	4,367	0,728	C	0,029	4.5%
2	Hoover St	WB	Outbound	3G+1HOV	6,000	6,225	1.038	F(0)	608'9	1,135	F(0)	94	6,903	1,150	F(0)	0,014	1.5%
	I-105 between Avalon Blvd and	EB	Inbound	3G+1HOV+1A	7,000	7,029	1.004	F(0)	7,702	1.100	F(0)	342	8,044	1.149	F(0)	0.048	4.9%
+	Central Ave	WB	Outbound	4G+1HOV	8,000	6,846	0.856	Q	7,479	0.935	ω	196	7,675	0,959	ш	0,023	2.9%
1	I-105 between Compton Ave and	EB	Dunodul	3G+1HOV	000'9	5,190	0.865	0	5,696	0.949	ш	209	5,905	0.984	ш	0.035	4.0%
n	Wilmington Ave	WB	Outbound	3G+1HOV	000'9	4,946	0.824	Q	5,425	0.904	Q	141	5,566	0.928	D	0.024	2.9%
		i															
9	1-105 between State St and Long	EB	Outbound	3G+1H0V	000'9	4,852	608.0	D	5,309	0.885	D	179	5,488	0.915	D	0.030	3.7%
	Beach Blvd	WB	punoquI	3С+1НОУ	000'9	4,899	0.817	Q	5,372	0.895	О	314	5,686	0.948	ш	0.052	6.4%
	SR-91 herween Central Ave and	EB	punoquJ	4G+1HOV	8,000	5,747	0.718	၁	6,274	0.784	Q	22	6,296	0.787	D	0.003	0.4%
7	Wilmington Ave	WB	Outbound	4G+1HOV	8,000	1,651	0.956	ш	8,363	1.045	F(0)	12	8,375	1.047	F(0)	0.002	0.2%
00	SR-91 between Santa Fe Ave and	EB	Outbound	5G+1HOV	10,000	6,446	0.645	၁	7,037	0.704	၁	23	7,060	0,706	၁	0.002	0.4%
	Long Beach Blvd	WB	punoquj	SG+1HOV	10,000	8,321	0.832	Q	9,094	606'0	۵	47	9,141	0.914	О	0.005	%9.0
	I-710 between Firestone Blvd and	NB	Outbound	46	8,000	6,032	0.754	O	6,583	0.823	D	35	6,618	0.827	D	0.004	%9.0
7	Abbott Rd	SB	Inbound	46	8,000	4,131	0.516	В	4,515	0.564	၁	45	4,560	0.570	၁	9000	1.1%
		Z.	Inhound	Ç	10.000	5.817	0.582	ر	252 9	0.635	C	48	6.401	0.640	ر	0.005	%8 0
10	I-710 between Det Amo Bivd and Long Beach Blvd	9	Par of the	70	000 8	7.605	0.051) ц	8 300	1 038	E(I)	3 %	8 373	1 040	6(0)	0000	0 30%
		3	20000	2	200,0	200,1	0.00	נ	2000	000	2		6,040	250.	.(9)	7000	200

Notes:

1. Traffic volumes for Existing Conditions from Caltrans, 2015, Growth factor of 1% per annum applied for 2016 volumes.

Table 7.5

% Increase Volume due to Project 0.7% 1.0% 3,4% 5.3% 0.2% 0.5% %8.0 0.4% %6⁻I 1.2% 3.3% 3.5% 3,9% 6.1% 8.0% 4.6% 0.7% 0.5% 0.9% 1.0% Increase in D/C 810.0 0.010 0.010 0,043 0.003 0.006 0.005 0.003 0.007 0.021 0.032 0.037 0.049 0,029 0.062 0.038 0.002 0.003 0.006 0.005 F(0) F(0) ros F(0) F(0) Q F(0) ပ Ш ш ш Ω ш Ω ۵ ۵ C Ω C O Ω Future With Project Conditions (Year 2035) 0.716 0.748 0.883 1.073 0,902 1.056 1.096 1.063 1.082 0.942 0.912 0.964 0.8990.852 0.812 917.0 0.584 0.985 0.931 0.831 D/C Hourly Volume 7,193 918'9 8,119 8,588 8,448 6,378 7,534 5,782 7,160 4,670 7,484 7,067 9,020 8,766 4,293 7,571 5,911 5,583 5,471 6,651 Project Trips 15 25 52 4 32 53 150 52 77 195 370 234 51 30 96 123 257 397 177 254 LOS F(0) F(0) F(0) F(0) Ω O F(0) Ω ш Ω Ω Ω Ω Q 0 C Ω O O Q Future Without Project Conditions (Year 2035) 0.745 0.877 0,695 1.045 0.956 0.850 0.925 0.897 0.849 0.713 0.825 0.579 1.049 1,055 0.892 1.086 0.892 0.888 0.807 D/C 1,031 Hourly Volume 8,438 5,548 7,014 8,924 6,183 7,314 5,329 7,178 8,068 6,599 4,629 7,452 8,396 8,689 4,170 7,137 5,734 5,101 7,130 6,791 LOS Ω Ω Q Ç C В C Q Э Ω ш П Ç ш ш Q Q Д Ω Ç Existing Conditions (Year 2016) 0.819 0.736 0.530 0.683 0.814 0.630 0.937 0.952 0.811 0.867 0.653 0.754 0.802 0.962 0.957 0.992 0.804 0.777 0.771 0,841 D/C Hourly Volume¹ 5,619 6,664 5,200 4,824 4,625 5,044 6,548 6,826 6,416 7,693 8,144 7,652 7,934 3,777 6,490 6,214 7,363 6,525 4,237 6,031 Capacity 8,000 10,000 8,000 6,000 7,000 8,000 6,000 6,000 6,000 6,000 8,000 8,000 10,000 8,000 10,000 8,000 8,000 8,000 6,000 10,000 3G+1HOV+1A 3G+1HOV 5G+1HOV 3G+1HOV 4G+1HOV 3G+1HOV 3G+1HOV 4G+1HOV 4G+1HOV 5G+1HOV 3G+1HOV 3G+1HOV 4G+1E 4G+1E 5G+2E No of Lanes 4G+2E 4G 4G 5G 4G Inbound/ Outbound Inbound Outbound Outbound Inbound punoqui Outbound Outbound Outbound Outbound punoqul Inbound Outbound Outbound Inbound Outbound Outbound Inbound Inbound Inbound Inbound WB EB WB WB WB WB WB NB SB NB EB EB EB NB ЯВ Ďį. SB EB EB SB SB I-710 between Firestone Blvd and Abbott Rd SR-91 between Santa Fe Ave and Long Beach Blvd :-710 between Del Amo Blvd and I-105 between Compton Ave and Wilmington Ave I-105 between Vermont Ave and Hoover St I-110 between Century Blvd and 109th St I-105 between State St and Long Beach Blvd SR-91 between Central Ave and Wilmington Ave I-105 between Avalon Blvd and Central Ave -110 between 135th St and Location Long Beach Blvd Rosecrans Ave 9 å _ 7 3 4 2 9 1 00 6

1. Traffic volumes for Existing Conditions from Caltrans, 2015. Growth factor of 1% per annum applied for 2016 volumes.

The increase in trips due to the Project on freeway segments would range from 0.2 percent to 6.4 percent. The increase would be approximately 4% to 6% at four locations, less than 2% at thirteen locations, and less than 1% at nine locations.

The increase in D/C ratios would range from 0.002 to 0.052. At four locations the increase would be more than 0.025. At eleven of the remaining sixteen locations the increase would be less than 0.010.

The level of service would not change at any mainline freeway segment due to the Project, except at one location - I-105 westbound between State St & Long Beach Blvd where it would change from LOS D to LOS E. The Project would therefore cause one significant freeway mainline segment impact in the AM peak hour under Future With Project Conditions.

PM Peak Hour

In the PM peak hour, the Project would add between 15 and 397 trips to the freeway segments analyzed depending on location and direction. The highest volume increases (ranging from 177 to 397 trips) would occur at seven locations on I-105 between Avalon Boulevard and Long Beach Boulevard. At eleven of the remaining fourteen locations the volume increase would be less than 100 trips.

The increase in trips due to the Project on freeway segments would range from 0.2 percent to 8.0 percent. The increase would be approximately 4% to 8% at four locations, less than 2% at twelve locations, and less than 1% at eight locations.

The increase in D/C ratios would range from 0.002 to 0.062. At five locations the increase would be more than 0.035. At nine of the remaining 15 locations the increase would be less than 0.010.

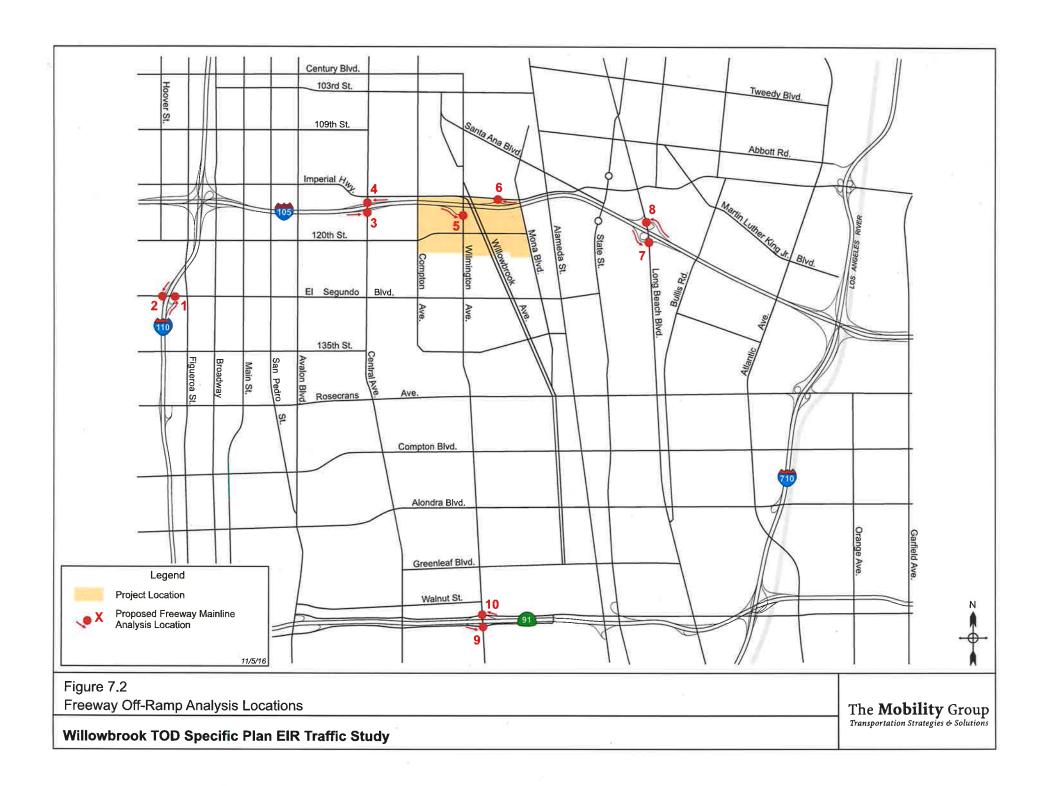
The level of service would not change at any mainline freeway segment due to the Project, except at three locations:

- I-105 westbound between Avalon Ave & Central Ave
- I-105 westbound between Compton Ave & Wilmington Ave
- I-105 westbound between State St & Long Beach Blvd

At all three locations the level of service would change from LOS D to LOS E with the Project. The Project would therefore cause three significant freeway mainline impacts in the PM peak hour under Future With Project Conditions.

7.2 Freeway Off-Ramps

The analysis reviewed a total of ten freeway off-ramps located along the I-110, I-105, and SR-91 freeways that could potentially be used by Project traffic. As illustrated in Figure 7.2, the following ramps were reviewed:


- I-110 NB off-ramp at El Segundo Blvd
- I-110 SB off-ramp at El Segundo Blvd
- I-105 EB off-ramp at Central Ave
- I-105 WB off-ramp at Central Ave
- I-105 EB off-ramp at Wilmington Ave
- I-105 WB off-ramp at Imperial Hwy
- I-105 EB off-ramp at Long Beach Blvd
- I-105 WB off-ramp at Long Beach Blvd
- SR-91 EB Off-ramp at Wilmington Ave
- SR-91 WB Off-ramp at Wilmington Ave

Methodology

Existing traffic volumes on these freeway off-ramps were obtained from traffic counts conducted as part of the overall traffic count program described in Chapter 2. Forecasts of the off-ramp volumes for Future Without Project Conditions were obtained from the analysis described in Chapter 5 including ambient/regional growth and trips from related projects. Forecasts for the Existing With Project Conditions and Future With Project Conditions were obtained using the analysis of Project trip generation and distribution described in Chapter 3. The ramp analysis used operational parameters requested by Caltrans. The analysis of ramp traffic conditions is based on a queue analysis at the end of the ramp intersection, using the Highway Capacity Manual (HCM) 2010 Operations methodology, and determining the 95th percentile queue length (the vehicle queue length that would be exceeded only 5% of the time, which is a common measure used to evaluate queues). The analysis used signal timing information provided by Caltrans and the other cities in the study area. The analysis also determined the storage length capacity of an off-ramp and used 85% of the total (to include a Caltrans requested "safety" factor). It applied a passenger car equivalent (PCE) of 3.0 for heavy vehicles, used truck factors of 3% to 5% of the traffic volumes (as supplied by Caltrans), and car lengths of 30 feet. It should be noted that these are all conservative assumptions, and when combined together provide a very conservative worst case analysis.

Freeway Off-Ramp Analysis

Caltrans does not have published criteria for determination of significant impacts on freeway off-ramps. Caltrans' primary concern is if peak hour traffic queues on an off-ramp exceed the storage length on the ramp and result in queues backing onto the mainline freeway.

For the purposes of this study, the threshold that was used was that a significant impact would occur if the Project caused the overall queue on an off-ramp to exceed the overall storage capacity of the ramp.

Existing With Project Conditions

The freeway off-ramp analysis for the Existing With Project Conditions is summarized in Table 7.6 for the AM peak hour and in Table 7.7 for the PM peak hour. These tables show the ramp storage lengths, and the ramp volumes, and queue lengths for the Existing Condition and the Existing Plus Project Condition.

AM Peak Hour

As can be seen from Table 7.6, queues do not currently exceed the storage lengths on any of the off-ramps during the AM peak hour, except at two locations:

- I-110 SB Off-ramp at El Segundo Blvd
- I-105 EB Off-ramp at Central Ave.

The Project would add between 133 and 315 trips to three ramps in the AM peak hour, and between 0 and 47 trips at the other off-ramps analyzed.

For the Existing With Project conditions, the queues would not exceed the total ramp storage lengths at any of the ramps, except at the same two locations where storage lengths are currently exceeded under existing conditions:

- I-110 SB Off-ramp at El Segundo Blvd
- I-105 EB Off-ramp at Central Ave.

At these two off-ramps, the Project would not cause storage capacities to be exceeded, but would increase the queue lengths.

At a third location, at the I-105 WB Off-ramp at Imperial Hwy, the queue for one movement would exceed the storage length for that movement with the Project, but the overall ramp storage length would not be exceeded.

As the Project would not be the cause of the overall queue lengths exceeding the overall storage capacity of any ramps, the Project would not cause any significant impacts in the AM peak period for the Existing Plus Project Conditions.

PM Peak Hour

As can be seen from Table 7.7, overall queues do not currently exceed the total storage lengths on any of the ramps during the Weekday PM Peak hour.

The Project would add between 80 to 234 trips to three off-ramps in the PM peak hour, and between 0 and 30 trips at the other off-ramps analyzed.

For the Existing With Project conditions, the queues would not exceed the total ramp storage lengths at any of the ramps. For the I-105 EB off-ramp at Central Avenue, the queue for two of the ramp movements would exceed the storage length for those movement, but the overall queue length would not exceed the overall ramp storage capacity. For the I-105 WB off-ramp at Central Avenue, the queue for one movement would exceed the storage length for that movement, but the Project would not add any trips to that movement and the overall queue length would not exceed the overall ramp storage capacity. For the I-105 WB off-ramp at Imperial Hwy, the queue for one movement would exceed the storage length for that movement, but the overall queue length for the ramp as a would not exceed the overall ramp storage capacity. For the SR-91 WB off-ramp at Wilmington Avenue, the queue for the one movement would exceed the storage length for that movement (as it would for the existing condition without the Project), but the overall queue length for the ramp would not exceed the overall ramp storage capacity.

As the Project would not be the cause of the overall queue lengths exceeding the overall storage capacity of any ramps, the Project would not cause any significant impacts in the PM peak period for the Existing Plus Project Conditions.

Future With Project Conditions

The freeway off-ramp analysis for the Future With Project Conditions is summarized in Table 7.8 for the AM peak hour and in Table 7.9 for the PM peak hour. These tables show the ramp volumes and queue lengths for the Existing Condition, the Future Without Project Condition, and the Future With Project Condition.

AM Peak Hour

As can be seen from Table 7.8, queues do not currently exceed the overall storage lengths on any of the ramps under existing conditions during the AM peak hour, except at two locations:

- I-110 SB Off-ramp at El Segundo Blvd
- I-105 EB Off-ramp at Central Ave.

For the Future Without Project Conditions, overall queues would not exceed the overall storage lengths on any of the ramps under existing conditions during the AM peak hour, except at the same two locations as under Existing Conditions.

The Project would add between 133 and 315 trips to three ramps in the AM peak hour, and between 0 and 47 trips at the other off-ramps analyzed.

For the Future With Project conditions, the queues would not exceed the total ramp storage lengths at any of the ramps, except at the same two locations where storage lengths are exceeded under both Existing Conditions and Future Without Project Conditions:

- I-110 SB Off-ramp at El Segundo Blvd
- I-105 EB Off-ramp at Central Ave.

At these two off-ramps, the Project would not cause storage capacities to be exceeded (as they would already by exceeded under Future Without Project Conditions), but would increase the queue lengths.

At a third location, at the I-105 WB off-ramp at Imperial Hwy, the queue for two movements would exceed the storage length for those movements with the Project, but the overall ramp storage length would not be exceeded.

As the Project would not be the cause of the overall queue lengths exceeding the overall storage capacity of any ramps, the Project would not cause any significant impacts in the AM peak period for the Future Plus Project Conditions.

PM Peak Hour

As can be seen from Table 7.9, queues do not currently exceed the total storage lengths on any of the ramps under Existing Conditions during the PM peak hour.

For the Future Without Project Condition, the queue length would exceed the overall storage length at one off-ramp:

■ I-105 EB Off-ramp at Central Ave

The Project would add between 80 to 234 trips to three off-ramps in the PM peak hour, and between 0 and 30 trips at the other off-ramps analyzed.

For the Future With Project conditions, the queues would not exceed the total ramp storage lengths at any of the ramps, except at three locations:

I-110 SB Off-ramp at El Segundo Blvd

- I-105 EB Off-ramp at Central Ave
- I-105 WB Off-ramp at Imperial Hwy

For the I-105 SB off-ramp at El Segundo Blvd, the queue in the Future Without Project Conditions would be very close to the storage capacity. The Project would increase the overall queue length by only 2%, and would cause the queue length for the Future With Project Condition to be very slightly over the overall storage capacity. This would constitute a significant impact.

For the I-105 EB off-ramp at Central Avenue, the queue length for the Future With Project Condition would exceed the overall storage capacity as it would for the Future Without Project Condition. The Project would therefore not cause the overall storage capacity to be exceeded but would increase the queue length.

For the I-105 WB off-ramp at Imperial Highway, the Project would cause the overall queue length for the Future With Project Condition to exceed the overall storage capacity. The capacity would be exceeded by about 4%. This would constitute a significant impact.

At the I-105 WB Off-ramp at Central Ave, for the Future With Project Condition the queue for one movement would exceed the storage length for that movement, and it would also exceed the storage length in the Future Without Condition, but the Project would not add any trips to that movement and the overall queue length for the ramp would not exceed the overall ramp storage capacity.

At the I-105 WB Off-ramp at Long Beach Blvd., for the Future With Project Condition the queue for two westbound movements would exceed the storage length for those movements (as it also would for the Future Without Condition), but the overall queue length for the ramp would not exceed the overall ramp storage capacity.

Also, at the SR-91 WB Off-ramp at Wilmington Ave., for the Future With Project Condition the queue for one movement would exceed the storage length for that movement (as it also would for the Future Without Condition), but the overall queue length for the ramp would not exceed the overall ramp storage capacity.

The Project would therefore be the cause of the overall queue lengths exceeding the overall storage capacity of two ramps, and the Project would cause two significant impacts in the PM peak period for the Future Plus Project Conditions.

Table 7.6 Existing With Project - Freeway Off-Ramp Analysis - Weekday AM Peak Hour

Off - Ramp # and Location	Ramp N	Movement	at Intersecti	on		Existing C (Year					ith Project ((Year 2016)	Conditions	
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
l I-110 NB Off-ramp at El Segundo Blvd	NB LT/RT	2	1936	1,646	879	С	392	No	15	894	С	400	No
2 I-110 SB Off-ramp at El Segundo Blvd	SB LT	ä	657	558	511	D	546	No	6	517	D	557	No
	SB LT/RT	1	418	355	0	D	492	Yes	0	0	D	492	Yes
	SB RT	1	418	355	839	С	457	Yes	0	839	С	457	Yes
	RAMP TOTAL	3	1,493	1,269	1,350	D	1,495	Yes	6	1,356	D	1,506	Yes
3 I-105 EB Off-ramp at Central Ave	EB LT	1	682	580	664	F	842	Yes	56	720	F	958	Yes
	EB LT/TH/RT	1	682	580	13	F	867	Yes	0	13	F	958	Yes
	EB RT	1	945	803	538	С	330	No	77	615	D	458	No
	RAMP TOTAL	3	2,309	1,963	1,215	F	2,039	Yes	133	1,348	F	2,374	Yes
4 I-105 WB Off-ramp at Central Ave	WB LT	1	1152	979	116	D	104	No	0	116	D	104	No
	WB TH/LT	1	996	847	4	D	101	No	0	4	D	101	No
	WB RT	1	996	847	372	F	536	No	0	372	F	564	No
	RAMP TOTAL	3	3,144	2,672	492	E	741	No	0	492	F	769	No
5 3-105 EB Off-ramp at Wilmington	EB LT	1	1285	1,092	411	F	600	No	4	415	D	499	No
	EB RT	1	1285	1,092	537	D	361	No	204	741	D	907	No
	RAMP TOTAL	2	2,570	2,185	948	F	961	No	208	1,156	D	1,406	No
6 1-105 WB Off-ramp at Imperial Hwy	NB LT	1	705	599	539	F	491	No	294	833	F	757	Yes
	NB TH/LT	4	635	540	11	F	491	No	9	20	F	761	Yes
	NB RT	1	635	540	137	A	4	No	12	149	A	14	No
	RAMP TOTAL	6	1,975	1,679	687	F	986	No	315	1,002	F	1,532	No
7 l-105 EB Off-ramp at Long Beach Blvd	EB LT	1	1198	1,018	614	F	438	No	0	614	F	438	No
	EB TH/LT	1	729	620	3	F	445	No	0	3	F	445	No
	EB RT	1	729	620	346	В	172	No	0	346	В	172	No
	RAMP TOTAL	3	2,656	2,258	963	E	1,055	No	0	963	Е	1,055	No
8 I-105 WB Off-ramp at Long Beach Blvd	WB LT	1	1350	1,148	165	D	175	No	0	165	D	175	No
	WB TH/RT	1	824	700	27	F	500	No	0	27	F	502	No
	WB RT	1	824	700	792	F	482	No	5	797	F	488	No
	RAMP TOTAL	3	2,998	2,548	984	F	1,157	No	5	989	F	1,165	No

Off - Ramp # and Location	Ramp N	Movement	at Intersecti	on		Existing C (Year				_	/ith Project ((Year 2016)		
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
9 SR-91 EB Off-ramp at Wilmington Ave	EB LT EB LT/TH/RT RAMP TOTAL	1 2 3	1427 1427 2,854	1,213 1,213 2,426	771 670 1,441	F F	805 669 1,474	No No No	22 0 22	793 670 1,463	F F	817 686 1,503	No No No
10 SR-91 WB Off-ramp at Wilmington Ave	WB LT WB LT/TH/RT	1 2	914 914	777	175 666	D F	218 497	No No	0 47	175 713	D F	218 558	No No
	RAMP TOTAL	3	1,828	1,554	841	F	715	No	47	888	F	776	No

- 1. Traffic counts conducted in 2015 and factored to 2016 using a rate of 1% per annum.
- 2. Ramp storage lengths are 85% of the actual storage lengths per Caltrans "Safety" factor.

Table 7.7 Existing With Project - Freeway Off-Ramp Analysis - Weekday PM Peak Hour

Off - Ramp # and Location	Ramp I	Movement	at Intersection	on		Existing C (Year					ith Project ((Year 2016)		
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
1 I-110 NB Off-ramp at El Segundo Blvd	NB LT/RT	2	1936	1,646	583	С	202	No	11	594	С	204	No
2 I-110 SB Off-ramp at El Segundo Blvd	SB LT	Ē	657	558	437	Е	437	No	4	441	Е	435	No
	SB LT/RT	1	418	355	0	D	320	No	0	0	D	319	No
	SB RT	1	418	355	424	С	206	No	0	424	С	231	No
	RAMP TOTAL	3	1,493	1,269	861	D	963	No	4	865	D	985	No
3 I-105 EB Off-ramp at Central Ave	EB LT	1	682	580	477	F	653	Yes	36	513	F	712	Yes
	EB LT/TH/RT	1	682	580	240	F	703	Yes	0	240	F	780	Yes
	EB RT	1	945	803	378	С	303	No	44	422	С	377	No
10	RAMP TOTAL	3	2,309	1,963	1,095	Е	1,659	No	80	1,175	F	1,869	No
4 I-105 WB Off-ramp at Central Ave	WBLT	1	1152	979	265	D	192	No	0	265	D	192	No
	WB TH/LT	1	996	847	0	D	192	No	0	0	Q	192	No
	WB RT	1	996	847	536	F	824	No	0	536	F	856	Yes
	RAMP TOTAL	3	3,144	2,672	801	F	1,208	No	0	801	F	1,240	No
5 I-105 EB Off-ramp at Wilmington	EBLT	1	1285	1,092	331	F	446	No	3	334	С	346	No
	EB RT	1	1285	1,092	181	A	64	No	173	354	В	240	No
	RAMP TOTAL	2	2,570	2,185	512	F	510	No	176	688	С	586	No
6 I-105 WB Off-ramp at Imperial Hwy	NB LT	1	705	599	549	F	500	No	217	766	F	697	Yes
	NB TH/LT	4	635	540	8	F	495	No	7	15	F	695	Yes
	NB RT	1	635	540	274	С	192	No	10	284	С	208	No
	RAMP TOTAL	6	1,975	1,679	831	F	1,187	No	234	1,065	F	1,600	No
7 I-105 EB Off-ramp at Long Beach Blvd	EB LT	1	1198	1,018	328	E	255	No	0	328	F	255	No
	EB TH/LT	1	729	620	1	Е	258	No	0	1	F	258	No
	EB RT	1	729	620	215	В	75	No	0	215	В	75	No
	RAMP TOTAL	3	2,656	2,258	544	D	588	No	0	544	D	588	No
8 l-105 WB Off-ramp at Long Beach Blvd	WB LT	1	1350	1,148	285	F	441	No	0	285	F	441	No
	WB TH/RT	1	824	700	9	F	695	No	0	9	F	695	No
	WB RT	1	824	700	987	F	677	No	3	990	F	682	No
	RAMP TOTAL	3	2,998	2,548	1,281	F	1,813	No	3	1,284	F	1,818	No

Off - Ramp # and Location	Ramp N	Movement	at Intersection	on		Existing C (Year					ith Project ((Year 2016)		
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
9 SR-91 EB Off-ramp at Wilmington Ave	EB LT EB LT/TH/RT RAMP TOTAL	1 2 3	1427 1427 2,854	1,213 1,213 2,426	433 694 1,127	F D E	663 412 1,075	No No No	15 0 15	448 694 1,142	F D E	672 452 1,124	No No No
10 SR-91 WB Off-ramp at Wilmington Ave	WB LT WB LT/TH/RT RAMP TOTAL	1 2 3	914 914 1,828	777 777 1,554	197 1,011 1,208	D F F	274 892 1,166	No Yes No	0 30 30	197 1,041 1,238	D F F	274 920 1,194	No Yes No

- 1. Traffic counts conducted in 2015 and factored to 2016 using a rate of 1% per annum.
- 2. Ramp storage lengths are 85% of the actual storage lengths per Caltrans "Safety" factor.

Table 7.8 Future Cumulative With Project - Freeway Off-Ramp Analysis - Weekday AM Peak Hour

Off - Ramp # and Location	Ramp I	Movement	at Intersection	on		Existing C (Year			Future Cur	nulative Wit (Year		Conditions	Fu	ture Cumulati	ive With Pro (Year 2035)	ject Conditie	ons
-	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
I I-110 NB Off-ramp at El Segundo Blvd	NB LT/RT	2	1936	1,646	879	С	392	No	970	D	492	No	15	985	D	503	No
2 I-110 SB Off-ramp at El Segundo Blvd	SB LT SB LT/RT SB RT RAMP TOTAL	1 1 3	657 418 418 1,493	558 355 355 1,269	511 0 839 1,350	D D C D	546 492 457 1,495	No Yes Yes Yes	574 0 916 1,490	E D D D	648 571 532 1,751	Yes Yes Yes Yes	6 0 0 6	580 0 916 1,496	E D D	656 572 532 1,760	Yes Yes Yes Yes
3 I-105 EB Off-ramp at Central Ave	EB LT EB LT/TH/RT EB RT RAMP TOTAL	1 1 1 3	682 682 945 2,309	580 580 803 1,963	664 13 538 1,215	F F C F	842 867 330 2,039	Yes Yes No Yes	727 14 599 1,340	F F E F	951 960 513 2,424	Yes Yes No Yes	56 0 77 133	783 14 676 1,473	F F F	1,052 1,063 647 2,762	Yes Yes No Yes
4 I-105 WB Off-ramp at Central Ave	WB LT WB TH/LT WB RT RAMP TOTAL	1 1 1 3	1152 996 996 3,144	979 847 847 2,672	116 4 372 492	D D F E	10 101 536 647	No No No No	151 4 406 561	D D F F	126 126 651 903	No No No No	0 0 0	151 4 406 561	D D F F	126 127 654 907	No No No No
5 I-105 EB Off-ramp at Wilmington	EB LT EB RT RAMP TOTAL	1 1 2	1285 1285 2,570	1,092 1,092 2,185	411 537 948	- F D F	600 361 961	No No No	449 604 1,053	D C D	564 554 1,118	No No No	4 204 208	453 808 1,261	D E E	572 1,035 1,607	No No No
6 I-105 WB Off-ramp at Imperial Hwy	NB LT NB TH/LT NB RT RAMP TOTAL	1 4 1 6	705 635 635 1,975	599 540 540 1,679	539 11 137 687	F F A F	491 491 4 986	No No No No	591 12 150 753	F F A F	538 538 15 1,091	No No No No	294 9 12 315	885 21 162 1,068	F F A F	803 808 24 1,635	Yes Yes No No
7 I-105 EB Off-ramp at Long Beach Blvd	EB LT EB TH/LT EB RT RAMP TOTAL	1 1 1 3	1198 729 729 2,656	1,018 620 620 2,258	614 3 346 963	F F B E	438 445 172 1,055	No No No No	670 3 378 1,051	F F C F	448 490 239 1,177	No No No No	0 0 0	670 3 378 1,051	F F C F	488 490 239 1,217	No No No No
8 I-105 WB Off-ramp at Long Beach Blvd	WB LT WB TH/RT WB RT RAMP TOTAL	1 1 3	1350 824 824 2,998	1,148 700 700 2,548	165 27 792 984	D F F F	175 500 482 1,157	No No No No	180 30 864 1,074	D F F	190 581 563 1,334	No No No No	0 0 5 5	180 30 869 1,079	D F F	190 586 566 1,342	No No No No

Table 7.8 Future Cumulative With Project - Freeway Off-Ramp Analysis - Weekday AM Peak Hour

Off - Ramp # and Location	Ramp Movement at Intersection				Existing Conditions ¹ (Year 2016)				Future Cur	nulative Wit (Year		Conditions	Future Cumulative With Project Conditions (Year 2035)					
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	
9 SR-91 EB Off-ramp at Wilmington Ave	EB LT EB LT/TH/RT RAMP TOTAL	1 2 3	1427 1427 2,854	1,213 1,213 2,426	771 670 1,441	F F F	805 669 1,474	No No No	841 732 1,573	F F	895 753 1,648	No No No	22 0 22	863 732 1,595	F F	907 770 1,677	No No No	
10 SR-91 WB Off-ramp at Wilmington Ave	WB LT WB LT/TH/RT RAMP TOTAL	1 2 3	914 914 1,828	777 777 1,554	175 666 841	D F F	218 497 715	No No No	191 726 917	D F	254 573 827	No No No	0 47 47	191 773 964	D F F	254 630 884	No No No	

- 1. Traffic counts conducted in 2015 and factored to 2016 using a rate of 1% per annum.
- 2. Ramp storage lengths are 85% of the actual storage lengths per Caltrans "Safety" factor.

Table 7.9 Future Cumulative With Project - Freeway Off-Ramp Analysis - Weekday PM Peak Hour

Off - Ramp # and Location	Ramp I		Existing C (Year			Future Curr	nulative With (Year	,	Conditions	Future Cumulative With Project Conditions (Year 2035)							
¥	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
l I-110 NB Off-ramp at El Segundo Blvd	NB LT/RT	2	1936	1,646	583	С	202	No	667*	С	246	No	11	678	С	263	No
2 I-110 SB Off-ramp at El Segundo Blvd	SB LT	1	657	558	437	E	437	No	520	F	508	No	4	524	F	512	No
	SB LT/RT	3.	418	355	0	D	320	No	0	D	405	Yes	0	0	D	408	Yes
	SB RT	1	418	355	424	С	206	No	463	D	343	No	0	463	D	362	No
	RAMP TOTAL	3	1,493	1,269	861	D	963	No	983	E	1,256	No	4	987	F	1,282	Yes
3 I-105 EB Off-ramp at Central Ave	EB LT	1	682	580	477	F	653	Yes	524	F	757	Yes	36	560	F	826	Yes
	EB LT/TH/RT	1	682	580	240	F	703	Yes	262	F	820	Yes	0	262	F	893	Yes
	EB RT	1	945	803	378	С	303	No	441	D	505	No	44	485	Е	571	No
	RAMP TOTAL	3	2,309	1,963	1,095	Е	1,659	No	1,227	F	2,082	Yes	80	1,307	F	2,290	Yes
4 I-105 WB Off-ramp at Central Ave	WB LT	1	1152	979	265	D	192	No	330	D	234	No	0	330	D	234	No
i i	WB TH/LT	1	996	847	0	D	192	No	0	D	235	No	0	0	D	235	No
	WBRT	1	996	847	536	F	824	No	585	F	989	Yes	0	585	F	1,013	Yes
	RAMP TOTAL	3	3,144	2,672	801	F	1,208	No	915	F	1,458	No	0	915	F	1,482	No
5 I-105 EB Off-ramp at Wilmington	EB LT	1	1285	1,092	331	F	446	No	361	D	378	No	3	364	D	383	No
	EB RT	1	1285	1,092	181	A	64	No	207	A	101	No	173	380	В	270	No
	RAMP TOTAL	2	2,570	2,185	512	F	510	No	568	С	479	No	176	744	С	653	No
6 I-105 WB Off-ramp at Imperial Hwy	NB LT	1	705	599	549	F	500	No	603	- F	549	No	217	820	. F	744	Yes
	NB TH/LT	4	635	540	8	F	495	No	9	F	543	Yes	7	16	F	744	Yes
	NB RT	1	635	540	274	С	192	No	299	D	235	No	10	309	D	253	No
	RAMP TOTAL	6	1,975	1,679	831	F	1,187	No	911	F	1,327	No	234	1,145	F	1,741	Yes
7 I-105 EB Off-ramp at Long Beach Blvd	EB LT	1	1198	1,018	328	E	255	No	358	F	283	No	0	358	F	283	No
	EB TH/LT	1	729	620	1	Е	258	No	1	F	285	No	0	1	F	285	No
	EB RT	1	729	620	215	В	75	No	235	В	107	No	0	235	В	107	No
	RAMP TOTAL	3	2,656	2,258	544	D	588	No	594	Е	675	No	0	594	Е	675	No
8 I-105 WB Off-ramp at Long Beach Blvd	WBLT	1	1350	1,148	285	F	441	No	311	F	483	No	0	311	F	483	No
, ,	WB TH/RT	1	824	700	9	F	695	No	10	F	797	Yes	0	10	F	798	Yes
	WB RT	1 1	824	700	987	F	677	No	1,077	F	780	Yes	3	1,080	F	783	Yes
12	RAMP TOTAL	3	2,998	2,548	1,281	F	1,813	No	1,398	F	2,060	No	3	1,401	F	2,064	No

Table 7.9 Future Cumulative With Project - Freeway Off-Ramp Analysis - Weekday PM Peak Hour

Off - Ramp # and Location	Ramp I		Existing C (Year			Future Cur	nulative Wit (Year	hout Project 2035)	Conditions	Future Cumulative With Project Conditions (Year 2035)							
	Move	# of Lanes	Ramp Storage Length (feet)	85% Ramp Storage Length (feet)	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length	Project Added Volume	Ramp Volume	Ramp LOS	95% Queue Length (feet)	Exceed 85% Storage Length
9 SR-91 EB Off-ramp at Wilmington Ave	EB LT	1	1427	1,213	433	F	663	No	473	F	742	No	15	488	F	750	No
	EB LT/TH/RT	2	1427	1,213	694	D	412	No	746	E	509	No	0	746	E	545	No
	RAMP TOTAL	3	2,854	2,426	1.127	E	1,075	No	1,219	E	1,251	No	15	1,234	E	1,295	No
10 SR-91 WB Off-ramp at Wilmington Ave	WB LT	1	914	777	197	D	274	No	215	E	313	No	0	215	E	313	No
	WB LT/TH/RT	2	914	777	1,011	F	892	Yes	1,103	F	986	Yes	30	1,133	F	1,014	Yes
	RAMP TOTAL	3	1,828	1,554	1,208	F	1,166	No	1,318	F	1,299	No	30	1,348	F	1,327	No

^{1.} Traffic counts conducted in 2015 and factored to 2016 using a rate of 1% per annum.

^{2.} Ramp storage lengths are 85% of the actual storage lengths per Caltrans "Safety" factor.

8. Project Mitigation

This Chapter of the report explores and identifies mitigation strategies to reduce significant transportation impacts identified in the earlier impact analyses for the Project, and describes a proposed transportation mitigation program.

8.1 Summary of Impacts

Impacts were identified in the following categories.

Intersection Impacts

The analysis in Chapters 4 and 6 (see Tables 4.1, 4.2 and 6.1, 6.2,) identified significant impacts in the Existing With Project and Existing With Project With Cumulative Conditions.

For the Existing With Project Conditions, in the AM peak hour, the Project would result in significant impacts at twenty one intersections, of which eleven intersections would operate at LOS D or better. In the PM peak hour, the Project would result in significant impacts at twenty six intersections, of which fifteen intersections would operate at LOS D or better.

For the Existing With Project With Cumulative Conditions, in the AM peak hour, the Project would result in significant impacts at twenty two intersections, of which ten intersections would operate at LOS D or better. In the PM peak hour, the Project would result in significant impacts at thirty one intersections, of which fifteen intersections would operate at LOS D or better.

CMP Impacts

The analysis in Chapter 6 (see Tables 6.7 and 6.8) identified significant impacts at two freeway mainline monitoring locations in the AM peak hour, and at four freeway monitoring locations in the PM peak hour.

Freeway Impacts

For the Existing With Project Condition, the analysis in Chapter 7 (see Table 7.2 and 7.3) identified that the Project would result in one significant mainline freeway impact in the AM peak hour, and one significant freeway mainline impact in the PM peak hour.

For the Existing With Project With Cumulative Condition, the analysis in Chapter 7 (see Table 7.4 and 7.5) identified that the Project would result in one significant mainline freeway impact in the AM peak hour, and three significant freeway mainline impact in the PM peak hour.

Also, for the Existing With Project With Cumulative Condition, the analysis in Chapter 7 (see Table 7.9) identified that the Project would result in two significant freeway off-ramp impacts in the PM peak hour.

8.2 Discussion of Mitigation Strategy

The Specific Plan (the Project) is for a transit-oriented district focused on the Willowbrook/Rosa Parks rail station. As discussed in Chapter 3, the Specific Plan is in a heavily urbanized area with significant levels of transit service. The purpose of the Specific Plan with respect to transportation is to "... improve access to all modes of transportation, including transit, walking and bicycling.... to encourage transit oriented development, and promote active transportation.... to facilitate development, especially residential and employment-generating uses proximate to the Willowbrook/Rosa Parks Station... identify land use options that include mixed uses, increased housing opportunities, and neighborhoodserving retail uses...and improve pedestrian linkages between the Willowbrook/Rosa Parks Station, Kenneth Hahn Plaza, Martin Luther King Jr. Medical Center, Charles R. Drew University of Medicine and Science, future mixed use areas, and existing residential neighborhoods".

To these ends the Specific Plan focuses on enhancing alternatives to the car and improving access to transit and improving circulation for bicycles and pedestrians in the Specific Plan area. The Specific Plan includes a range of improvements to the bicycle and pedestrian networks in the Specific Plan area (see Chapter 3), including the installation of road diets to reduce traffic lanes in certain locations. Generally then, potential mitigation measures that widen roadways at the expense of the pedestrian and bicycle environment are therefore inconsistent with the goals and objectives of the Specific Plan and are considered to be infeasible. The restriping of traffic lanes within the existing curb-to-curb roadway cross section was however considered to be a feasible mitigation measure to the extend any such measure would not conflict with Specific Plan features or impact the bicycle and pedestrian facilities.

The feasibility of physical intersection improvements was investigated for all intersection locations where the Project would cause significant traffic impacts. This evaluation, which was conducted in conjunction with County staff, looked at the feasibility of re-striping traffic lanes and/or adding traffic lanes to modify intersection lane configurations, roadway widenings, and potential changes to signal timing and phasing. Roadway widenings were generally not feasible (due to the lack of available right-of-way because of existing buildings or lack of control over adjacent right-of-way, or because of inconsistency with Specific Plan

goals and objectives); lane re-stripings were considered to be feasible if they would not result in inadequate lane widths (minimum lane widths of 10' and 12' for curb lanes was maintained); and signal timing/phasing changes were considered to be feasible as long as they would improve and not worsen intersection operations or potentially cause other problems and/or impacts elsewhere. A Transportation Demand Management Program is considered to be a realistic option to reduce vehicle trips, but is not considered to be a quantifiable mitigation measure by the County of Los Angeles.

The Martin Luther King Jr. Medical Campus Tier 2 Expansion is included in the Specific Plan and the traffic study, as discussed in Chapter 3. The Martin Luther King Jr. Medical Campus EIR identified a number of traffic mitigations. All of these mitigations were evaluated in this current analysis, and included where they continue to be feasible. In the Specific Plan area, a number of those mitigations that involved roadway widening are considered to be now infeasible because of the Specific Plan goals, objectives and provisions, and so are not included in the following list of mitigation measures for this study.

8.3 Transportation Mitigation Measures - Intersection Improvements

No feasible mitigation measures were identified at the following intersections:

- 1. Avalon Blvd & Imperial Hwy
- 2. Avalon Blvd & 120th St
- 6. Central Ave & Imperial Hwy
- 19. Compton Ave & 120th St
- 26. Wilmington Ave & Imperial Hwy
- 29. Wilmington Ave & 120th St (West)
- 39. Mona Blvd & Imperial Hwy
- 42. Willowbrook Ave & Rosecrans Ave
- 58. Wilmington Ave & W Compton Blvd
- 62. Wilmington Ave & Greenleaf Blvd

At these locations, mitigation measures were not feasible due to insufficient roadway width to accommodate restriping for additional traffic lanes and/or the unavailability of additional right of way for roadway widening, as described above.

Feasible mitigation improvements were identified at a number of locations. The Project therefore proposes to implement the following physical mitigation measures.

The results of the mitigation analyses are shown in Tables 8.1 and 8.2 for the Existing With Project Conditions for the AM and PM peak hours respectively. Figure 8.1 shows the levels of service after mitigation graphically.

Tables 8.3 and 8.4 show the results of the mitigation analyses for the Existing With Project With Cumulative Conditions for the AM and PM peak hours respectively. Figure 8.2 shows the levels of service after mitigation graphically.

To address mitigations in jurisdictions outside the County of Los Angeles, individual projects that are developed within the Specific Plan area will perform a traffic impact analysis in accordance with the jurisdictions guidelines, disclose any impacts, and mitigate those impacts.

For mitigations at locations in the County of Los Angeles individual projects will construct the recommended traffic improvements, or equally beneficial improvements approved by the Director of Public Works.

County of Los Angeles Intersections

#3. Avalon Blvd & El Segundo Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in the AM peak hour, but a significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the northbound approach to add a right turn lane. This would modify the approach from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane. This can be accomplished by narrowing the median to 3'. This would need to occur all the way to an alley located approximately 100' south of the intersection. The bus stop at this approach would continue to be located at the same location; however, buses would be allowed to go straight through the intersection. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR. In addition restripe the southbound approach to provide a separate right turn lane by narrowing the median to 2'. This would modify the approach from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane.

For the Existing With Project Condition, these mitigation measures would fully mitigate the PM peak hour impact at this location.

For the Existing With Project With Cumulative Condition, these mitigation measures would partially mitigate the PM peak hour impact at this location. In the PM peak hour the level of service would improve to LOS D.

#10. Central Ave & El Segundo Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the southbound approach to provide a separate right-turn lane. Restripe the northbound approach by reducing median to 2'. This would modify both approaches from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane. Allow buses to go through the intersection from the right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR. In addition restripe the westbound approach to provide a separate right turn lane by narrowing the median to 2'. This would modify the approach from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane.

For the Existing With Project Conditions these mitigation measures would fully mitigate the impacts in both the AM and PM peak hours.

For the Existing With Project With Cumulative Conditions these mitigation measures would fully mitigate the AM peak hour impact, and would partially mitigate the PM peak hour impact. In the PM peak hour the level of service would improve to LOS E.

#11. Central Ave & Rosecrans Ave

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in the AM Peak hour, but no significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the westbound approach to provide a separate right-turn lane by narrowing the median to 2'. This would modify the approach from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane. Allow buses to go through the intersection from the right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Condition this mitigation measure would fully mitigate the AM peak hour impact.

For the Existing With Project With Cumulative Condition this mitigation measure would fully mitigate the AM peak hour impact, and would partially mitigate the PM peak hour impact. In the PM peak hour the level of service would remain at LOS D.

#17. Compton Ave & Imperial Hwy

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the westbound approach to provide a separate right-turn lane. This would modify the approach from one left turn lane, one through lane, and one through-right turn lane to one left turn lane, two through lanes and a separate right turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR. No other feasible improvements were identified at this location.

For the Existing With Project Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would remain at LOS F. In the PM peak hour it would remain at LOS E.

For the Existing With Project With Cumulative Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would remain at LOS F. In the PM peak hour it would remain at LOS E.

27. Wilmington Ave & I-105 e/b Ramps

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Condition there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Provide an additional eastbound lane by widening (reducing the raised median on the ramp) the off-ramp. This would modify the approach from a left-turn lane and a right-turn lane to a left-turn lane, shared left-right turn lane and a separate right-turn lane. In addition, provide an additional northbound left-turn lane by reducing the median width. This would modify the approach from a left-turn lane and three through lanes to dual left-turn lanes and three through lanes. These were mitigation measures in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Condition, these mitigation measures would fully mitigate the impacts in both the AM and PM peak hours.

For the Existing With Project With Cumulative Condition, these mitigation measures would fully mitigate the AM peak hour impact, and would partially mitigate the PM peak hour impact. In the PM peak hour the level of service would improve to LOS C.

#28. Wilmington Ave & 118th St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the eastbound approach of 118th Street to provide a separate right-turn lane. This would modify the eastbound approach from a shared left-through-right lane to a shared left-through lane and a right turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would remain at LOS F. In the PM peak hour it would improve to LOS E.

For the Existing With Project With Cumulative Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would remain at LOS F. In the PM peak hour it would improve to LOS E.

#30. Wilmington Ave & 120th St (East)

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Widen 120th Street west of Wilmington Avenue (the driveway to the Martin Luther King Jr. Medical Campus) for 250', on the south side by 2' and restripe the eastbound approach to provide dual left-turn lanes. This would modify the approach from a left-through lane and a

right-turn lane to dual left-turn lanes, a through lane, and a right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Condition, this mitigation measure would fully mitigate the PM peak hour impact.

For the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the PM peak hour impact.

#32. Wilmington Ave & El Segundo Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the eastbound and westbound approaches to add separate right-turn lanes. Allow buses to go through the intersection from the right-turn lanes. These would modify both approaches from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Conditions, these mitigation measures would partially mitigate the impact in the AM peak hour (and the level of service would improve to LOS C), and would fully mitigate the impact in the PM peak hour.

For the Existing With Project With Cumulative Conditions, these mitigation measures would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would improve to LOS C. In the PM peak hour the level of service would improve to LOS D.

#36. Imperial Hwy & I-105 w/b Ramps

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Provide a third northbound left-turn lane by widening the off-ramp by 10' for approximately 150' to 200'. This would modify the approach from a left-turn lane, a left-through lane, and a right-turn lane to dual left-turn lanes, a left-through lane, and a right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

For the Existing With Project Condition, this measure would partially mitigate the impacts in both the AM and PM peak hours, and the level of service would improve to LOS D in both peak hours.

For the Existing With Project With Cumulative Condition, this measure would partially mitigate the impacts in both the AM and PM peak hours, and the level of service would improve to LOS D in both peak hours.

#43. Alameda St & 103rd St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the eastbound approach for a separate left-turn lane. This would modify the approach from a shared left/right lane to a left-turn lane and a shared left/right lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impact in the PM peak hour.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impact in the PM peak hour.

#45. Alameda St & Imperial Hwy

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in the AM peak hour, but no significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in the AM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the southbound approach for dual right-turn lanes. This would modify the approach from a left-turn lane, two through lanes, and a right-turn lane to dual left-turn lanes, two

through lanes, and a separate right-right lane. This is a modification of the mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impact in the AM peak hour.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the AM peak hour impact. In the AM peak hour the level of service would improve to LOS C.

#46. Alameda St & El Segundo Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there are significant impact in the AM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there are significant impacts in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the northbound and southbound approaches to provide separate right-turn lanes. This would modify both approaches from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impact in the AM peak hour.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the AM peak hour impact, and would partially mitigate the PM peak hour impact. In the PM peak hour it would remain at LOS E.

City of Compton Intersections

#21. Compton Ave & El Segundo Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the eastbound and westbound approaches to provide separate right-turn lanes by narrowing the medians to 2'. These would modify both approaches from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane.

In the Existing With Project Condition, these mitigation measures would partially mitigate the impact in the AM peak hour (and the level of service would improve to LOS D), and would partially mitigate the impact in the PM peak hour. In the PM peak hour the level of service would remain at LOS C.

In the Existing With Project With Cumulative Condition, these mitigation measures would partially mitigate the impact in both the AM and PM peak hours. In the AM peak hour the level of service would improve to LOS D. In the PM peak hour the level of service would improve to LOS C.

#33. Wilmington Ave & Rosecrans Ave

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the northbound approach to provide a separate right-turn lane by narrowing the median to 2'. This would modify the approach from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane.

In the Existing With Project Condition, this mitigation measure would partially mitigate the impacts in the AM peak hour and the level of service would remain at LOS E, and would partially mitigate the impact in the PM peak hour and the level of service would improve to LOS D.

In the Existing With Project With Cumulative Condition, this mitigation measure would partially mitigate the impacts in the AM peak hour and the level of service would remain at LOS E, and would partially mitigate the impact in the PM peak hour and the level of service would remain at LOS E.

#57. Central Ave & W Compton Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the northbound approach to provide a separate right-turn lane by narrowing the median to 2'. This would modify the approach from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane. This mitigation measure requires removal of five on-street parking on the northbound approach.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impacts in the PM peak hour and the level of service would improve to LOS C.

#60. Central Ave & Alondra Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the northbound and southbound approaches to provide a separate right-turn lane by narrowing the median to 2'. This would modify both approaches from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impacts in the PM peak hour and the level of service would improve to LOS D.

#61. Wilmington Ave & Alondra Blvd

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the westbound approach to provide a separate right-turn lane by narrowing the median to 3'. This would modify the approach from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impact in the AM peak hour and the level of service would remain at LOS D, and would

partially mitigate the impact in the PM peak hour and the level of service would remain at LOS E.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impacts in the AM peak hour and the level of service would remain at LOS D, and would partially mitigate the impact in the PM peak hour and the level of service would remain at LOS E.

#63. Wilmington Ave & Walnut St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe and modify the eastbound approach from a left-turn lane, a through lane, and a right-turn lane to a left-turn lane, a through lane, and a through-right lane. It requires converting Walnut Street east of the intersection from one lane eastbound to two-lanes eastbound for a minimum of 400 feet providing an 11' lane and a 12' curb lane prior to merging back to one lane, and prohibiting on street parking for the same distance.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impact in the PM peak hour. In the PM peak hour the level of service would improve to LOS C.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impact in the PM peak hour. In the PM peak hour the level of service would improve to LOS C.

City of Lynwood Intersections

#54. Imperial Hwy & State St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is no significant impact in the AM Peak hour, but a significant impact in the PM peak hour at this location. The proposed mitigation measure is as follows.

Restripe the northbound and southbound approaches to provide separate right-turn lanes. This would modify both approaches from a left-turn lane, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a right-turn lane. These mitigation measures require removal of two on-street parking spaces on each approach.

In the Existing With Project Condition, these mitigation measures would fully mitigate the impact in the PM peak hour. In the PM peak hour the level of service would improve to LOS C.

In the Existing With Project With Cumulative Condition, these mitigation measures would fully mitigate the impact in the PM peak hour. In the PM peak hour the level of service would improve to LOS C.

City of Los Angeles Intersections

#7. Central Ave & I-105 w/b Ramps

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the westbound approach from a left-turn lane, a through-left lane, and right-turn lane, to a left-turn lane, a through-right lane, and a right-turn lane.

In the Existing With Project Condition, this mitigation measure would fully mitigate the impacts in both the AM and PM peak hours. In both AM and PM peak hours the level of service would improve to LOS C.

In the Existing With Project With Cumulative Condition, this mitigation measure would fully mitigate the impacts in both the AM and PM peak hours. In both AM and PM peak hours the level of service would improve to LOS C.

#9. Central Ave & 120th St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

Restripe the northbound approach to provide a separate right-turn lane. This would modify the approach from a left-turn, a through lane, and a through-right lane to a left-turn lane, two through lanes, and a separate right-turn lane. This was a mitigation measure in the Martin Luther King Jr. Medical Campus EIR.

In the Existing With Project Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would remain at LOS D and in the PM peak hour the level of service would improve to LOS C.

In the Existing With Project With Cumulative Condition, this mitigation measure would partially mitigate the impacts in both the AM and PM peak hours. In the AM peak hour the level of service would improve to LOS D. In the PM peak hour the level of service would remain at LOS E.

#25. Wilmington Ave & 112th St

As shown in Tables 4.1 and 4.2, in the Existing With Project Conditions there is a significant impact on the stop-controlled approach of this unsignalized intersection in both the AM and PM peak hours at this location.

As shown in Tables 6.1 and 6.2, in the Existing With Project With Cumulative Conditions there is a significant impact on the stop-controlled approach of this unsignalized intersection in both the AM and PM peak hours at this location. The proposed mitigation measure is as follows.

The signal warrant analysis indicated that a traffic signal would be warranted at this location so the mitigation measure is to install a new traffic signal.

In the Existing With Project Conditions, this mitigation measure would fully mitigate the impacts in both the AM and PM peak hours.

In the Existing With Project With Cumulative Conditions, this mitigation measure would fully mitigate the impacts in both the AM and PM peak hours.

Remaining Significant Impacts - Existing With Project

AM Peak Hour

With the proposed mitigation program, there would be 13 remaining significant impacts in the AM peak hour, at the following intersections:

County of Los Angeles:

32.	Wilmington Ave & El Segundo Blvd	LOS C
32.		
26.	Wilmington Ave & Imperial Hwy	LOS D
36.	Imperial Hwy & I-105 w/b Ramps	LOS D
19.	Compton Ave & 120 th St	LOS E
29.	Wilmington Ave & 120 th St (West)	LOS E
17.	Compton Ave & Imperial Hwy	LOS F
28.	Wilmington Ave & 118 th St	LOS F

City of Compton:

21.	Compton Ave & El Segundo Blvd	LOS D
62.	Wilmington Ave & Greenleaf Blvd	LOS D
33.	Wilmington Ave & Rosecrans Ave	LOS E

City of Los Angeles:

1.	Avalon Blvd & Imperial Hwy	LOS C
6.	Central Ave & Imperial Hwy	LOS C
9.	Central Ave & 120 th St	LOS D

At these remaining significant impact locations, the level of service would be LOS D or better at 9 locations, LOS E at 3 locations and LOS F at 2 locations.

PM Peak Hour

With the proposed mitigation program, there would be 16 remaining significant impacts in the PM peak hour, at the following locations:

County of Los Angeles:

19.	Compton Ave & 120 th St	LOS D
26.	Wilmington Ave & Imperial Hwy	LOS D
36.	Imperial Hwy & I-105 w/b Ramps	LOS D
39.	Mona Blvd & Imperial Hwy	LOS D
17.	Compton Ave & Imperial Hwy	LOS E
28.	Wilmington Ave & 118 th St	LOS E
29.	Wilmington Ave & 120 th St (West)	LOS E

City of Compton:

21.	Compton Ave & El Segundo Blvd	LOS C
41.	Compton Ave & El Segundo Biva	LOSC

33.	Wilmington Ave & Rosecrans Ave	LOS D
58.	Wilmington Ave & W Compton Blvd	LOS D
61.	Wilmington Ave & Alondra Blvd	LOSE
62.	Wilmington Ave & Greenleaf Blvd	LOS E

City of Los Angeles:

1.	Avalon Blvd & Imperial Hwy	LOS C
2.	Avalon Blvd & 120 th St	LOS C
9.	Central Ave & 120 th St	LOS C
6.	Central Ave & Imperial Hwy	LOS D

At these remaining significant impact locations, the level of service would be LOS D or better at 11 locations and LOS E at 5 locations.

Remaining Significant Impacts - Existing With Project With Cumulative

AM Peak Hour

With the proposed mitigation program, there would be 14 remaining significant impacts in the AM peak hour, at the following intersections:

County of Los Angeles:

32.	Wilmington Ave & El Segundo Blvd	LOS C
39.	Mona Blvd & Imperial Hwy	LOS C
26.	Wilmington Ave & Imperial Hwy	LOS D
36.	Imperial Hwy & I-105 w/b Ramps	LOS D
19.	Compton Ave & 120 th St	LOS E
29.	Wilmington Ave & 120 th St (West)	LOS E
17.	Compton Ave & Imperial Hwy	LOS F
28.	Wilmington Ave & 118 th St	LOS F

City of Compton:

21.	Compton Ave & El Segundo Blvd	LOS D
62.	Wilmington Ave & Greenleaf Blvd	LOS D
33.	Wilmington Ave & Rosecrans Ave	LOS E

City of Los Angeles:

1.	Avalon Blvd & Imperial Hwy	LOS D
6.	Central Ave & Imperial Hwy	LOS D

9. Central Ave & 120th St

LOS D

At these remaining significant impact locations, the level of service would be LOS D or better at 9 locations, LOS E at 3 locations and LOS F at 2 locations.

PM Peak Hour

With the proposed mitigation program, there would be 23 remaining significant impacts in the PM peak hour, at the following intersections:

County of Los Angeles:

27.	Wilmington Ave & I-0105 e/b Ramps	LOS C
3.	Avalon Blvd & El Segundo Blvd	LOS D
11.	Central Ave & Rosecrans Ave	LOS D
19.	Compton Ave & 120 th St	LOS D
26.	Wilmington Ave & Imperial Hwy	LOS D
32.	Wilmington Ave & El Segundo Blvd	LOS D
36.	Imperial Hwy & I-105 w/b Ramps	LOS D
39.	Mona Blvd & Imperial Hwy	LOS D
10.	Central Ave & El Segundo Blvd	LOS E
17.	Compton Ave & Imperial Hwy	LOS E
28.	Wilmington Ave & 118 th St	LOS E
29.	Wilmington Ave & 120 th St (West)	LOS E
46.	Alameda St & El Segundo Blvd	LOS E

City of Compton:

21.	Compton Ave & El Segundo Blvd	LOS C
42.	Willowbrook Ave & Rosecrans Ave	LOS C
58.	Wilmington Ave & W Compton Blvd	LOS D
33.	Wilmington Ave & Rosecrans Ave	LOS E
61.	Wilmington Ave & Alondra Blvd	LOS E
62.	Wilmington Ave & Greenleaf Blvd	LOS E

City of Los Angeles:

2	Avalon Blvd & 120 th St	LOS C
1.00	Avalon Blvd & Imperial Hwy	LOS D
6.	Central Ave & Imperial Hwy	LOS D
9.	Central Ave & 120 th St	LOS E

At these remaining significant impact locations, the level of service would be LOS D at 14 locations, and LOS E at 9 locations.

8.3 Transportation Mitigation Measures - CMP

As discussed in Chapter 6 (see Tables 6.7 and 6.8) in the AM peak hour, the addition of vehicle trips generated by the Project would cause significant impacts according to CMP criteria at two freeway monitoring locations in the AM peak hour, and at four freeway monitoring locations in the PM peak hour. The freeways would be operating at LOS F at these locations without the Project. The Project would cause an increase in V/C of between 0.023 and 0.038 at these locations, slightly above the threshold of 0.020 for a significant impact.

No feasible mitigation measures have been identified for these impacts. Freeway mainline improvements are the responsibility of regional agencies such as SCAG, Metro, and Caltrans, and are generally beyond the ability of individual projects to implement. These impacts would therefore remain significant.

8.4 Transportation Mitigation Measures - Freeways

Freeway System - Mainline

As discussed in Chapter 7 (see Tables 7.1 and 7.3), under Existing With Project Conditions the Project would cause one significant freeway mainline segment impact in the AM peak hour, and one significant freeway mainline segment impact in the PM peak hour. The Project would cause the V/C ratio to be 1.006 in the AM peak hour and 1.001 in the PM Peak hour, both just slightly above capacity.

Under the Future With Project Conditions, the Project would cause one significant freeway mainline segment impact in the AM peak hour, and three significant freeway mainline segment impacts in the PM peak hour. The level of service would be LOS E (below capacity) in all cases.

No feasible mitigation measures have been identified for these impacts. Freeway mainline improvements are the responsibility of regional agencies such as SCAG, Metro, and Caltrans, and are generally beyond the ability of individual projects to implement. These impacts would therefore remain significant.

The Caltrans Traffic Impact Study Guidelines provide a methodology for identifying a project's proportionate share of the future traffic growth on freeway facilities. For the Future With Project Condition, in the AM peak hour, the Specific Plan share of total future traffic

growth is approximately 40% (see Table 7.4) and for the PM peak hour it is 32% to 38% (see Table 7.4).

Freeway System – Off-Ramps

The analysis in Chapter 7 (see Table 7.6) identified that the Project would cause two significant impacts at off-ramps in the PM peak hour for Future With Project Conditions. At the I-110 SB off-ramp at El Segundo Blvd., no feasible mitigation measure has been identified, and this would remain a significant impact. However the overall queue length with the Project would be only 1% over the overall storage capacity of the off-ramp. Given the very conservative assumptions that were input to the analysis (see Chapter 7), including the 85% "safety factor" identified by Caltrans, it is unlikely that the queue would actually back onto the freeway mainline.

At the I-105 WB off-ramp at Imperial Highway, the proposed mitigation for the intersection of the off-ramp and Imperial Highway would add storage capacity to the off-ramp. This would increase the overall storage length and the overall queue would no longer exceed the improved overall storage capacity of the ramp. This improvement would fully mitigate the impact at this location.

Table 8.1 Existing With Project With Mitigation Conditions - Intersection Level of Service - AM Peak Hour

N.Cor LOS N.Cor LOS N.Cor LOS	Intersection Type	Existing Conditions	onditions	Existing + Project Conditions	Project tions	Change in V/C	Significant Impact	Existing + Project + Mitigation Conditions	Project + Conditions	Change in V/C	Significant Impact
Anageles County Signalized 0.726 C 0.739 C Avalon Blvd & El Segundo Blvd Signalized 0.652 B 0.667 B Central Ave & Rosecrans Ave Signalized 0.822 D 0.933 E Central Ave & Rosecrans Ave [1] Signalized 0.822 D 0.844 D Slate Ave & I.20th St Signalized 0.501 A 0.604 B Compton Ave & I.20th St Signalized 0.378 A 0.561 A Compton Ave & I.20th St Signalized 0.574 A 0.919 E Compton Ave & I.20th St Signalized 0.637 A 0.621 B Wilmington Ave & I.20th St Signalized 0.641 B 1.166 F Wilmington Ave & I.24th St Signalized 0.644 A 0.697 B Wilmington Ave & I.24th St Signalized 0.716 C 0.834 D Wilmington Ave & I.24th St Signalized 0.747 A		V/C or (Delay)	SOT	V/C or (Delay)	ros	(Delay)	•	V/C or (Delay)	SOT		1
Avalon Blvd & El Segundo Blvd Signalized 0.652 B 0.667 B Central Ave & El Segundo Blvd [1] Signalized 0.652 B 0.667 B 0.667 Central Ave & El Segundo Blvd [1] Signalized 0.899 D 0.933 E Central Ave & El Segundo Blvd [1] Signalized 0.899 D 0.933 E 0.667 B Signalized 0.6501 A 0.604 B 0.607 Compton Ave & Inperial Hvvy [2] Signalized 0.6301 A 0.6401 B 0.6501 Compton Ave & Inperial Hvvy [2] Signalized 0.6374 A 0.6403 A 0.6401 Compton Ave & Inperial Hvvy [2] Signalized 0.6378 A 0.6408 D 0.6501 Compton Ave & I18th St Signalized 0.6378 B 0.6801 B 0.6801 Wilmington Ave & I18th St Signalized 0.641 B 1.161 F 0.6907 Signalized 0.641 B 1.161 F 0.6907 Signalized 0.641 B 0.6907 E 0.6907 Wilmington Ave & I18th St Signalized 0.641 A 0.6907 E 0.6907 Wilmington Ave & I19th Street Signalized 0.716 C 0.834 D 0.907 E 0.6907 Wilmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.637 A 0.648 A 0.648 Wilwington Ave & I19th Street Signalized 0.716 C 0.906 E 0.716 C 0.906 Wilmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.706 C 0.906 Wilmington Ave & El Segundo Blvd Signalized 0.716 C 0.906 E 0.706 C 0.											
Avalon Blvd & Rosecrans Ave Signalized 0.652 B 0.667 B Central Ave & El Segundo Blvd [1] Signalized 0.899 D 0.933 E Central Ave & Rosecrans Ave [1] Signalized 0.501 A 0.604 B Slater Ave & I.20th St Signalized 0.501 A 0.604 B Compton Ave & I.18th St Signalized 0.574 A 0.5919 E Compton Ave & I.18th St Signalized 0.574 A 0.642 B Wilmington Ave & I.18th St Signalized 0.657 B 0.820 D Wilmington Ave & I.10th St Casat) Signalized 0.641 B 1.161 F Wilmington Ave & I.20th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & I.20th St (East) Signalized 0.715 C 0.807 B Wilmington Ave & I.19th Street Signalized 0.716 A 0.448 A Willowbrook Ave We E. Segundo Blvd [1] Signalized <td></td> <td>0.726</td> <td>၁</td> <td>0.739</td> <td>၁</td> <td>0.013</td> <td>No</td> <td></td> <td></td> <td></td> <td></td>		0.726	၁	0.739	၁	0.013	No				
Central Ave & El Segundo Blvd [1] Signalized 0.899 D 0.933 E Central Ave & Rosecrans Ave [1] Signalized 0.822 D 0.844 D Slater Ave & I.20th St Signalized 0.501 A 0.604 B Compton Ave & I.18th St Signalized 0.574 A 0.5919 E Compton Ave & I.18th St Signalized 0.574 A 0.919 E Compton Ave & I.18th St Signalized 0.574 A 0.428 A Wilmington Ave & I.18th St Signalized 0.657 B 0.820 D Wilmington Ave & I.18th St Signalized 0.641 B 1.161 F Wilmington Ave & I.20th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & I.20th St (East) Signalized 0.716 A 0.481 A Wilmington Ave & El Segundo Blvd [1] Signalized 0.775 C 0.906 E Willowbrook Ave We & El Segundo Blvd [1] Signalized		0.652	В	0.667	В	0.015	%				
Central Ave & Rosecrans Ave [1] Signalized 0.822 D 0.844 D Slater Ave & 120th St Signalized 0.501 A 0.604 B Compton Ave & Imperial Hwy [2] Signalized 0.438 A 0.561 A Compton Ave & 118th St Signalized 0.574 A 0.919 E Compton Ave & 124th St Signalized 0.657 B 0.428 A Wilmington Ave & 124th St Signalized 0.641 B 1.196 F Wilmington Ave & 124th St Signalized 0.641 B 1.161 F Wilmington Ave & 126th St (West) Signalized 0.641 A 0.697 B Wilmington Ave & 126th St (West) Signalized 0.716 C 0.834 D Wilmington Ave & 126th St (West) Signalized 0.716 C 0.834 A Willinowbrook Ave & E S I Segundo Blvd [1] Signalized 0.716 A 0.448 A Willowbrook Ave & E & E I Segundo Blvd Signalized <td></td> <td>0.899</td> <td>D</td> <td>0.933</td> <td>Щ</td> <td>0.034</td> <td>Yes</td> <td>0.839</td> <td>D</td> <td>-0.060</td> <td>°N</td>		0.899	D	0.933	Щ	0.034	Yes	0.839	D	-0.060	°N
Signalized 0.501 A 0.604 B Compton Ave & Ingerial Hwy [2] Signalized 1.007 F 1.120 F Compton Ave & I18th St Signalized 0.574 A 0.561 A Compton Ave & 124th St Signalized 0.574 A 0.919 E Compton Ave & 124th St Signalized 0.657 B 0.820 D Wilmington Ave & 118th St Signalized 0.641 B 1.161 F Wilmington Ave & 124th St Signalized 0.641 B 1.161 F Wilmington Ave & 124th St Signalized 0.557 A 0.697 B Wilmington Ave & 124th St Signalized 0.716 C 0.834 D Wilmington Ave & 124th St Signalized 0.775 A 0.681 B Willinington Ave & 124th St Signalized 0.775 C 0.834 A Willinington Ave & 1.9th Street Signalized 0.775 C 0.878 A <		0.822	D	0.844	D	0.022	Yes	0.795	O	-0.027	%
Compton Ave & Imperial Hwy [2] Signalized 1.007 F 1.120 F Compton Ave & 118th St Signalized 0.574 A 0.561 A Compton Ave & 124th St Signalized 0.574 A 0.919 E Wilmington Ave & 124th St Signalized 0.657 B 0.820 D Wilmington Ave & 118th St Signalized 0.641 B 1.161 F Wilmington Ave & 120th St (West) Signalized 0.424 A 0.697 B Wilmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & 120th St (East) Signalized 0.424 A 0.687 B Willimington Ave & 120th St (East) Signalized 0.716 C 0.834 D Willimington Ave & 120th St (East) Signalized 0.716 C 0.834 D Willowbrook Ave & E & I Segundo Blvd [1] Signalized 0.716 A 0.748 A Willowbrook Ave E & El Segundo Blvd [2] <td< td=""><td></td><td>0.501</td><td>Ą</td><td>0.604</td><td>В</td><td>0.103</td><td>No</td><td></td><td></td><td></td><td></td></td<>		0.501	Ą	0.604	В	0.103	No				
Compton Ave & 118th St Signalized 0.438 A 0.561 A Compton Ave & 120th St Signalized 0.574 A 0.919 E Compton Ave & 124th St Signalized 0.657 B 0.820 D Willmington Ave & 118th St Signalized 0.641 B 1.161 F Willmington Ave & 120th St (West) Signalized 0.641 B 1.161 F Willmington Ave & 120th St (West) Signalized 0.641 B 1.161 F Willmington Ave & 120th St (Bast) Signalized 0.744 A 0.697 B Willmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.834 D Willowbrook Ave W & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave W & El Segundo Blvd Signalized 0.775 C 0.948 A Willowbrook Ave W & El Segundo Blvd Signalized 0.775 C 0.766 C Willowbrook Ave W & El Segundo Blvd S		1.007	Ľ	1.120	Ľ	0.113	Yes	1.069	Ľ	0.062	Yes
Compton Ave & 120th St Signalized 0.574 A 0.919 E Compton Ave & 124th St Signalized 0.378 A 0.428 A Wilmington Ave & Imperial Hwy [2] Signalized 0.657 B 0.820 D Wilmington Ave & Inoth St (West) Signalized 0.641 B 1.161 F Wilmington Ave & 120th St (East) Signalized 0.641 A 0.907 E Wilmington Ave & 120th St (East) Signalized 0.424 A 0.691 B Wilmington Ave & 120th St (East) Signalized 0.716 C 0.834 D Williowbrook Ave W & E1 Segundo Blvd [1] Signalized 0.716 A 0.478 A Willowbrook Ave W & E1 Segundo Blvd Signalized 0.775 C 0.906 E Willowbrook Ave E & E1 Segundo Blvd Signalized 0.730 C 0.748 A Willowbrook Ave E & E1 Segundo Blvd Signalized 0.730 C 0.766 C Willowbrook Ave E & E1 Segundo Blv		0.438	4	0.561	A	0.123	No				
Compton Ave & 124th St Signalized 0.378 A 0.428 A Wilmington Ave & Imperial Hwy [2] Signalized 0.657 B 0.820 D Wilmington Ave & I-105 e/b Ramps Signalized 0.641 B 1.196 F Wilmington Ave & 120th St (West) Signalized 0.844 D 0.907 E Wilmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & 120th St (East) Signalized 0.716 C 0.834 D Wilmington Ave & 120th St (East) Signalized 0.716 C 0.697 B Willowbrook Ave W & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave W & E Segundo Blvd Signalized Signalized 0.715 C 0.906 E Willowbrook Ave W & E Segundo Blvd Signalized Signalized 0.730 C 0.766 C Mona Blvd & Inpth St [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El		0.574	А	0.919	田	0.345	Yes				
Wilmington Ave & Imperial Hwy [2] Signalized 0.657 B 0.820 D Wilmington Ave & I-105 e/b Ramps Signalized 0.641 B 1.196 F Wilmington Ave & I-18th St Signalized 0.641 B 1.161 F Wilmington Ave & 120th St (West) Signalized 0.424 A 0.681 B Wilmington Ave & 120th St (East) Signalized 0.716 C 0.834 D Wilmington Ave & E St Segundo Blvd [1] Signalized 0.716 C 0.834 D Willowbrook Ave W & I-19th Street Signalized 0.775 C 0.906 E Willowbrook Ave W & E St I-19th Street Signalized 0.775 C 0.948 A Willowbrook Ave W & E I Segundo Blvd Signalized 0.775 C 0.948 A Willowbrook Ave W & E I Segundo Blvd Signalized 0.730 C 0.748 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & I		0.378	Ą	0.428	А	0.050	Š				
Wilmington Ave & 1-105 e/b Ramps Signalized 0.641 B 1.161 F Wilmington Ave & 118th St Signalized 0.641 B 1.161 F Wilmington Ave & 120th St (West) Signalized 0.840 D 0.907 E Wilmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & 120th St (East) Signalized 0.716 C 0.834 D Willowbrook Ave & 119th Street Signalized 0.716 A 0.478 A Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.716 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & El Segundo Blvd		0.657	В	0.820	D	0.163	Yes				
Wilmington Ave & 118th St Signalized 0.641 B 1.161 F Wilmington Ave & 120th St (West) Signalized 0.840 D 0.907 E Wilmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & 120th St (East) Signalized 0.716 C 0.834 D Willimington Ave & El Segundo Blvd [1] Signalized 0.715 A 0.478 A Willowbrook Ave We El Segundo Blvd Signalized 0.775 A 0.448 A Willowbrook Ave We El Segundo Blvd Signalized 0.716 A 0.448 A Willowbrook Ave We El Segundo Blvd Signalized 0.730 C 0.766 C Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & Inperial Hwy [4] Signalized 0.730 C 0.766 C Alameda St & 103rd & El Segundo Blvd Signalized 0.770 C 0.812 D Alameda St & Imperial Hw		0.848	D	1.196	Œ	0.348	Yes	0.824	D	-0.024	No
Willmington Ave & 120th St (West) Signalized 0.840 D 0.907 E Willmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Willmington Ave & 124th St Signalized 0.716 C 0.834 D Willowbrook Ave W & 119th Street Signalized 0.475 A 0.478 A Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave W & El Segundo Blvd Signalized 0.715 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & Imperial Hwy [3] Signalized 0.730 C 0.766 C Alameda St & Imperial Hwy [4] Signalized 0.770 C 0.812 D Alameda St & Imperial Hwy [4]		0.641	В	1.161	Ľ	0.520	Yes	1.057	ĹŢ.	0.416	Yes
Wilmington Ave & 120th St (East) Signalized 0.424 A 0.681 B Wilmington Ave & 124th St Signalized 0.557 A 0.697 B Wilmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.834 D Willowbrook Ave E & 119th Street Signalized 0.775 A 0.478 A Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.747 A 0.478 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Willowbrook Ave E & El Segundo Blvd Signalized [5] (13.5) B (15.4) A Mona Blvd & Imperial Hwy [4] Signalized [5] (13.5) A 0.544 A Alameda St & Inperial Hwy [4] Signalized 0.772 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & Imperial Hwy [4] Signalized 0.775 C 0.812 D		0.840	D	0.907	田	0.067	Yes				
Wilmington Ave & 124th St Signalized 0.557 A 0.697 B Wilmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.834 D Willowbrook Ave E & I19th Street Signalized 0.375 A 0.478 A Willowbrook Ave E & I19th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & I19th Street Signalized 0.416 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & Inperial Hwy [3] Signalized [5] (13.5) B (15.4) C Mona Blvd & I19th St [4] Unsignalized [5] 0.790 C 0.766 C Alameda St & 103rd St [4] Signalized 0.772 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D		0.424	A	0.681	В	0.257	No				Ç.
Wilmington Ave & El Segundo Blvd [1] Signalized 0.716 C 0.834 D Willowbrook Ave W & 119th Street Signalized 0.447 A 0.478 A Willowbrook Ave E & 119th Street Signalized 0.775 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.447 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.066 E Mona Blvd & Imperial Hwy [3] Signalized [5] (13.5) B (15.4) C Mona Blvd & Il9th St [4] Unsignalized [5] (13.5) B (15.4) C Alameda St & 103rd St [4] Signalized 0.772 C 0.829 D Alameda St & Imperial Hwy [4] Signalized 0.775 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.775 C 0.829 D		0.557	А	269.0	В	0.140	No				
Willowbrook Ave & & 119th Street Signalized 0.447 A 0.478 A Willowbrook Ave E & 119th Street Signalized 0.375 A 0.388 A Willowbrook Ave W & E1 Segundo Blvd Signalized 0.416 A 0.448 A Willowbrook Ave E & E1 Segundo Blvd Signalized 0.730 C 0.047 A Mona Blvd & Inperial Hwy [3] Signalized [5] (13.5) B (15.4) C Mona Blvd & I19th St [4] Unsignalized [5] (13.5) B (15.4) C Alameda St & 103rd St [4] Signalized 0.772 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.775 C 0.829 D		0.716	C	0.834	D	0.118	Yes	0.782	၁	990.0	Yes
Willowbrook Ave E & 119th Street Signalized 0.375 A 0.388 A Imperial Hwy & I-105 wb Ramps [2] Signalized 0.775 C 0.906 E Willowbrook Ave W & El Segundo Blvd Signalized 0.447 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & Inpth St [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & 103rd St [4] Signalized 0.772 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.775 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.812 D		0.447	Ą	0.478	Ą	0.031	No				
Imperial Hwy & I-105 wb Ramps [2] Signalized 0.775 C 0.906 E Willowbrook Ave E & El Segundo Blvd Signalized 0.416 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.766 C Mona Blvd & Inperial Hwy [3] Signalized [5] (13.5) B (15.4) C Mona Blvd & Il 9th St [4] Signalized 0.512 A 0.544 A Alameda St & Il Segundo Blvd Signalized 0.770 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.812 D		0.375	A	0.388	Y	0.013	No				
Willowbrook Ave W & El Segundo Blvd Signalized 0.416 A 0.448 A Willowbrook Ave E & El Segundo Blvd Signalized 0.730 C 0.776 C Mona Blvd & Imperial Hwy [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & 103rd St [4] Signalized 0.772 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.812 D		0.775	C	906.0	Ш	0.131	Yes	0.807	D	0.032	Yes
Willowbrook Ave E & El Segundo Blvd Signalized 0.447 A 0.473 A Mona Blvd & Imperial Hwy [3] Signalized [5] (13.5) B (15.4) C Mona Blvd & I19th St [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & Inperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.812 D		0.416	¥	0.448	A	0.032	No				
Mona Blvd & Imperial Hwy [3] Signalized 0.730 C 0.766 C Mona Blvd & 119th St [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & 103rd St [4] Signalized 0.770 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D		0.447	A	0.473	A	0.026	No				
Mona Blvd & 119th St [4] Unsignalized [5] (13.5) B (15.4) C Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & 103rd St [4] Signalized 0.770 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D		0.730	С	992.0	C	0.036	No				
Mona Blvd & El Segundo Blvd Signalized 0.512 A 0.544 A Alameda St & 103rd St [4] Signalized 0.770 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D	Unsignalized	(13.5)	В	(15.4)	C	(1.9)	No				
Alameda St & 103rd St [4] Signalized 0.790 C 0.812 D Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D		0.512	¥	0.544	A	0.032	No				
Alameda St & Imperial Hwy [4] Signalized 0.772 C 0.829 D Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D		0.790	C	0.812	D	0.022	No				
Alameda St & El Segundo Blvd [1] Signalized 0.765 C 0.815 D		0.772	C	0.829	D	0.057	Yes	0.792	O	0.020	No
		0.765	၁	0.815	D	0.050	Yes	0.780	C	0.015	No
52. El Segundo Blvd & San Pedro St Signalized 0.589 A 0.598 A 0.0		0.589	A	0.598	Α	0.009	No				

	Intersection	Intersection Type	Existing C	Conditions	Existing Cond	,	Change in V/C	Significant Impact		Project + Conditions	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City of	Compton											
13.	Slater Ave & El Segundo Blvd	Signalized	0.687	В	0.710	С	0.023	No				
21.	Compton Ave & El Segundo Blvd	Signalized	0.804	С	0.925	Е	0.121	Yes	0.880	D	0.076	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.854	D	0.927	Е	0.073	Yes	0.927	Е	0.073	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.693	В	0.721	С	0.028	No				
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.592	Α	0.602	В	0.010	No				
56.	Alameda St & Rosecrans Ave	Signalized	0.606	В	0.634	В	0.028	No				
57.	Cental Ave & W Compton Blvd	Signalized	0.758	С	0.767	С	0.009	No				
58.	Wilmington Ave & W Compton Blvd	Signalized	0.702	В	0.737	С	0.035	No				
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.532	A	0.536	A	0.004	No				
60.	Central Ave & Alondra Blvd	Signalized	0.754	С	0.762	С	0.008	No				
61.	Wilmingtpn Blvd & Alondra Blvd	Signalized	0.825	D	0.861	D	0.036	Yes	0.815	D	-0.010	No
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.797	С	0.829	D	0.032	Yes				
63.	Wilmington Ave & Walnut St	Signalized	0.595	A	0.627	В	0.032	No				
64.	Central Ave & Greenleaf Blvd	Signalized	0.534	A	0.541	A	0.007	No				
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.532	A	0.535	A	0.003	No				
66.	Alameda St & Greenleaf Blvd	Signalized	0.628	В	0.641	В	0.013	No				
City o	Lynwood											
44.	Alameda St & Abbott Rd	Signalized	0.660	В	0.673	В	0.013	No				
53.	Imperial Hwy & Fernwood Ave	Signalized	0.732	С	0.756	С	0.024	No				
54.	Imperial Hwy & State St	Signalized	0.738	С	0.764	С	0.026	No				

- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.

	Intersection	Intersection Type	Existing C	Conditions	Existing - Condi		Change in V/C	Significant Impact	Existing + Mitigation		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City	of Los Angeles											
1.	Avalon Blvd & Imperial Hwy	Signalized	0.747	С	0.790	С	0.043	Yes				
2.	Avalon Blvd & 120th St	Signalized	0.592	A	0.628	В	0.036	No				
5.	Central Ave & 103rd St	Signalized	0.637	В	0.658	В	0.021	No				
6.	Central Ave & Imperial Hwy	Signalized	0.737	С	0.784	С	0.047	Yes				
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.852	D	0.029	Yes	0.723	С	-0,100	No
8.	Central Ave & 1-105 e/b Ramps	Signalized	0.668	В	0.699	В	0.031	No				
9.	Central Ave & 120th St	Signalized	0.753	С	0.881	D	0.128	Yes	0.819	D	0.066	Yes
14.	Compton Ave & 103rd St	Signalized	0.604	В	0.688	В	0.084	No				
15.	Compton Ave & 108th St	Signalized	0.663	В	0.669	В	0.006	No				
16.	Compton Ave & 112th St	Unsignalized [1]	(31.0)	D	(42.5)	Е	(11.5)	No				
22.	Wilmington Ave & 103rd St	Signalized	0.660	В	0.669	В	0.009	No				
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.473	A	0.488	A	0.015	No				
24.	Wilmington Ave & 108th St	Signalized	0.593	A	0.621	В	0.028	No				
25.	Wilmington Ave & 112th St	Unsignalized [1]	(44.5)	Е	Overflow	F	Overflow	Yes				
47.	Avalon Blvd & 103rd St	Signalized	0.441	A	0.451	A	0.010	No				
48.	Avalon Blvd & 108th St	Signalized	0.564	A	0.578	A	0.014	No				
49.	Imperial Hwy & Main St	Signalized	0.590	A	0.601	В	0.011	No				
50.	Imperial Hwy & San Pedro St	Signalized	0.661	В	0.673	В	0.012	No				
51.	San Pedro St & 120th St	Signalized	0.528	A	0.541	A	0.013	No				
City	of Los Angeles & Los Angeles County [2]											
17.	Compton Ave & Imperial Hwy	Signalized	0.898	D	1.018	F	0.120	Yes	0.963	F	0.065	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.501	A	0.670	В	0.169	No				
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.690	В	0.830	D	0.140	Yes	0.726	D	0.036	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.601	В	0.639	В	0.038	No				

^[1] Unsignalized intersection show delay/LOS for controlled approach.

^[2] Analyzed per City of Los Angeles methodology.

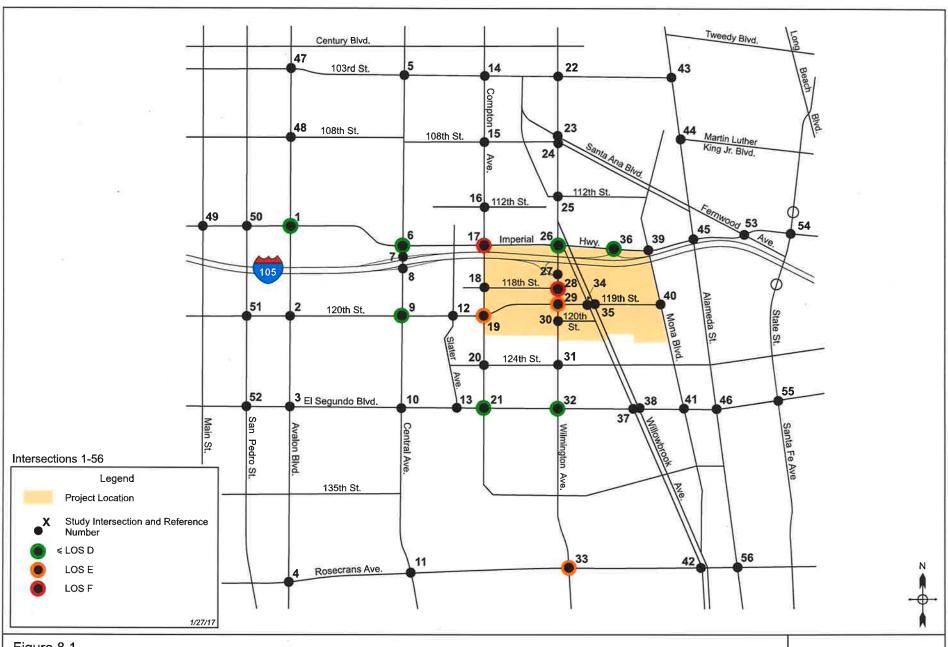


Figure 8.1
Existing + Project + Mitigation - AM Peak Hour - Significant Impact Locations

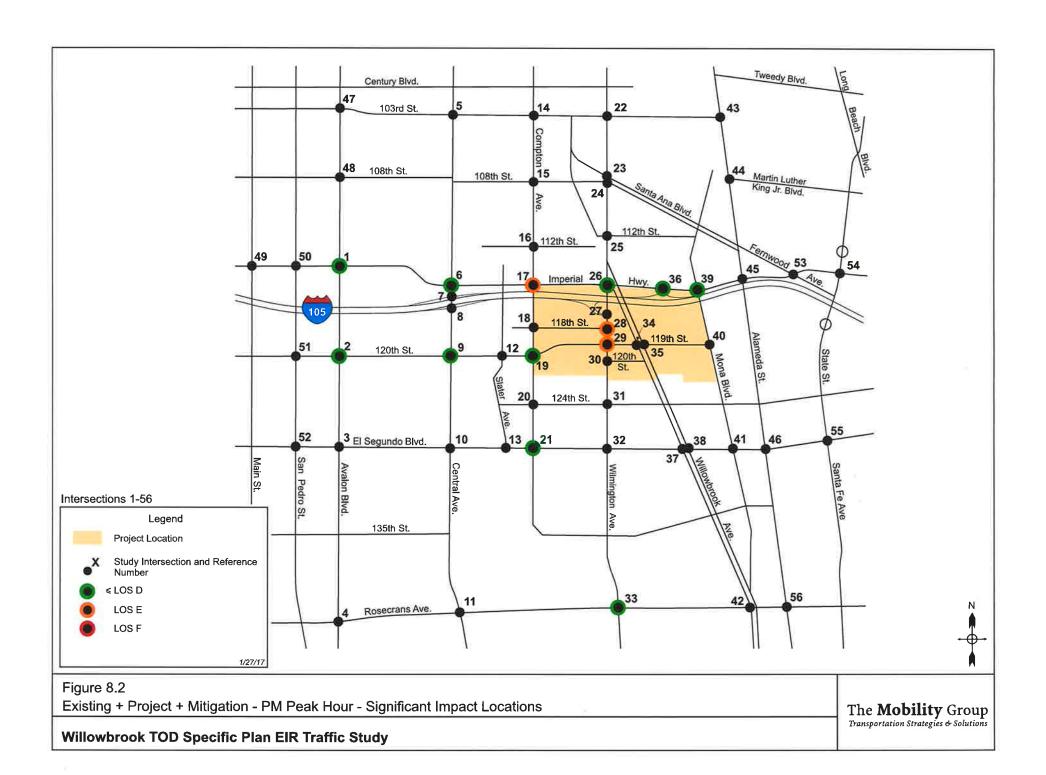
The **Mobility** Group Transportation Strategies & Solutions

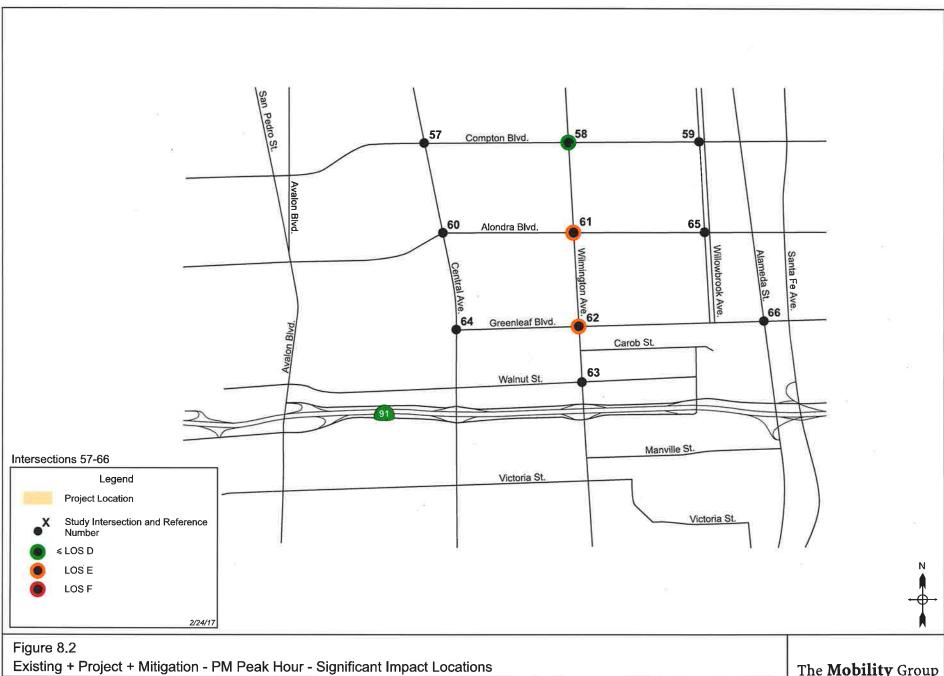
Existing + Project + Mitigation - AM Peak Hour - Significant Impact Locations

The Mobility Group
Transportation Strategies & Solutions

Willowbrook TOD Specific Plan EIR Traffic Study

	Intersection	Intersection Type	Existing C	Conditions	Existing		Change	Significant	Existing +		Change	Significant
			V/C or	LOS	V/C or	itions LOS	in V/C	Impact	Mitigation V/C or	Conditions	in V/C	Impact
			(Delay)	LOS	(Delay)	LOS	(Delay)		(Delay)	LOS		
Los	Angeles County		(Belly)		(Delay)			<u> </u>	(Delay)			
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.844	D	0.877	D	0.033	Yes	0.820	D	-0.024	No
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.804	С	0.815	D	0.011	No				
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.925	Е	0.983	Е	0.058	Yes	0.908	E	-0.017	No
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.761	С	0.782	С	0.021	No				
12.	Slater Ave & 120th St	Signalized	0.367	A	0.480	A	0.113	No			-	-
17.	Compton Ave & Imperial Hwy [2]	Signalized	0.781	С	0.954	Е	0.173	Yes	0.954	Е	0.173	Yes
18.	Compton Ave & 118th St	Signalized	0.367	A	0.522	A	0.155	No				
19.	Compton Ave & 120th St	Signalized	0.448	Α	0.817	D	0.369	Yes				
20.	Compton Ave & 124th St	Signalized	0.287	A	0.319	A	0.032	No				
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.654	В	0.820	D	0.166	Yes				
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.680	В	0.988	Е	0.308	Yes	0.711	С	0.031	No
28.	Wilmington Ave & 118th St	Signalized	0.527	A	1.019	F	0.492	Yes	0.907	Е	0.380	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.766	С	0.934	Е	0.168	Yes				
30.	Wilmington Ave & 120th St (East)	Signalized	0.426	A	0.756	С	0.330	Yes	0.685	В	0.259	No
31.	Wilmington Ave & 124th St	Signalized	0.485	A	0.608	В	0.123	No				
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.793	С	0.923	Е	0.130	Yes	0.812	D	0.019	No
34.	Willowbrook Ave W & 119th Street	Signalized	0.436	A	0.486	A	0.050	No				
35.	Willowbrook Ave E & 119th Street	Signalized	0.359	A	0.377	A	0.018	No				
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.792	С	0.918	Е	0.126	Yes	0.827	D	0.035	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.508	A	0.540	A	0.032	No				1
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.507	A	0.535	A	0.028	No	20			
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.825	D	0.875	D	0.050	Yes				
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(17.0)	С	(21.6)	С	(4.6)	No				
41.	Mona Blvd & El Segundo Blvd	Signalized	0.609	В	0.635	В	0.026	No				
43.	Alameda St & 103rd St [4]	Signalized	0.852	D	0.872	D	0.020	Yes	0.760	С	-0.092	No
45.	Alameda St & Imperial Hwy [4]	Signalized	0.799	С	0.818	D	0.019	No				
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.898	D	0.912	Е	0.014	No				
52.	El Segundo Blvd & San Pedro St	Signalized	0.601	В	0.612	В	0.011	No				


	Intersection	Intersection Type	Existing C	Conditions	Existing - Cond		Change in V/C	Significant Impact	Existing + Mitigation	•	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City o	f Compton					-	•	,				
13.	Slater Ave & El Segundo Blvd	Signalized	0.649	В	0.676	В	0.027	No				
21.	Compton Ave & El Segundo Blvd	Signalized	0.706	С	0.790	С	0.084	Yes	0.758	С	0.052	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.847	D	0.941	Е	0.094	Yes	0.893	D	0.046	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.719	С	0.748	C	0.029	No				
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.700	В	0.717	C	0.017	No				
56.	Alameda St & Rosecrans Ave	Signalized	0.604	В	0.638	В	0.034	No				
57.	Cental Ave & W Compton Blvd	Signalized	0.802	С	0.813	D	0.011	No				
58.	Wilmington Ave & W Compton Blvd	Signalized	0.844	D	0.893	D	0.049	Yes				
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.453	A	0.456	A	0.003	No			55	
60.	Central Ave & Alondra Blvd	Signalized	0.888	D	0.898	D	0.010	No				
61.	Wilmingtpn Blvd & Alondra Blvd	Signalized	0.877	D	0.924	Ė	0.047	Yes	0.924	Е	0.047	Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.911	Е	0.952	Ė	0.041	Yes			ш	
63.	Wilmington Ave & Walnut St	Signalized	0.785	С	0.825	D	0.040	Yes	0.742	С	-0.043	No
64.	Central Ave & Greenleaf Blvd	Signalized	0.671	В	0.680	В	0.009	No				
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.526	A	0.530	A	0.004	No				
66.	Alameda St & Greenleaf Blvd	Signalized	0.723	С	0.748	С	0.025	No				
City o	f Lynwood					1						
44.	Alameda St & Abbott Rd	Signalized	0.624	В	0.651	В	0.027	No				
53.	Imperial Hwy & Fernwood Ave	Signalized	0.755	С	0.781	С	0.026	No		_		
54.	Imperial Hwy & State St	Signalized	0.785	С	0.809	D	0.024	Yes	0.771	С	-0.014	No


- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.

	Intersection	Intersection Type	Existing (Conditions	Existing - Cond		Change in V/C	Significant Impact	Existing + Mitigation		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City	of Los Angeles						1					
1.	Avalon Blvd & Imperial Hwy	Signalized	0.713	С	0.753	С	0.040	Yes				
2.	Avalon Blvd & 120th St	Signalized	0.672	В	0.715	С	0.043	Yes				
5.	Central Ave & 103rd St	Signalized	0.664	В	0.682	В	0.018	No				
6.	Central Ave & Imperial Hwy	Signalized	0.757	С	0.818	D	0.061	Yes				
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.896	D	0.073	Yes	0.709	С	-0.114	No
8.	Central Ave & I-105 e/b Ramps	Signalized	0.635	В	0.654	В	0.019	No				
9.	Central Ave & 120th St	Signalized	0.690	В	0.817	D	0.127	Yes	0.769	С	0.079	Yes
14.	Compton Ave & 103rd St	Signalized	0.587	A	0.604	В	0.017	No				
15.	Compton Ave & 108th St	Signalized	0.527	A	0.573	A	0.046	No				
16.	Compton Ave & 112th St	Unsignalized [1]	(38.5)	Е	(56.0)	F	(17.5)	No				
22.	Wilmington Ave & 103rd St	Signalized	0.463	A	0.477	A	0.014	No				
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.441	A	0.469	A	0.028	No				
24.	Wilmington Ave & 108th St	Signalized	0.496	A	0.525	Α	0.029	No				
25.	Wilmington Ave & 112th St	Unsignalized [1]	(42.1)	E	Overflow	F	Overflow	Yes				
47.	Avalon Blvd & 103rd St	Signalized	0.475	A	0.491	A	0.016	No				
48.	Avalon Blvd & 108th St	Signalized	0.608	В	0.627	В	0.019	No				
49.	Imperial Hwy & Main St	Signalized	0.632	В	0.651	В	0.019	No				
50.	Imperial Hwy & San Pedro St	Signalized	0.697	В	0.721	С	0.024	No				
51.	San Pedro St & 120th St	Signalized	0.597	A	0.623	В	0.026	No				
City	of Los Angeles & Los Angeles County [2]											
17.	Compton Ave & Imperial Hwy	Signalized -	0.663	В	0.841	D	0.178	Yes	0.841	D	0.178	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.497	A	0.671	В	0.174	No				
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.710	С	0.847	D	0.137	Yes	0.752	D	0.042	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.704	С	0.758	С	0.054	Yes				

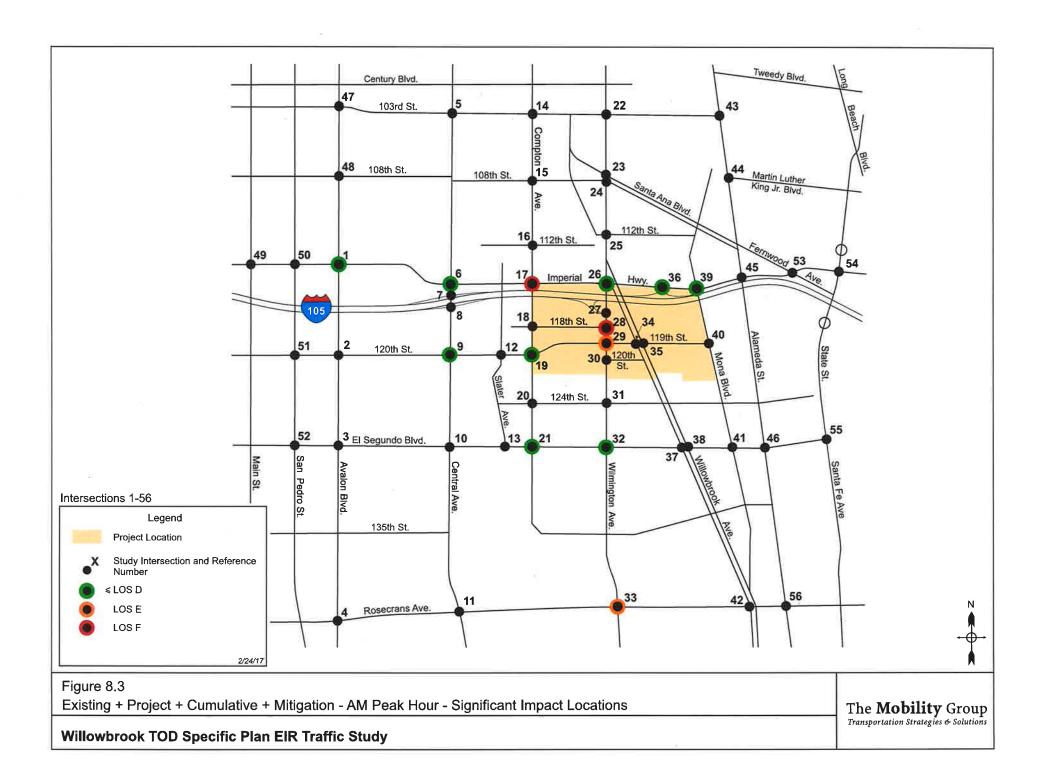
^[1] Unsignalized intersection show delay/LOS for controlled approach.

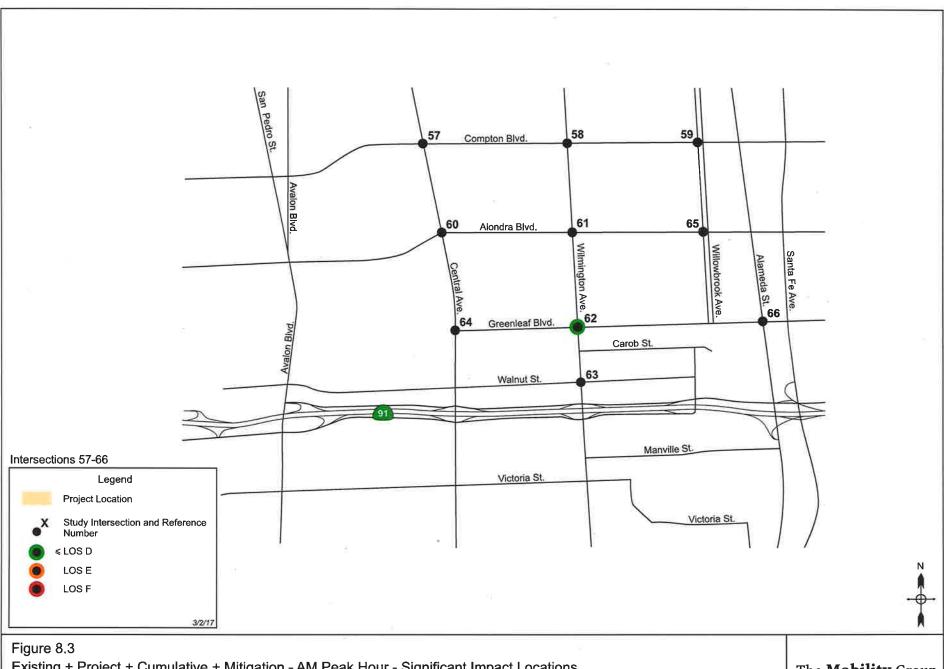
^[2] Analyzed per City of Los Angeles methodology.

Willowbrook TOD Specific Plan EIR Traffic Study

The **Mobility** Group Transportation Strategies & Solutions

	Intersection	Intersection Type	Existing (Conditions		iect + Cumulative ditions	Change in V/C	Significant Impact	Existing + Projec Mitigation		Change in V/C	Significant Impact
			V/C or	LOS	V/C or	LOS	(Delay)	"	V/C or	LOS	1	
			(Delay)		(Delay)				(Delay)			
Los Ai	ageles County											
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.726	С	0.757	С	0.031	No				
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.652	В	0.684	В	0.032	No				
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.899	D	0.971	Е	0.072	Yes	0.874	D	-0.025	No
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.822	D	0.870	D	0.048	Yes	0.821	D	-0.001	No
12.	Slater Ave & 120th St	Signalized	0.501	A	0.609	В	0.108	No				
17.	Compton Ave & Imperial Hwy [2]	Signalized	1.007	F	1.127	F	0.120	Yes	1.075	F	0.068	Yes
18.	Compton Ave & 118th St	Signalized	0.438	A	0.579	A	0.141	No				
19.	Compton Ave & 120th St	Signalized	0.574	A	0.926	Е	0.352	Yes				
20.	Compton Ave & 124th St	Signalized	0.378	A	0.432	A	0.054	No			1	
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.657	В	0.832	D	0.175	Yes				
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.848	D	1.128	F	0.280	Yes	0.855	D	0.007	No
28.	Wilmington Ave & 118th St	Signalized	0.641	В	1.208	F	0.567	Yes	1.098	F	0.457	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.840	D	0.916	Е	0.076	Yes				
30.	Wilmington Ave & 120th St (East)	Signalized	0.424	A	0.684	В	0.260	No				
31.	Wilmington Ave & 124th St	Signalized	0.557	A	0.705	c = -	0.148	No				
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.716	С	0.847	D	0.131	Yes	0.792	С	0.076	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.447	A	0.478	A	0.031	No				
35.	Willowbrook Ave E & 119th Street	Signalized	0.375	A	0.388	A	0.013	No				
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.775	С	0.910	Е	0.135	Yes	0.811	D	0.036	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.416	A	0.454	A	0.038	No				
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.447	A	0.479	A	0.032	No				
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.730	С	0.772	С	0.042	Yes			l	
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(13.5)	В	(15.4)	В	(1.9)	No				
41.	Mona Blvd & El Segundo Blvd	Signalized	0.512	A	0.550	A	0.038	No		-		
43.	Alameda St & 103rd St [4]	Signalized	0.790	С	0.821	D	0.031	No				
45.	Alameda St & Imperial Hwy [4]	Signalized	0.772	С	0.837	D	0.065	Yes	0.798	С	0.026	No
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.765	С	0.827	D	0.062	Yes	0.793	С	0.028	No
52.	El Segundo Blvd & San Pedro St	Signalized	0.589	A	0.611	В	0.022	No	-	-		


	Intersection	Intersection Type	Existing C	Conditions		ect + Cumulative litions	Change in V/C	Significant Impact		ct +Cumulative + Conditions	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City of	Compton											
13.	Slater Ave & El Segundo Blvd	Signalized	0.687	В	0.717	С	0.030	No				
21.	Compton Ave & El Segundo Blvd	Signalized	0.804	С	0.940	E	0.136	Yes	0.895	D	0.091	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.854	D	0.935	Е	0.081	Yes	0.935	E	0.081	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.693	В	0.727	С	0.034	No				
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.592	A	0.607	В	0.015	No				
56.	Alameda St & Rosecrans Ave	Signalized	0.606	В	0.634	В	0.028	No	-			
57.	Cental Ave & W Compton Blvd	Signalized	0.758	С	0.774	С	0.016	No				
58.	Wilmington Ave & W Compton Blvd	Signalized	0.702	В	0.738	С	0.036	No				
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.532	A	0.537	A	0.005	No			1	
60.	Central Ave & Alondra Blvd	Signalized	0.754	С	0.769	С	0.015	No				
61.	Wilmingtpn Blvd & Alondra Blvd	Signalized	0.825	D	0.862	D	0.037	Yes	0.816	D	-0.009	No
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.797	С	0.831	D	0.034	Yes		D: 0		
63.	Wilmington Ave & Walnut St	Signalized	0.595	A	0.628	В	0.033	No				
64.	Central Ave & Greenleaf Blvd	Signalized	0.534	A	0.548	A	0.014	No				-
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.532	A	0.535	A	0.003	No				
66.	Alameda St & Greenleaf Blvd	Signalized	0.628	В	0.641	В	0.013	No				
City of	Lynwood					M				-		-
44.	Alameda St & Abbott Rd	Signalized	0.660	В	0.679	В	0.019	No				
53.	Imperial Hwy & Fernwood Ave	Signalized	0.732	С	0.764	С	0.032	No				
54.	Imperial Hwy & State St	Signalized	0.738	С	0.773	С	0.035	No				


- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.

	Intersection	Intersection Type	Existing (Conditions	Existing + Proj Cumulative	ect +Ambient + Conditions	Change in V/C	Significant Impact	Existing + Proje Cumulative + Miti		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City of	Los Angeles											
1.	Avalon Blvd & Imperial Hwy	Signalized	0.747	С	0.856	D	0.043	Yes				
2.	Avalon Blvd & 120th St	Signalized	0.592	A	0.677	В	0.036	No				
5.	Central Ave & 103rd St	Signalized	0.637	В	0.708	С	0.021	No				
6.	Central Ave & Imperial Hwy	Signalized	0.737	С	0.843	D	0.047	Yes				
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.911	E	0.030	Yes	0.769	С	-0.112	No
8.	Central Ave & I-105 e/b Ramps	Signalized	0.668	В	0.755	C	0.031	No				
9.	Central Ave & 120th St	Signalized	0.753	С	0.959	Е	0.134	Yes	0.883	D	0.058	Yes
14.	Compton Ave & 103rd St	Signalized	0.604	В	0.662	В	0.019	No				
15.	Compton Ave & 108th St	Signalized	0.663	В	0.732	С	0.025	No				
16.	Compton Ave & 112th St	Unsignalized [1]	(31.0)	D	(61.6)	F	(20.2)	No				
22.	Wilmington Ave & 103rd St	Signalized	0.660	В	0.723	С	0.009	No				
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.473	A	0.517	A	0.014	No				
24.	Wilmington Ave & 108th St	Signalized	0.593	A	0.661	В	0.028	No				
25.	Wilmington Ave & 112th St	Unsignalized [1]	(44.5)	Е	Overflow	F	Overflow	Yes				
47.	Avalon Blvd & 103rd St	Signalized	0.441	A	0.479	A	0.010	No				
48.	Avalon Blvd & 108th St	Signalized	0.564	A	0.617	В	0.013	No				
49.	Imperial Hwy & Main St	Signalized	0.590	A	0.643	В	0.011	No				
50.	Imperial Hwy & San Pedro St	Signalized	0.661	В	0.720	С	0.012	No				
51.	San Pedro St & 120th St	Signalized	0.528	A	0.575	A	0.014	No				
City of	Los Angeles & Los Angeles County [2]							Ni-				-
17.	Compton Ave & Imperial Hwy	Signalized	0.898	D	1.089	F	0.120	Yes	1.029	F	0.060	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.501	A	0.708	С	0.169	Yes				
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.69	В	0.879	D	0.140	Yes	0.768	С	0.029	No
39.	Mona Blvd & Imperial Hwy	Signalized	0.601	В	0.682	В	0.038	No				

^[1] Unsignalized intersection show delay/LOS for controlled approach.

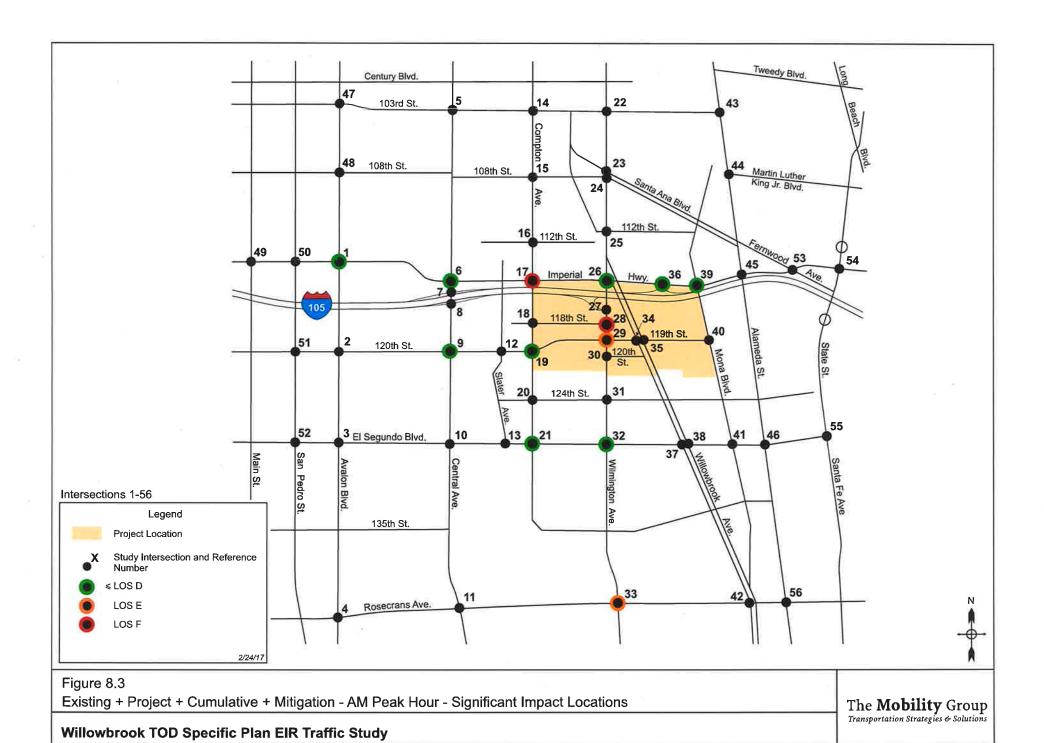
^[2] Analyzed per City of Los Angeles methodology.

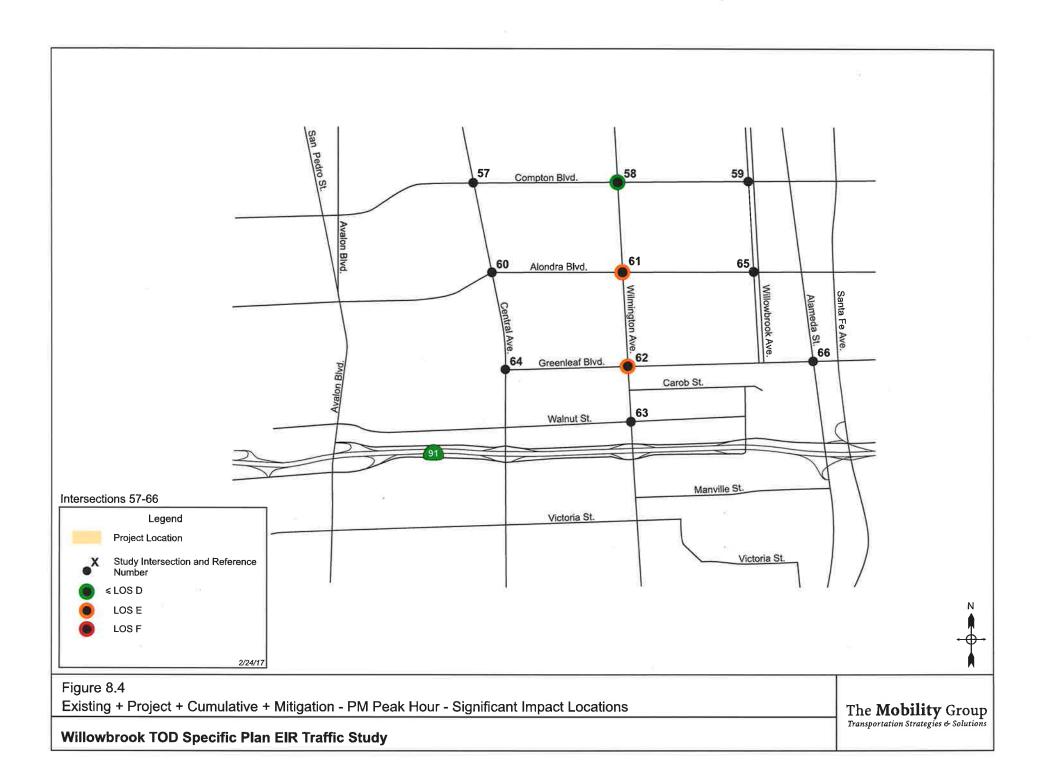
Existing + Project + Cumulative + Mitigation - AM Peak Hour - Significant Impact Locations

Willowbrook TOD Specific Plan EIR Traffic Study

The **Mobility** Group Transportation Strategies & Solutions

	Intersection	Intersection Type	Existing C	Conditions		ect + Cumulative litions	Change in V/C	Significant Impact		ct + Cumulative + Conditions	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
Los An	geles County					•				•		
3.	Avalon Blvd & El Segundo Blvd	Signalized	0.844	D	0.957	Е	0.113	Yes	0.884	D	0.040	Yes
4.	Avalon Blvd & Rosecrans Ave	Signalized	0.804	С	0.842	D	0.038	No		ľ		
10.	Central Ave & El Segundo Blvd [1]	Signalized	0.925	E	1.014	F	0.089	Yes	0.938	E	0.013	Yes
11.	Central Ave & Rosecrans Ave [1]	Signalized	0.761	С	0.816	D	0.055	Yes	0.816	D	0.055	Yes
12.	Slater Ave & 120th St	Signalized	0.367	A	0.494	A	0.127	No				
17.	Compton Ave & Imperial Hwy [2]	Signalized	0.781	С	0.967	E	0.186	Yes	0.967	Е	0.186	Yes
18.	Compton Ave & 118th St	Signalized	0.367	A	0.562	A	0.195	No				
19.	Compton Ave & 120th St	Signalized	0.448	A	0.843	D	0.395	Yes				
20.	Compton Ave & 124th St	Signalized	0.287	A	0.324	A	0.037	No				
26.	Wilmington Ave & Imperial Hwy [2]	Signalized	0.654	В	0.840	D	0.186	Yes				
27.	Wilmington Ave & I-105 e/b Ramps	Signalized	0.680	В	1.010	F	0.330	Yes	0.751	С	0.071	Yes
28.	Wilmington Ave & 118th St	Signalized	0.527	A	1.119	F	0.592	Yes	0.981	Е	0.454	Yes
29.	Wilmington Ave & 120th St (West)	Signalized	0.766	С	0.956	Е	0.190	Yes				
30.	Wilmington Ave & 120th St (East)	Signalized	0.426	A	0.767	С	0.341	Yes	0.697	В	0.271	No
31.	Wilmington Ave & 124th St	Signalized	0.485	A	0.614	В	0.129	No				
32.	Wilmington Ave & El Segundo Blvd [1]	Signalized	0.793	С	0.948	E	0.155	Yes	0.832	D	0.039	Yes
34.	Willowbrook Ave W & 119th Street	Signalized	0.436	A	0.486	A	0.050	No				
35.	Willowbrook Ave E & 119th Street	Signalized	0.359	A	0.377	A	0.018	No				
36.	Imperial Hwy & I-105 w/b Ramps [2]	Signalized	0.792	С	0.928	Е	0.136	Yes	0.837	D	0.045	Yes
37.	Willowbrook Ave W & El Segundo Blvd	Signalized	0.508	A	0.551	A	0.043	No				
38.	Willowbrook Ave E & El Segundo Blvd	Signalized	0.507	A	0.546	A	0.039	No				
39.	Mona Blvd & Imperial Hwy [3]	Signalized	0.825	D	0.885	D	0.060	Yes				
40.	Mona Blvd & 119th St [4]	Unsignalized [5]	(17.0)	С	(21.6)	С	(4.6)	No				
41.	Mona Blvd & El Segundo Blvd	Signalized	0.609	В	0.646	В	0.037	No				1
43.	Alameda St & 103rd St [4]	Signalized	0.852	D	0.884	D	0.032	Yes	0.769	С	-0.083	No
45.	Alameda St & Imperial Hwy [4]	Signalized	0.799	С	0.828	D	0.029	No		1		
46.	Alameda St & El Segundo Blvd [1]	Signalized	0.898	D	0.931	Е	0.033	Yes	0.922	E	0.024	Yes
52.	El Segundo Blvd & San Pedro St	Signalized	0.601	В	0.646	В	0.045	No				


	Intersection	Intersection Type	Existing (Conditions		ect + Cumulative litions	Change in V/C	Significant Impact		ect + Cumulative + n Conditions	Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City of	Compton					·						
13.	Slater Ave & El Segundo Blvd	Signalized	0.649	В	0.690	В	0.041	No				
21.	Compton Ave & El Segundo Blvd	Signalized	0.706	С	0.812	D	0.106	Yes	0.779	C	0.073	Yes
33.	Wilmington Ave & Rosecrans Ave	Signalized	0.847	D	0.962	E	0.115	Yes	0.914	E	0.067	Yes
42.	Willowbrook Ave & Rosecrans Ave	Signalized	0.719	С	0.760	С	0.041	Yes				
55.	El Segundo Blvd & Santa Fe Ave [4]	Signalized	0.700	В	0.735	C	0.035	No				
56.	Alameda St & Rosecrans Ave	Signalized	0.604	В	0.641	В	0.037	No				
57.	Cental Ave & W Compton Blvd	Signalized	0.802	С	0.836	D	0.034	Yes	0.800	С	-0.002	No
58.	Wilmington Ave & W Compton Blvd	Signalized	0.844	D	0.897	D	0.053	Yes		1 -		
59.	Willowbrook Ave & W Compton Blvd	Signalized	0.453	A	0.457	A	0.004	No				
60.	Central Ave & Alondra Blvd	Signalized	0.888	D	0.918	E	0.030	Yes	0.872	D	-0.016	No
61.	Wilmingtpn Blvd & Alondra Blvd	Signalized	0.877	D	0.928	Е	0.051	Yes	0.928	Е	0.051	Yes
62.	Wilmington Ave & Greenleaf Blvd	Signalized	0.911	E	0.956	E	0.045	Yes				
63.	Wilmington Ave & Walnut St	Signalized	0.785	С	0.829	D	0.044	Yes	0.745	С	-0.040	No
64.	Central Ave & Greenleaf Blvd	Signalized	0.671	В	0.701	В	0.030	No	-			
65.	Willowbrook Ave & Alondra Blvd	Signalized	0.526	A	0.530	A	0.004	No				
66.	Alameda St & Greenleaf Blvd	Signalized	0.723	С	0.751	С	0.028	No				
City of	Lynwood							-				-
44.	Alameda St & Abbott Rd	Signalized	0.624	В	0.657	В	0.033	No				
53.	Imperial Hwy & Fernwood Ave	Signalized	0.755	С	0.794	С	0.039	No				
54.	Imperial Hwy & State St	Signalized	0.785	С	0.823	D	0.038	Yes	0.785	С	0.000	No


- [1] Shares jurisdiction with City of Compton.
- [2] Shares jurisdiction with City of Los Angeles.
- [3] Shares jurisdiction with City of Los Angeles & City of Lynwood.
- [4] Shares jurisdiction with City of Lynwood.
- [5] Unsignalized intersection show delay/LOS for controlled approach.

Intersection		Intersection Type	Existing Conditions		Existing + Project + Ambient + Cumulative Conditions		Change S in V/C	Significant Impact	Existing + Project +Ambient + Cumulative + Mitigation Conditions		Change in V/C	Significant Impact
			V/C or (Delay)	LOS	V/C or (Delay)	LOS	(Delay)		V/C or (Delay)	LOS		
City of Los Angeles												
1.	Avalon Blvd & Imperial Hwy	Signalized	0.713	С	0.827	D	0.040	Yes				
2.	Avalon Blvd & 120th St	Signalized	0.672	В	0.787	С	0.043	Yes				
5.	Central Ave & 103rd St	Signalized	0.664	В	0.743	С	0.018	No				
6.	Central Ave & Imperial Hwy	Signalized	0.757	С	0.893	D	0.062	Yes				
7.	Central Ave & I-105 w/b Ramps	Signalized	0.823	D	0.967	Е	0.073	Yes	0.787	С	-0.107	No
8.	Central Ave & I-105 e/b Ramps	Signalized	0.635	В	0.735	С	0.019	No				
9.	Central Ave & 120th St	Signalized	0.690	В	0.935	Е	0.110	Yes	0.903	E	0.078	Yes
14.	Compton Ave & 103rd St	Signalized	0.587	A	0.643	В	0.018	No				
15.	Compton Ave & 108th St	Signalized	0.527	A	0.605	В	0.046	No				
16.	Compton Ave & 112th St	Unsignalized [1]	(38.5)	Е	(84.1)	F	(32.6)	No				
22.	Wilmington Ave & 103rd St	Signalized	0.463	A	0.527	Α	0.014	No				
23.	Wilmington Ave & Santa Ana Blvd N	Signalized	0.441	A	0.504	A	0.027	No				
24.	Wilmington Ave & 108th St	Signalized	0.496	A	0.567	A	0.029	No				
25.	Wilmington Ave & 112th St	Unsignalized [1]	(42.1)	Е	Overflow	F	Overflow	Yes				
47.	Avalon Blvd & 103rd St	Signalized	0.475	A	0.528	A	0.017	No				
48.	Avalon Blvd & 108th St	Signalized	0.608	В	0.677	В	0.020	No				
49.	Imperial Hwy & Main St	Signalized	0.632	В	0.710	С	0.019	No				
50.	Imperial Hwy & San Pedro St	Signalized	0.697	В	0.776	С	0.024	No				
51.	San Pedro St & 120th St	Signalized	0.597	A	0.672	В	0.025	No				
City of Los Angeles & Los Angeles County [2]												
17.	Compton Ave & Imperial Hwy	Signalized	0.663	В	0.893	D	0.179	Yes	0.893	D	0.179	Yes
26.	Wilmington Ave & Imperial Hwy	Signalized	0.497	A	0.718	С	0.175	Yes				
36.	Imperial Hwy & I-105 w/b Ramps	Signalized	0.71	С	0.904	Е	0.137	Yes	0.803	D	0.036	Yes
39.	Mona Blvd & Imperial Hwy	Signalized	0.704	С	0.814	D	0.054	Yes			24	

^[1] Unsignalized intersection show delay/LOS for controlled approach.

^[2] Analyzed per City of Los Angeles methodology.

Appendix A Trip Generation Information

Table A-1. Willowbrook TOD Specific Plan EIR Traffic Study
Trip Generation - Trip Rates by Land Use - AM & PM

Land Use	ITE Code	Trip Rate	
		AM	PM
Single Family Housing (DU's)	ITE 210	0.75	1.00
Multi-Family Housing (DU's)	ITE 220	0.51	0.62
Senior Housing (DU's)	ITE 252	0.20	0.25
Clinic	ITE 630	3.60	5.18
Library	ITE 590	1.04	7.30
General Office (sf)	ITE 710	1.56	1.49
Business Park (sf)	ITE 770	1.40	1.26
Medical Office (sf)	ITE 720	2.39	3.57
R & D Office (sf)	ITE 760	1.22	1.07
Restaurant-High Turnover (sf)	ITE 932	10.81	9.85
Restaurant-Fast Food (sf)	ITE 934	45.42	32.65
Grocery (sf)	ITE 820	0.96	3.71
Retail (sf)	ITE 820	0.96	3.71
Elementary School (sf)	ITE 520	5.20	1.21
Shopping Center (sf)	ITE 820	0.96	3.71
Church (sf)	ITE 560	0.56	0.55
Open Space (sf)	ITE 412	0.02	0.09
Light Industrial (sf)	ITE 110	0.92	0.97
Children Care (sf)	ITE 565	12.18	12.34
University (Students)	ITE 550	0.17	0.17

Table A-2. Willowbrook TOD Specific Plan EIR Traffic Study
Trip Generation - Internal % Adjustments

Zone #	Internal %					
	Residential Uses	Commercial Uses	Institutional Uses			
2	10%	15%	5%			
3	10%	15%	5%			
4	10%	5%	5%			
5		5%	5%			
6	. *	5%	5%			
7		5%	5%			
8		5%	5%			
9		5%	5%			
10		5%	5%			
11		5%	5%			
12		5%	5%			
13		5%	5%			
14		5%	5%			
1 (MLK Hospital)	15%	15%	15%			
2C (CDU)	50%					

Table A-3. Willowbrook TOD Specific Plan EIR Traffic Study
Trip Generation - Transit % Adjustments

Distance from the Willowbrook/Rosa	Zone #	Transit %			
Parks Station	3	Residential Uses	Commercial & Institutional Uses		
Station Adjacent	4A/4B	25%	15%		
< 1/4 mile	2A, 2B, 3A, 3B, 4A, 4B, 5, 9, 10, 11, 12	25%	15% for Mixed-Use 1, 25% for Mixed-Use 2, 15% for Imperial Commercial		
< 1/2 mile	3C, 3D, 3E, 3F, 3G, 6, 7, 8, 13	15%	10% for Mixed-Use 1, 15% for Mixed-Use 2, 10% for Imperial Commercial		
MLK Hospital	1	15%	15%		
CDU	2C	15%	15%		

	Lan	d Uses					Existing	Trip Ge	neration	<u>s</u>							Future	Trip Ge	neration	S					Net Trip Ge	nerations		
Group	Land Use	Existing	Fulure	Net Change	Land Use	Quantity	Trip Rales	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Net Trip Rate	Land Use	Quantity	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Nel Trip Rate	Land Use	Quantity	Net Vehicl Trips	Tol
1	Single-Family Housing (DU's) Retail / Medical Office (sf)	0	100	100	Single-Family Housing (DU's) Retail / Medical Office (sf)	0									Single-Family Housing (DU's) Retail / Medical Office (sf)	100									Single-Family Housing (DU's) Retail / Medical Office (sf)	100	58	
1	Hospital / General Office (sf) Residential Subtotal		100	400	Hospital / General Office (sf) Residential Subtotal	0		1			_				Hospital / General Office (sf) Residential Subtotal	100	 	-				-			Hospital / General Office (sf) Residential Subtotal	100	58	.1
1	Non-Residentail Subtotal	890,891	100 2,139,413	100 1,248,522	Non-Residentall Sublotal	890,891									Non-Residentall Subtotal	2,139,413									Non-Residentail Subtotal	1,248,522	1,231	
2A 2A	Multi-Family Housing (DU's) Clinic (sf)	0 33,000	105 33,381	105 381	Multi-Family Housing (DU's) Clinic (sf)	0 33,000	0.51 3.60	ITE 220	119	10% 0%	25% 25%	0%	0 89	0,00	Multi-Family Housing (DU's) Clinic (sf)	105 33,381	0,51 3.60		54 120	10%	25% 25%	0%	36 90	0,35 0,00	Multi-Family Housing (DU's) Clinic (sf)	105 381	36	;
2A	Residential Sublotal	0	105	105	Residential Subtotal	0	3.00	THE GOO	0	070	2070	070	0	0.00	Residential Subtotal	105	0.00		54				36		Residential Sublotal	105	36	3
2A	Non-Residentail Subtotal	33,000	33,381	381	Non-Residentail Subtotal	33,000			119				89		Non-Residentail Subtotal	33,381			120				90		Non-Residentail Subtotal	381	1	
2B	Multi-Family Housing (DU's)	0	117	117	Multi-Family Housing (DU's)	0	0,51	ITE 220	0	10%	25%		0	0.00	Multi-Family Housing (DU's)	117	0,51		60	10%	25%		41	0,35	Multi-Family Housing (DU's)	117	41	
2B	Fire Station (sf)	4,110	6,325	2,215	Fire Station (sf)	4,110		1 1	_	0%	0%	0%	0	0,00	Fire Station (sf)	6,325			19	0%	0%	0%	0	0.00	Fire Station (sf) Clinic (sf)	2,215 3,355	0	۱ ا
2B 2B	Clinic (sf)	1,850	5,205 1,118	3,355 1,118	Clinic (sf)	1,850	3,60	(TE 630	7	0%	25%	0%	5	0.00	Clinic (sf) Hospital (sf)	5,205 1,118	3,60	1 1	19	0%	25%	0%	14	0.00	Hospital (sf)	1,118	°	
2B	Hospital (sf) Parking (sf)	0	24,316	24,316	Hospital (sf) Parking (sf)	0									Parking (sf)	24,316									Parking (sf)	24,316		
2B	Residential Subtotal	0	117	117	Residential Subtotal	0		\Box	0				0		Residential Subtotal	117			60				41		Residential Subtotal	117	41	T
28	Non-Residentail Subtotal	5,960	36,964	31,004	Non-Residentail Subtotal	5,960			7				5		Non-Residentail Subtotal	36,964			19				14		Non-Residentail Subtotal	31,004	9	3
2C	Multi-Family Housing (DU's)	49	119	70	Multi-Family Housing (DU's)	49	0.51	ITE 220	25		15%		21	0.43	Multi-Family Housing (DU's)	119	0,51		61	50%	15% 0%		26	0.22 0.00	Multi-Family Housing (DU's)	70 295,148	5	j O
2C 2C	Institute	477,842 625	772,990 1,450	295,148 825	Institute	477,842 625	0.17	ITE 550	0 106		0% 15%		0 90	0.00	Institute University	772,990 1,450	0.17	1 1	247		15%		210	0.14	University	825	120	0
2C	University Institute	025	1,450	0.	University	625	0.17	ITE 550	0		0%		0	0.00	Institute	1,450	0,17		0		0%		0		Institute	0	0	<u>. </u>
2C	Residential Subtotal	49	119	70	Residential Subtotal	49			25				21		Residential Subtotal	119			61				26		Residential Subtotal	70	5	5
2C	Non-Residentail Subtotal	477,842	772,990	295,148	Non-Residentail Subtotal	477,842			106				90		Non-Residentail Subtotal	772,990			247				210		Non-Residentail Subtotal	295,148	120)
2	Residential Subtotal	49	341	292	Residential Subtotal	49		1 1	25				21		Residential Subtotal	341			175				103		Residential Subtotal	292	82	- 1
	Non-Residentail Subtolal	516,802	843,335	326,533	Non-Residentail Subtotal	516,802			232				185		Non-Residentail Subtotal	843,335			386				314		Non-Residentail Subtotal	326,533	130	'
3A 3A	Senior Housing (DU's) Library (sf)	0	105 8,939	105 8,939	Senior Housing (DU's) Library (sf)	0	0.20 1.04	ITE 252	0	10% 0%	25% 25%	0% 0%	0	0.00	Senior Housing (DU's) Library (sf)	105 8,939	0,20		21 9	10% 0%	25% 25%	0% 0%	14 7	0.14	Senior Housing (DU's) Library (sf)	105 8,939	14	7
3A	Residential Subtotal	0	105	105	Residential Subtotal	0	1.04	III Jac	0	- 0,0	2010		0	0.00	Residential Subtotal	105			21				14		Residential Subtotal	105	14	4
3A	Non-Residentail Subtotal	0	8,939	8,939	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	8,939			9				7		Non-Residentail Subtotal	8,939	7	7
3В	Single Family Housing (DU's)	19	0	-19	Single Family Housing (DU's)	19	0.75	ITE 210	14	10%	25%	0%	10	0,51	Single Family Housing (DU's)	0	0.75		0	10%	25%	0%	0	0.00	Single Family Housing (DU's)	-19		- 1
3B	Multi-Family Housing (DU's)		83	83	Multi-Family Housing (DU's)		0.51	ITE 220	0	10%	25%		0	0.00	Multi-Family Housing (DU's)	83	0.51		42 49	10%	25% 25%		28 35	0.34	Multi-Family Housing (DU's) General Office (sf)	83 31,276	1	- 1
3B 3B	General Office (sf) Business Park (sf)		31,276 14,216	31,276 14,216	General Office (sf) Business Park (sf)		1.56 1.40	ITE 770	0		25% 25%		0	0.00	General Office (sf) Business Park (sf)	31,276 14,216	1.56 1.40		20	5% 5%	25%	,	14	1.00	Business Park (sf)	14,216	14	
3B	Medical Office (sf)		2,843	2,843	Medical Office (sf)		2.39	ITE 720	0		25%	10%	0	0.00	Medical Office (sf)	2,843	2.39		7	5%	25%	10%	4	1.58	Medical Office (sf)	2,843	1 4	4
3B	R & D Office (sf)		6,824	6,824	R & D Office (sf)		1.22	ITE 760	0		25%		0	0.00	R & D Office (sf)	6,824	1.22	1 1	8	5%	25%		6	0.84	R & D Office (sf)	6,824	(6
3B	Restaurant-High Turnover (sf)		569	569	Restaurant-High Turnover (sf)		10.B1	ITE 932	0		25%	20%	0	0.00	Restaurant-High Tumover (sf)	569	10.81	1 1	6	5%	25%	20%	3	6,01	Restaurant-High Turnover (sf)	569	1	3
3B	Retail (sf)		1,137	1,137	Retail (sf)		0.96	ITE 820	0		25%	50%	0	0.00	Retail (sf)	1,137	0.96	-	1	5%	25%	50%	0	0.31	Retail (sf)	1,137		귀
3B 3B	Residential Subtotal Non-Residentail Subtotal	19 0	83 56,865	64 56,865	Residential Subtotal Non-Residentail Subtotal	19			14 0				10 0		Residential Sublotal Non-Residentail Sublotal	56,865			42 91				28 63		Residential Subtotal Non-Residentail Subtotal	56,865	63	-
3C	Single Family Housing (DU's)	7	0	-7	Single Family Housing (DU's)	7	0.75	ITE 210	5	10%	15%	0%	4	0.57	Single Family Housing (DU's)	0	0.75		0	10%	15%	0%	0	0.00	Single Family Housing (DU's)	-7	4	4
3C	Multi-Family Housing (DU's)	23	255	232	Multi-Family Housing (DU's)	23	0.51	ITE 220	12	10%	15%		9	0.40	Multi-Family Housing (DU's)	255	0,51	1 1	130	10%	15%		99	0.39		232		- 1
3C	Pump Station (sf)	8,408		-8,408	Pump Station (sf)	9,408			0		0%		0	0.00	Pump Station (sf)		1.50		0	EN/	0%		130	0.00	Pump Station (sf) General Office (sf)	-8,408 86,778		
3C	General Office (sf) Business Park (sf)	8,408	95,186 43,266	86,778 43,266	General Office (sf) Business Park (sf)	8,408	1.56 1.40	ITE 710	13 0	5%	15% 15%		10	1.25 0.00	General Office (sf) Business Park (sf)	95,186 43,266	1.56		148 61	5% 5%	15% 15%		120 49	1.26	Business Park (sf)	43,266		19
3C	Medical Office (sf)		43,266 8,653	8,653	Medical Office (sf)		2.39	ITE 720	0		15%	10%	0	0.00	Medical Office (sf)	8,653	2.39		21	5%	15%	10%	15	1.76	Medical Office (sf)	8,653		5
3C	R & D Office (sf)		20,768	20,768	R & D Office (sf)		1,22	ITE 760	0		15%		0	0.00	R & D Office (sf)	20,768	1,22		25	5%	15%		20	0.97	R & D Office (sf)	20,768		20
3C	Restaurant-High Turnover (sf)		1,731	1,731	Restaurant-High Turnover (sf)		10.81	ITE 932	0		15%	20%	0	0.00	Restaurant-High Tumover (sf)	1,731	10.81	1 1	19	5%	15%	20%	12		Restaurant-High Turnover (sf)	1,731		12
3C	Retail (sf)		3,461	3,461	Retail (sf)	-	0.96	ITE 820	0		15%	50%	0	0.00	Retail (sf)	3,461	0.96	-	3	5%	15%	50%	1	0.35	Retail (sf)	3,461 225		<u>.</u>
3C 3C	Residential Subtotal Non-Residentail Subtotal	30 16,816	255 173,065	225 156,249	Residential Subtotal Non-Residentail Subtotal	30 16,816			17 13				13 10		Residential Subtotal Non-Residentail Subtotal	255 173,065			130 277				99 218		Residential Subtotal Non-Residentail Subtotal	156,249		
3D.	Parking (sf)	150,000	351,610	201,610	Parking (sf)	150,000			0		0%		0	0.00	Parking (sf)	351,610			0		0%		0	0.00	Parking (sf)	201,610	1	0
3D	Residential Subtotal	0	0	0	Residential Subtotal	0			0				0		Residential Sublotal	0			0				0		Residential Subtotal	0		0
3D	Non-Residentail Subtotal	150,000	351,610	201,610	Non-Residentail Subtotal	150,000			0				0		Non-Residentail Subtotal	351,610			0				0		Non-Residentail Subtotal	201,610		0
3E	Elementary School (sf)	86,684	86,684	0	Elementary School (sf)	86,684	5.20 0.51	ITE 520	451 0	10%	15% 15%		383 0	4.42 0.00	Elementary School (sf) Multi-Family Housing (DU's)	86,684 553	5.20 0.51		451 282	10%	15% 15%		383 216	4,42 0,39		0 553		0
3E 3E	Multi-Family Housing (DU's) General Office (sf)		553 158,812	553 158,812	Multi-Family Housing (DU's) General Office (sf)		1.56	ITE 220 ITE 710	0	10%	15% 15%		0	0.00	General Office (sf)	158,812	1.56	1	248	5%	15%		200	1.26		158,812		
3E	Business Park (sf)		72,187	72,187	Business Park (sf)		1.40	ITE 770	0		15%		0	0.00	Business Park (sf)	72,187	1.40	1 1	101	5%	15%		82	1.13	1	72,187		
3E	Medical Office (sf)		14,437	14,437	Medical Office (sf)		2,39	ITE 720	0		15%	10%	0	0.00	Medical Office (sf)	14,437	2.39	1 1	35	5%	15%	10%	25	1,76	` '	14,437		25
3E	R & D Office (sf)		34,650	34,650	R & D Office (sf)		1.22	ITE 760	0		15%		0	0.00	R & D Office (sf)	34,650		1 1	42	5%	15%		34	0.98		34,650		- 1
3E	Restaurant-High Turnover (sf) Retail (sf)		2,888 5,775	2,888 5,775	Restaurant-High Turnover (sf) Retail (sf)		10.81 0.96	ITE 932	0		15% 15%	20% 50%	0	0.00	Reslaurant-High Turnover (sf) Retail (sf)	2,888 5,775	10.81		31	5% 5%	15% 15%	20% 50%	20	6.93 0.42		2,888 5,775		20
3E	Residential Subtotal	0	553	553	Residential Subtotal	0	J.90		0			2211	0	5.00	Residential Subtotal	553		\Box	282		74.00		216		Residential Subtotal	553		6
- 1		86,684	375,433		Non-Residentail Subtotal	86,684		1 1	451				383		Non-Residentail Subtotal	375,433		1	914	1	I	1	747	1	Non-Residentail Subtotal	288,749	36	34

	Lan	d Uses					Existing	Trip Ge	eneration	S							Future 1	Trip Generati	ons					Net Trip Ger	erations		
							T	Foot -	Base	% Project	%	% Pass-	Net	Net Trip	Leadille	Quantitu	Trip Rates	Foot - Base Vehicle	% Project	%	% Pass-	Net Vehicle	Nel Trip	Land Use	Quantity	Net Vehicle	Total Trips
Group	Land Use	Existing	Future	Net Change	Land Use	Quantity	Trip Rates	notes	Vehicle Trips	Internal/ Walk	Transit	Ву	Vehicle Trips	Rate	Land Use	Quantity	Inp Rates	notes Trips	Walk	Transit	Ву	Trips	Rate	Edilo 030	quantity	Trips	
																									141	55	
3F	Multi-Family Housing (DU's)	4	145	141	Multi-Family Housing (DU's)	4	0,51	ITE 220	-	10%	15%		2	0,38	Multi-Family Housing (DU's)	145	0.51	7.		15%		57	0,39	Multi-Family Housing (DU's) General Office (sf)	54,172	69	
3F	General Office (sf)		54,172	54,172	General Office (sf)		1,56	ITE 710	0		15%		0	0,00	General Office (sf)	54,172	1,56 1,40	8:		15% 15%		69 27	1,27	Business Park (sf)	24,624	27	
3F	Business Park (sf)		24,624	24,624	Business Park (sf)		1,40	I	0		15%	10%	0	0.00	Business Park (sf) Medical Office (sf)	24,624 4,925	2.39	1:		15%	10%	21 q	1,77	Medical Office (sf)	4,925	9	
3F	Medical Office (sf)		4,925	4,925	Medical Office (sf)		2,39 1,22	ITE 720	0		15% 15%	10%	١	0.00	R & D Office (sf)	11,819	1.22	1 1		15%	1070	11	0.96	R & D Office (sf)	11,819	11	
3F 3F	R & D Office (sf) Restaurant-High Turnover (sf)		11,819 984	11,819 984	R & D Office (sf) Restaurant-High Tumover (sf)		10.81	ITE 932	0		15%	20%	0	0.00	Restaurant-High Tumover (sf)	984	10.81	1 1		15%	20%	7	7.22	Restaurant-High Turnover (sf)	984	7	
3F	Retail (sf)		1.970	1.970	Retail (sf)		0.96		0		15%	50%	0	0.00	Retail (sf)	1,970	0.96		5%	15%	50%	1	0.41	Retail (sf)	1,970	1	
3F	Residential Sublotal	4	145	141	Residential Subtotal	4		1	2				2		Residential Subtotal	145		7-	1			57		Residential Subtotal	141	55	Ī
3F	Non-Residentail Subtotal	0	98,494	98,494	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	98,494		15	9			124		Non-Residentail Subtotal	98,494	124	
																								0	40	-11	
3G	Single Family Housing (DU's)	19	0	-19	Single Family Housing (DU's)	19	0.75	ITE 210	14	10%	15%	0%	11	0,57	Single Family Housing (DU's)	0	0.75			15%	0%	0	0.00	Single Family Housing (DU's)	-19 129	50	1
3G	Multi-Family Housing (DU's)	5	134	129	Multi-Family Housing (DU's)	5	0,51	ITE 220	3	10%	15%		2	0,46	Multi-Family Housing (DU's)	134	0.51	6		15%		52 63	0,39 1,25	Multi-Family Housing (DU's) General Office (sf)	50,255	63	
3G	General Office (sf)		50,255	50,255	General Office (sf)		1,56	ITE 710	0		15%		0	0.00	General Office (sf)	50,255	1,56	3		15% 15%		26	1.13	Business Park (sf)	22,843	26	1
3G	Business Park (sf)		22,843	22,843	Business Park (sf)		1,40	ITE 770	0		15%	10%	0	0.00	Business Park (sf)	22,843 4,569	1,40 2,39	1 1		15%	10%	8	1.75	Medical Office (sf)	4,569	8	
3G	Medical Office (sf)		4,569	4,569	Medical Office (sf)		2,39	ITE 720	١		15% 15%	10%	0	0.00	Medical Office (sf) R & D Office (sf)	10,965	1,22	1:		15%	10%	10	0.96	R & D Office (sf)	10,965	10	
3G 3G	R & D Office (sf) Restaurant-High Turnover (sf)		10,965 914	10,965	R & D Office (sf) Restaurant-High Turnover (sf)		1.22	ITE 760	0		15%	20%	0	0.00	Restaurant-High Turnover (sf)	914	10,81	11	1	15%	20%	6	7.07	Restaurant-High Turnover (sf)	914	6	
3G	Retail (sf)		1,827	1,827	Retail (sf)		0.96	ITE 820	0		15%	50%			Retail (sf)	1,827	0.96			15%	50%	1	0.44	Retail (sf)	1,827	1	1
3G	Grocery (sf)	3,359	1,021	-3.359	Grocery (sf)	3,359			3	5%	15%	40%	1	0,43	Grocery (sf)		0.96		5%	15%	40%	0	0.00	Grocery (sf)	-3,359	-1	4
3G	Residential Subtotal	24	134	110	Residential Subtotal	24	_		17				13		Residential Subtotal	134		6	3			52		Residential Subtotal	110	39	
3G	Non-Residentail Subtotal	3,359	91,373	88,014	Non-Residentail Subtotal	3,359			3				1		Non-Residentail Subtotal	91,373		14	3	1		115		Non-Residentail Subtotal	88,014	113	4
																									00.000		
3	Residential Subtotal	77	1,275	1,198	Residential Subtotal	77			51				38		Residential Subtotal	1,569		61				466		Residential Subtotal	66,392	-1 404	
	Non-Residentail Subtotal	256,859	1,155,779	898,920	Non-Residentail Subtotal	256,859			467				395		Non-Residentail Subtotal	1,354,586		1,59	5	1		1,273		Non-Residentail Subtotal	1,097,727	404	
							1 555								0	40	0.75		400/	250/	09/	24	0.51	Single Family Housing (DU's)	48	24	
4A	Single Family Housing (DU's)		48	48	Single Family Housing (DU's)		0.75		0	10%	25%	0%	0	0.00	Single Family Housing (DU's)	48	0.75 0.96	3		25% 15%	0% 40%	19	0,51	Shopping Center (sf)	-8.686	27	
4A	Shopping Center (sf)	49,447	40,761	-8,686	Shopping Center (sf)	49,447	0.96	ITE B20		5%	15%	50%	19	0.38	Shopping Center (sf) Residential Subtotal	40,761	0.96	3		13%	4070	24	0,40	Residential Subtotal	48	24	1
4A 4A	Residential Subtotal Non-Residentail Subtotal	0 49,447	48 40,761	-8.686	Residential Subtotal Non-Residentail Subtotal	0 49,447			0 47				19		Non-Residental Subtotal	40,761		3		1		19		Non-Residentail Subtotal	-8,686	0	
1 70	Non-Nesidentali Subtotal	45,447	40,701	-8,000	Non-Nesidentali Subtotal	40,417			"				,,,		Tion Tobleshan Sastotal	10,70											
4B	Shopping Center (sf)	139,839	179,355	39,516	Shopping Center (sf)	139,839	1,37	ITE B20	191	5%	15%	30%	108	0.77	Shopping Center (sf)	179,355	1,24	22	3 5%	15%	30%	126	0.70	Shopping Center (sf)	39,516	18	
48	Multi-Family Housing (DU's)	,	264	264	Multi-Family Housing (DU's)		0,51	ITE 220	0	10%	25%		0	0.00	Multi-Family Housing (DU's)	264	0,51	13	5 10%	25%		91	0,35	Multi-Family Housing (DU's)	264	91	
4B	Relail (sf)			0	Retail (sf)		0,96	1TE 820	0		15%		0	0.00	Retail (sf)									Retail (sf)		0	
4B	Reslaurant-High Turnover (sf)			0	Restaurant-High Turnover (sf)		10,81	ITE 932	0		15%		0	0.00	Restaurant-High Turnover (sf)									Restaurant-High Tumover (sf)		0	
4B	Restaurant-Fast Food (sf)			0	Restaurant-Fast Food (sf)		45.42	1TE 934	0		15%		0	0.00	Restaurant-Fast Food (sf)									Restaurant-Fast Food (sf)		0	
4B	General Office (sf)			0	General Office (sf)		1.56	ITE-710	0		15%		0	0,00	General Office (sf)	<u> </u>							_	General Office (sf)		0	
4B	Residential Subtotal	0	264	264	Residential Subtotal	0			0				0		Residential Subtotal	264		13		1		91		Residential Subtotal	264 39,516	91 18	
4B	Non-Residentail Subtotal	139,839	179,355	39,516	Non-Residentail Subtotal	139,839			191				108		Non-Residentail Subtotal	179,355		88	Б			126		Non-Residentail Subtotal	39,510	1 "	
١.									0				0		Residential Subtotal	390		17	,			115		Residential Subtotal	312	115	, [
4	Residential Subtotal Non-Residential Subtotal	400.000	312	312 30,830	Residential Subtotal Non-Residentail Subtotal	189,286]	238				127		Non-Residentail Subtotal	275,145		92				145		Non-Residentail Subtotal	30,830		
	Non-residentali Subtotal	189,286	220,116	30,630	Non-Residentali Subtotal	105,200			230				'2'		14011-1403Idelitali Gubiotal	270,140		"	*				1				
5	Single Family Housing (DU's)	5	63	58	Single Family Housing (DU's)	5	0.75	ITE 210	4	0%	25%	0%	3	0,56	Single Family Housing (DU's)	11	0.75		в 0%	25%	0%	6	0,56	Single Family Housing (DU's)	6	3	
5	Multi-Family Housing (DU's)	78	30	-48	Multi-Family Housing (DU's)	78			F .		25%		30	0,38	Multi-Family Housing (DU's)	87	0.51	4	4	25%		33	0.38	Multi-Family Housing (DU's)	9	3	
5	Church (sf)	1,900	28,328	26,428	Church (sf)	1,900			1_		25%		1_	0.39	Church (sf)	28,328	0.56	1	6	25%		12	0.42		26,428	11	4
5	Residential Subtotal	83	93	10	Residential Subtotal	83			44				33		Residential Subtotal	93		5				39		Residential Subtotal	15	6	
5	Non-Residentail Subtotal	1,900	28,328	26,428	Non-Residentail Subtotal	1,900	1		1				1		Non-Residentail Subtotal	28,328	1 1	1	6			12	1	Non-Residentail Subtotal	26,428	11	
							l .								Circle Front II	2	,		0 0%	450/	0%	0	0.00	Single Family Housing (DU's)		-3	. [
6	Single Family Housing (DU's)	5 267	30 248	25 -19	Single Family Housing (DU's) Multi-Family Housing (DU's)	5 267		ITE 210	4 136	0%	15% 15%	0%	3 116	0.64	Single Family Housing (DU's) Multi-Family Housing (DU's)	279	0.75 0.51	14	1	15% 15%	0%	121	0.43	Multi-Family Housing (DU's)	12	5	,
6	Multi-Family Housing (DU's) Residential Subtotal	272	278	-19	Residential Subtotal	272	0.51	11E 220	140		1376		119	0.43	Residential Subtotal	278	0.01	14		1070		121		Residential Subtotal	6	2	.]
6	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0			0				0	1	Non-Residentail Subtotal	0			0	1		0		Non-Residentail Subtotal	0	0	,
"	Noorganian Gubiotal		U			ľ								1													
7	Single Family Housing (DU's)	37	60	23	Single Family Housing (DU's)	37	0.75	ITE 210	28	0%	15%	0%	24	0,64	Single Family Housing (DU's)	0	0.75		0 0%	15%	0%	0	0.00	Single Family Housing (DU's)	-37		L
7	Multi-Family Housing (DU's)	33	10	-23	Multi-Family Housing (DU's)	33	0.51				15%		14	0.44	Multi-Family Housing (DU's)	70	0.51	3	6	15%		31	0.44	Multi-Family Housing (DU's)	37	16	
_ 7	Open Space (sf)	16,728	16,728	- 0	Open Space (sf)	16,728	0.02	ITE 412	0		0%		0	0.00	Open Space (sf)	16,728	0.02			0%	-	0	0.00	Open Space (sf)	0	0	4
7	Residential Subtotal	70	70	0		70	1		45				38		Residential Subtotal	70		3	6			31		Residential Subtotal	0	-7	, [
7	Non-Residentail Subtotal	16,728	16,728	0	Non-Residentail Subtotal	16,728	1		0				0		Non-Residentail Subtotal	16,728	1	1	0			0		Non-Residentail Subtotal	0	1 0	
1	0. 1 5				Olerate Complete to Committee					021	4501	001			Single Ferrille Hausis - (DUII-)		0.75		8 0%	15%	0%	41	0.64	Single Family Housing (DU's)	23	15	,
8	Single Family Housing (DU's)	41 58	63	22 -19	Single Family Housing (DU's) Multi-Family Housing (DU's)	41 58		ITE 210		0%	15% 15%	0%	26 26	0.64	Single Family Housing (DU's) Multi-Family Housing (DU's)	64 39	0.75 0.51			15%	0 76	17		Multi-Family Housing (DU's)	-19		
8	Multi-Family Housing (DU's) Residential Subtotal	99	102	3	Residential Subtotal	99	9,51	11. 220	61		1076		52	0.44	Residential Subtotal	102		6	-			58		Residential Subtotal	3	6	,
8	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	I		0				0		Non-Residentail Subtotal	0			0		1	0		Non-Residentail Subtotal	0	0	1
		-					Ī																		1	1	
9	Single Family Housing (DU's)	116	63	-53	Single Family Housing (DU's)	116	0.75	ITE 210	87	0%	25%	0%	65	0.56	Single Family Housing (DU's)	121	0.75	9	1 0%	1	0%	68	0,56	Single Family Housing (DU's)	5	3	:1
9	Multi-Family Housing (DU's)	0	57	57	Multi-Family Housing (DU's)	0	0.51	ITE 220	0		25%		.0	0.00	Multi-Family Housing (DU's)	0	0.51	_	0	25%		0	0.00	Multi-Family Housing (DU's)	4	3	Ħ
9	Residential Subtotal	116	120	4	Residential Subtotal	116			87				65		Residential Subtotal	120		8	0			68	1	Residential Subtotal Non-Residentail Subtotal	0		
9	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	I,	i i	0	U .	l i	, ,	0	ī	Non-Residentail Subtotal	0	1 1	1	v I	î		1 0	1	II (4011-1 (65)GOT(GII (GG)(GG)	14		

	Lan	nd Uses					Existing	Trip Ge	eneration	5							Future	e Trip G	eneration	i <u>s</u>					Net Trip Gen	erations		
Croup	Lond Upo	Eviation	Euluro	Not Change	Land Use	Quantity	Trip Rates	Foot -	Base Vehicle	% Project	%	% Pass-	Net Vehicle	Net Trip	Land Use	Quantity	Trip Rates	Foot -	Base Vehicle	% Project	%	% Pass-	Net Vehicle	Net Trip	Land Use	Quantity	Net Vehicle	e Total Trips
Group	Land Use	Existing	Fulure	Net Change	Land Use	Quantity	Trip Rates	notes	Trips	Internal/ Walk	Transit	Ву	Trips	Rate	Land Ose	Quantity	Trip Rates	notes	Trips	Walk	Transit	Ву	Trips	Rate	Land OS6	Quantity	Trips	
																								0.50	Circle Fee Nothernian (DUIN)	71	40	
10	Single Family Housing (DU's) Multi-Family Housing (DU's)	61 68	91 41	30 -27	Single Family Housing (DU's) Multi-Family Housing (DU's)	61 68	0.75 0.51	ITE 210	46 35	0%	25% 25%	0%	34 26	0.56	Single Family Housing (DU's) Mulli-Family Housing (DU's)	132	0.75 0.51		99	0%	25% 25%	0%	74	0.56	Single Family Housing (DU's) Multi-Family Housing (DU's)	-68	-26	
10	Church (sf)	2,112	2,112	-27	Church (sf)	2,112	0.56	ITE 220	1		25%		1	0,39	Church (sf)	2,112	0.56		1		25%		1	0,00	Church (sf)	0	0	
10	Residential Subtotal	129	132	3	Residential Subtotal	129			82				61		Residential Subtotal	132			100				75		Residential Subtotal	3	14	1
10	Non-Residentail Subtotal	2,112	2,112	0	Non-Residentail Subtotal	2,112			1				1		Non-Residentail Subtotal	2,112			1		1		1		Non-Residentail Subtotal	0	0	
														l							9504		43	0.50	0:1-	39	22	
11	Single Family Housing (DU's)	37 30	91	54 -30	Single Family Housing (DU's) Multi-Family Housing (DU's)	37 30	0,75 0,51	ITE 210	28 15	0%	25% 25%	0%	21 11	0,56 0.38	Single Family Housing (DU's) Multi-Family Housing (DU's)	76	0.75 0.51		57	0%	25% 25%	0%	43	0,56	Single Family Housing (DU's) Multi-Family Housing (DU's)	-30	-11	
11	Multi-Family Housing (DU's) Light Industrial (sf)	30	U	-30	Light Industrial (sf)	30	0.92	ITE 110	0		0%		0	0.00	Light Industrial (sf)		0.92		0		0%		0	0.00	Light Industrial (sf)		0	4
11	Residential Subtotal	67	91	24	Residential Subtotal	67			43				32	1	Residential Subtotal	91			57				43		Residential Subtotal	9	11	1
11	Non-Residentail Sublotal	0	0	0	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	0	0	
l l																4.050				F0/	450	00/	2		General Office (sf)	1,658	2	
12 12	General Office (sf) Business Park (sf)	0	1,658 19,348	1,658 19,348	General Office (sf) Business Park (sf)	0	1.56 1.40	ITE 710	0	0% 0%	15% 15%		0		General Office (sf) Business Park (sf)	1,658 19,348	1.56 1.40	1 1	27	5% 5%	15% 15%	0% 0%	22		Business Park (sf)	19,348	22	
12	Retail (sf)	0	27,641	27.641	Retail (sf)	0	0.96	ITE 820	0	0%	15%		0		Retail (sf)	27,641	0.96		27	5%	15%	50%	11		Retail (sf)	27,641	11	
12	R & D Office (sf)	0	5,528	5,528	R & D Office (sf)	0	1.22	ITE 760	0	0%	15%		0		R & D Office (sf)	5,528	1,22		7	5%	15%	0%	6		R & D Office (sf)	5,528	6	
12	Restaurant-Fast Food (sf)	0	1,106	1,106	Reslaurant-Fast Food (sf)	0	45.42	ITE 934	0		15%		0	0.00	Restaurant-Fast Food (sf)	1,106	45.42	\vdash	50	5%	15%	50%	20	18.25	Restaurant-Fast Food (sf)	1,106	20	- LS
12	Residential Subtotal	0	0	0	Residential Subtotal	0			0				0		Residential Subtotal Non-Residentail Subtotal	55,281	1		0 114				0 61		Residential Subtotal Non-Residentail Subtotal	55,281	61	
12	Non-Residentail Sublotal	0	55,281	55,281	Non-Residentail Subtotal	0			U				"		MOIT-Mesidentali Subtotal	55,281		[]	114				01		. sarr todicontali odototal	, J. J. Z. J. L. J.	"	
13	Single Family Housing (DU's)			0	Single Family Housing (DU's)		0.75	ITE 210	0	0%	15%	0%	0	0,00	Single Family Housing (DU's)		0.75		Ō	0%	15%	0%	0	0,00	Single Family Housing (DU's)	0	0	
13	Multi-Family Housing (DU's)	6	6	0	Multi-Family Housing (DU's)	6	0.51	ITE 220	3		15%		3	0.43	Multi-Family Housing (DU's)	6	0,51		3		15%		3	0.43	Multi-Family Housing (DU's)	0	0	
13	Children Care (sf)	9,379	9,379	0	Children Care (sf)	9,379	12_18	ITE 565	114		15%	10%	87	9,30	Children Care (sf)	9,379	12.18	1 1	114		15%	10%	87	9.30	Children Care (sf)	0	0	
13	Light Industrial (sf)	26,566	26,566 2,386	2,386	Light Industrial (sf) General Office (sf)	26,566	0.92 1.56	ITE 110	24	0%	0% 10%		24 0	0,90	Light Industriat (sf) General Office (sf)	26,566 2,386	0.92 1.56	1 1	24	5%	0% 10%		24	0.90	Light Industrial (sf) General Office (sf)	2,386	3	
13 13	General Office (sf) Business Park (sf)	0	27,833	27,833	Business Park (sf)	0	1.40	ITE 770	0	0%	10%		0		Business Park (sf)	27,833	1.40	1 1	39	5%	10%		33		Business Park (sf)	27,833	33	
13	Retail (sf)	0	39,761	39,761	Retail (sf)	0	0.96	ITE 820	0	0%	10%		0		Retail (sf)	39,761	0.96		38	5%	10%	50%	16		Retail (sf)	39,761	16	
13	R & D Office (sf)	0	7,952	7,952	R & D Office (sf)	0	1.22	ITE 760	0	0%	10%		0		R & D Office (sf)	7,952	1,22	1 1	10	5%	10%		9		R & D Office (sf)	7,952	9	
13	Restaurant-Fast Food (sf)	0	1,590	1,590	Restaurant-Fast Food (sf)	0	45.42	ITE 934	0		10%		0	0.00	Restaurant-Fast Food (sf)	1,590	45.42	\vdash	72	5%	10%	50%	31	19.36	Restaurant-Fast Food (sf)	1,590	31	-
13 13	Residential Subtotal Non-Residentail Subtotal	6 35.945	6 115,467	79,522	Residential Subtotal Non-Residentail Subtotal	6 35,945			3 138				3 111		Residential Sublotal Non-Residentail Sublotal	115,467		1 1	3 301				3 204		Residential Subtotal Non-Residentail Subtotal	79,522	92	
10	NOT-Residental Subtotal	35,545	115,407	7 9,322	Non-Nesidentali Subtotal	33,843		1 1	130				'''		Non-Nesidelitali Gubiotai	110,407		1 1					2.5					
14	Single Family Housing (DU's)			0	Single Family Housing (DU's)		0,75	ITE 210	0	0%	0%	0%	0	0,00	Single Family Housing (DU's)		0.75	1 1	0	0%	0%	0%	0	0.00	Single Family Housing (DU's)	0	0	
14	Multi-Family Housing (DU's)			0	Multi-Family Housing (DU's)	i i	0,51	ITE 220	.0		0%		0	0.00	Multi-Family Housing (DU's)		0,51	1 1	0		0% 0%		0	0.00	Multi-Family Housing (DU's) Non-Residential (sf)	0	0	
14	Non-Residential (sf) Residential Subtotal	0	0	0	Non-Residential (sf) Residential Subtotal	0		\vdash	0		0%		0	0.00	Non-Residential (sf) Residential Subtotal	0	_	\vdash	0		0%		0	0.00	Residential Subtotal	0	0	1
14	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	0		1 1	0				0		Non-Residentail Subtotal	0	0	
								\vdash						-			-	\vdash									-	4
Total	Single Family Housing (DU's)	347	609	262	Single Family Housing (DU's)	347	0.75	1,2	260				201	0,58	Single Family Housing (DU's)	609	0.75	1,2	339				256	0.42	Single Family Housing (DU's)	262	114	
Total	Multi-Family Housing (DU's)	621	2,206	1,585	Multi-Family Housing (DU's)	621	0.73	1,2	318				260	0.42	Multi-Family Housing (DU's)	2,206	0.73	1,9	1,037				773	0.35	Multi-Family Housing (DU's)	1,585	590	1
	Senior Housing (DU's)	0	105	105	Senior Housing (DU's)	0	0,20	"	0				0		Senior Housing (DU's)	105	0.20	. AV	21				14		Senior Housing (DU's)	105	14	1
	Retail / Medical Office (sf)	0	0	0	Retail / Medical Office (sf)	0		1 1	0				0	0.00	Retail / Medical Office (sf)	0			0		l.		0	0.00	Retail / Medical Office (sf)	0	0	
	Hospital / General Office (sf)	0	0	0	Hospital / General Office (sf)	0	0.00		0				0	0,00		0	2.60		0				104	0.00	Hospital / General Office (sf) Clinic	3,736	10	. 1
	Clinic Fire Station	34,850 4,110	38,586 6,325	3,736 2,215	Clinic Fire Station	34,850 4,110	3.60	(TE 630	126 0				95 0		Clinic Fire Station	38,586 6,325	3,60	1 1	139				0		Fire Station	2,215	0	,
	Hospital	0	1,118	1,118	Hospital	0			0				0		THO DIGITAL	1,118			0				0		Hospital	1,118	0	
	Library	0	8,939	8,939	Library	0	1.04		0				0		Library	8,939	1.04		9				7		Library	8,939	7	1
	Institute	477,842	772,990	295,148	Institute	477,842			0				0		Institute	772,990			0				0		Institute	295,148	120	
	University	625	1,450 393,745	825	University General Office (ef)	625 8,408	0.17	ITE 550	106 13				90 10	0.14	Students General Office (sf)	1,450 393,745	0.17 1.56	2	247 615				210 492	0.14 1.25	Students General Office (sf)	825 385,337	120 482	
	General Office (sf) Business Park (sf)	8,408	393,745 224,317	385,337 224,317	General Office (sf) Business Park (sf)	0,408	1.56	1,4	0				10	0,00	Business Park (sf)	224,317	1.40	1 1	314				254	1.13	Business Park (sf)	224,317	254	1
	Medical Office (sf)	0	35,427	35,427	Medical Office (sf)	0	2.39	1,11	0				0	0.00	Medical Office (sf)	35,427	2.39	1 1	86				62	1.75	Medical Office (sf)	35,427	62	
	R & D Office (sf)	0	98,506	98,506	R & D Office (sf)	0	1,22		0				0		R & D Office (sf)	98,506	1,22		119				96		R & D Office (sf)	98,506	96	1
	Restaurant-High Turnover (sf)	0	7,086	7,086	Restaurant-High Turnover (sf)	0	10.81	1,5	0				0	0.00	Restaurant-High Turnover (sf)	7,086	10,81	1,5	77				49	6.96	Restaurant-High Turnover (sf)	7,086 2,696	49 51	
	Restaurant-Fast Food (sf)	0 3,359	2,696 0	2,696 -3,359	Restaurant-Fast Food (sf) Grocery (sf)	3,359	45.42 0.96		0				0		Restaurant-Fast Food (sf) Grocery (sf)	2,696	45.42 0.96	1	122				51 0		Restaurant-Fast Food (sf) Grocery (sf)	-3,359	-1	1
	Grocery (sf) Retail (sf)	0,309	81,572	81,572	Retail (sf)	3,359	0.96	1,6	0				0	0,00	Retail (sf)	81,572	0.96	1,6	79				33	0.40	Retail (sf)	81,572	33	
	Pump Station (sf)	8,408	0	-8,408	Pump Station (sf)	8,408			0				0		Pump Station (sf)	0			0				0		Pump Station (sf)	-8,408	0	
	Parking (sf)	150,000	375,926	225,926	Parking (sf)	150,000			0				0		Parking (sf)	375,926			0				0		Parking (sf)	225,926	0	
	Elementary School (sf)	86,684	86,684	0	Elementary School (sf)	86,684	5.20		451				383		Elementary School (sf)	96,684	5,20		451				383		Elementary School (sf)	30,830	18	. [
	Shopping Center (sf) Church (sf)	189,286 4,012	220,116 30,440	30,830 26,428	Shopping Center (sf) Church (sf)	189,286 4,012	0.96 0.56		238				127 2		Shopping Center (sf) Church (sf)	220,116 30,440	0.96		262 17				145 13		Shopping Center (sf) Church (sf)	26,428	11	
	Open Space (sf)	16,728	16,728	20,420	Open Space (sf)	16,728	0,50		0				0	1	Open Space (sf)	16,728	0.55		0				0		Open Space (sf)	0	0	, [
	Light Industrial (sf)	26,566	26,566	0	Light Industrial (sf)	26,566	0,92	1,8	24				24	0.90	Light Industrial (sf)	26,566	0.92	1,8	24				24	0.90	Light Industrial (sf)	0	0	-1
	Children Gare (sf)	9,379	9,379	0	Children Care (sf)	9,379	12.18		114				87	-	Children Care (sf)	9,379	12,18		114	-			87		Children Care (sf)	0	_0	-
	Total				Total				1,656				1,280		Total				4,072				3,053		Total		1,908	
	Residential (DU's)	968	2,920	1,952	Residential (DU's)	968	ſ		578				460		Residential (DU's)	2,920	1		1,397				1,044		Residential (DU's)	1,952		
	Non-Residential (sf)	1,910,523	4,576,559	2,666,036	Non-Residential (sf)	1,910,523		l l	1,077				820	1	Non-Residential (sf)	4,576,559	1	1	2,675	1			2,009		Non-Residential (sf)	2,666,036	1,190	

	Lan	ıd Uses					Existing 1	rip Ge	nerations	1							Future T	rip Gener	ations						Net Trip Gene	erations		
Group	Land Use	Existing	Fulure	Net Change	Land Use	Quantily	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Net Trip Rate	Land Use	Quantity		oot Ba Veh	icle Inte	roject emal/ /alk Trai	% Pa			Trip ate	Land Use	Quantity	Net Vehicle Trips	Total Trips
								=										-			121	971			T			
1	Residential Subtotal	0	100	100	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Sublotal	100	0	0	0	0	0	0	0		Residential Subtotal	100	58	1,289
1	Non-Residental Subtotal	890,891	2,139,413	1,248,522	Non-Residentail Subtotal	890,891	0	0	0	0	0	0	0	Ū.	Non-Residentail Subtotal	2,139,413	0	0	0	0	0	0	0		Non-Residentail Subtotal	1,248,522 105	1231	1,209
2A	Residential Subtotal	0	105	105	Residential Subtotal	0	.0	0	0	0	0	0	0	0	Residential Subtotal	105	0	0	54	0	0		36		Residential Subtotal	381	36	37
2A	Non-Residentail Subtotal	33,000	33,381	381	Non-Residentail Subtotal	33,000	0	0	119	0	0	0	89	0	Non-Residentail Subtotal	33,381	0		120	0	0		90		Non-Residentail Subtotal Residential Subtotal	117	41	- 51
2B	Residential Subtotal	0	117	117	Residential Subjotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	117	0	0	60	0	0	1	14		Non-Residentail Subtotal	31,004	9	50
2B	Non-Residentail Subtotal	5,960	36,964	31,004	Non-Residentail Subtotat	5,960	0	0	7	0	0	0	5	0	Non-Residentail Subtotal	36,964	0	0	61	0	0		26		Residential Subtotal	70	5	
2C	Residential Subtotal	49	119	70	Residential Subtotal	49	0	0	25	0	0	0)	21	0	Residential Subtotal	119	0	Ĭ.	247	١	١		10		Non-Residentail Subtotal	295,148	120	125
2C	Non-Residentail Subtotal	477,842	772,990	295,148	Non-Residentail Subtotal	477,842	0	. 0	106	0	0	0	90	0	Non-Residentail Subtotal	772,990	0	0	21	0	0		14		Residential Subtotal	105	14	
3A	Residential Subtotal	0	105	105	Residential Subtotal	0	0	0	0	0	0	0	0	ر ا	Residential Subtotal	8,939	0	٥	21	0	0	١	7	- 31	Non-Residentail Subtotal	8,939	7	21
3A.	Non-Residentail Subtotal	0	8,939	8,939	Non-Residentail Subtotal	0	0	0	14	0	0	0	10	0	Non-Residental Subtotal Residential Subtotal	83	0	0	42	0	0	0	28		Residential Subtotal	64	19	
3B	Residential Subtotal	19	83	64	Residential Subtotal	19	160	0	14	.000	٥	١	10	0	APATORSMOOTH	56,865	0	0	91	٥	0		63		Non-Residentail Subtotal	56,865	63	82
3B	Non-Residental Subtotal	0	56,865	56,865	Non-Residental Subtotal	30	0	0	17	0	0	0	13	- 0	Non-Residental Subtotal Residential Subtotal	255	0	0	130	0	0	-	99		Residential Subtotal	225	86	
3C	Residential Subtotal	30 16,816	255 173,065	225 156,249	Residential Subtotal Non-Residentail Subtotal	16,816	0	9617	17	0	,	١	10		Non-Residental Subtotal	173,065	١		277	0	0		18		Non-Residentail Subtotal	156,249	207	293
3C 3D	Non-Residentail Subtotal Residential Subtotal	16,816	1/3,065	150,249	Residential Subtotal	16,816	0	0	13	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0		Residential Subtotal	0	0	
3D	Non-Residentail Subtotal	150,000	351,610	201,610	Non-Residentall Subtotal	150,000	0	٥	٥	0	0	0	0	0	Non-Residentail Subtotal	351,610	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	201,610	0	0
3E	Residential Subtotal	130,000	553	553	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	553	0	0	282	0	0	0 2	16	0	Residential Subtotal	553	216	
3E	Non-Residentail Subtotal	86,684	375,433	288,749	Non-Residentail Subtotal	86,684	0	0	451	0	0	0	383	0	Non-Residentail Subtotal	375,433	0	0	914	0	0	0 7	47	0	Non-Residentail Subtotal	288,749	364	579
3F	Residential Subtotal	4	145	141	Residential Subtotal	4	0	0	2	0	0	0	2	0	Residential Subtotal	145	0	0	74	0	0	0	57	0	Residential Subtotal	141	55	
3F	Non-Residentall Subtotal	0	98,494	98,494	Non-Residentail Subtotal	0	0		0	0	0	0	.0	0	Non-Residental Subtotal	98,494	0	0	158	0	0	0 1	24	0	Non-Residentail Subtotal	98,494	124	179
3G	Residential Subtolal	24	134	110	Residential Subtotal	24	0	0	17	0	0	0	13	0	Residential Subtotal	134	0	0	68	0	0	0	52	0	Residential Subtotal	110	39	
3G	Non-Residentail Subtotal	3,359	91,373	88,014	Non-Residentail Subtotal	3,359	0	0	3	0	0	0	1	0	Non-Residentail Subtotal	91,373	0	0	146	0	0	0 1	15	0	Non-Residentail Sublotal	88,014	113	152
4A	Residential Subtolal	0	40	48	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Sublotal	48	0	0	36	0	0	0	24	0	Residential Subtotal	48	24	
4A	Non-Residentail Subtotal	49,447	40,761	-8,686	Non-Residentail Subtotal	49,447	0	0	47	0	0	0	19	0	Non-Residentail Subtotal	40,761	0	0	39	0	0	0	19	0	Non-Residentail Subtotal	-8,686	0	24
48	Residential Subtotal	0	264	264	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	264	0	0	135	0	0	0	91	0	Residential Subtotal	264	91	
4B	Non-Residentail Sublotal	139,839	179,355	39,516	Non-Residentail Subtotal	139,839	0	0	191	0	0	0	108	0	Non-Residental Subtotal	179,355	0	0	886	0	0	0	126	0	Non-Residentail Subtotal	39,516	18	109
5	Residential Subtotal	83	93	10	Residential Subtotal	83	0	0	43.75	0	0	0	32,8125	0	Residential Subtotal	93	0	0	52	0	0	0	39	0	Residential Subtotal	15	6	
5	Non-Residentail Subtotal	1,900	28,328	26428	Non-Residentail Subtotal	1,900	0	0	1	0	0	0	0.75	0	Non-Residentall Subtotal	28,328	0	0	16	0	0	0	12	0	Non-Residentail Subtotal	26428	11	18
6	Residential Subtotal	272	278	6	Residential Subtotal	272	0	0	140	0	0	0	119	0	Residential Sublotal	278	0	0	142	0	0	0	121	0	Residential Subtotal	6	2	
6	Non-Residentall Subtotal	0	0	0	Non-Residentail Subtotal	.0	0	0	0	.0	0	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	2
7	Residential Subtotal	70	70	0	Residential Subtotal	70	0	0	45	0	0	0	38	0	Residential Subtotal	70	0	0	36	0	0	0	31	0	Residential Subtotal	0	-7	
7	Non-Residentail Subtotal	16,728	16,728	0	Non-Residentail Sublotal	16,728	.0	0	.0	0	. 0	0	0	.0	Non-Residental Subtotal	16,728	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	-7
8	Residential Subtolal	99	102	3	Residential Subtotal	99	0	0	61	0	0	0	52	0	Residential Subtotal	102	0	D	68	0	0	0	58	٥	Residential Subtotal	3	6	
8	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotat	0	0	0	0	0	0	0	0	0	Non-Residentali Subtotal	0	0	0	0	.0	0	0	0		Non-Residentail Subtotal	0	0	6
9	Residential Subtotal	116	120	4	Residential Subtotal	116	0	0	87	0	0	0	65	0	Residential Subtotal	120	0	0	91	0	0	0	68	- 1	Residential Subtotal	4	3	
9	Non-Residentall Subtotal	0	0	0	Non-Residentail Subtotal	0	0	-0	0	0	0	. 0	. 0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0		Non-Residentail Subtotal	0	-0	3
10	Residential Subtotal	129	132	3	Residential Subtotal	129	0	0	82	0	0	0	61	0	Residential Subtotal	132	0	0	100	0	0	0	75		Residential Subtotal	3	14	
10	Non-Residentail Subtotal	2,112	2,112	0	Non-Residentail Subtotal	2,112	0	0	1	.0	0	0	1	0	Non-Residentail Subtotal	2,112	0	0	.1	0	0	0	1		Non-Residentali Subtotal	0	11	14
11	Residential Subtotal	67	91	24	Residential Subtotal	67	0	0	43	0	0	0	32	0	Residential Subtotal	91	0	0	57	0	0	0	43		Residential Subtotal	9	11	11
.11	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	D	0		Non-Residentail Subtotal		0	
12	Residential Subtotal	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0		Residential Subtotal	55,281	61	61
12	Non-Residentail Subtotal	0	55,281	55,281	Non-Residentail Subtotal	0_	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	55,281	0	0	114	0	0		61		Non-Residentail Subtotal Residential Subtotal	55,281	0	- 01
13	Residential Subtotal	6	6	0	Residential Subtotal	6	0	0	3	0	0	0	3	0	Residential Sublotal	445.467	0	0	3	0		0	3	- 1	Non-Residentali Subtotal	79,522	92	92
13	Non-Residentail Subtotal	35,945	115,467	79,522	Non-Residentail Subtotal	35.945	0	0	138	0	0	0	111	0	Non-Residentail Subtotal	115,467	0	0	301	0	0		0		Residential Subtotal	79,522	0	32
14	Residential Subtotal	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0		1	Non-Residentail Subtotal	0	0	
14	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	1 0	0	0	0	0	0	0	1 0	Non-Residentail Subtotal	1 0	0 1	V	- J	V]	VI	V	V 1					
	Tatal				Total				1657				4 204		Total				4,850			3	131		Total		3,139	3,139
	Total	000	0.000	4.050	Total	nen			1,657				1,281		Residential (DU's)	2,920			1,512			1	121		Residential (DU's)	1,952	718	`
	Residential (DU's)	968	2,920	1,952	Residential (DU's)	968			579 1,077				461 820		Non-Residential (sf)	4,576,559		110	3,338			- 3	009		Non-Residential (sf)	2,666,036		
_	Non-Residential (sf)	1,910,523	4,576,559	2,666,036	Non-Residential (sf)	1,910,523			1,077				820		Non-residential (SI)	4,5/0,559			,,000							1		1

	Lan	nd Uses					Existing	Trip Ge	eneration	<u>s</u>							Future	Trip Ger	nerations	0:					Net Trip Gen	erations	
Group	Land Use	Existing	Future	Net Change	Land Use	Quantity	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Net Trip Rate	Land Use	Quantity	Trip Rates	Fool - ,	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Net Trip Rate	Land Use	Quantity	Net Vehicle Trips
1 1 1	Single-Family Housing (DU's) Relail / Medical Office (sf) Hospital / General Office (sf)	0	100	100	Single-Family Housing (DU's) Retail / Medical Office (sf) Hospital / General Office (sf)	0									Single-Family Housing (DU's) Retail / Medical Office (sf) Hospital / General Office (sf)	100									Single-Family Housing (DU's) Retail / Medical Office (sf) Hospital / General Office (sf)	100	76
1	Residential Subtotal Non-Residentail Subtotal	0 890,891	100 2,139,413	100 1,248,522		0 890,891									Residential Subtotal Non-Residentail Subtotal	100 2,139,413									Residential Subtotal Non-Residentail Subtotal	100 1,248,522	76 1,608
A	Multi-Family Housing (DU's)	0	105	105	Multi-Family Housing (DU's)	0	0.62		0	10%	25%	0%	0	0.00	Multi-Family Housing (DU's)	105	0.62		65	10%	25%	0%	44	0,42	Multi-Family Housing (DU's)	105	44
A	Clinic (sf)	33,000	33,381	381	Clinic (sf)	33,000	5.18		171	0%	25%	0%	128	0.00	Clinic (sf)	33,381	5.18	-	173	0%	25%	0%	130	0.00	Clinic (sf)	381	2 44
١,	Residential Subtotal	0	105	105		0			0				0		Residential Subtotal	105	1		65 173				44 130		Residential Subtotal Non-Residentail Subtotal	105 381	2
۱ ا	Non-Residentail Subtotal	33,000	33,381	381	Non-Residentail Subtotal	33,000			171				128		Non-Residentail Subtotal	33,381			1/3				130		NOTE VESIGENTAL OUDIOID		
	Multi-Family Housing (DU's)	0	117	117	Multi-Family Housing (DU's)	0	0.62		0	10%	25%		0	0.00	Multi-Family Housing (DU's)	117	0.62		73	10%	25%		49	0.42	Multi-Family Housing (DU's)	117	49
1	Fire Station (sf)	4,110	6,325	2,215	Fire Station (sf)	4,110				0%	0%	0%	0	0.00	Fire Station (sf)	6,325				0%	0%	0%	0		Fire Station (sf)	2,215	0
1	Clinic (sf)	1,850	5,205	3,355	Clinic (sf)	1,850	5,18		10	0%	25%	0%	8	0.00	Clinic (sf)	5,205	5.18		27	0%	25%	0%	20	0,00	Clinic (sf)	3,355	13
	Hospital (sf)	0	1,118	1,118	Hospital (sf)	0									Hospital (sf)	1,118									Hospital (sf)	1,118	
4	Parking (sf)	0	24,316	24,316		0	-			_			_		Parking (sf)	24,316			70				49		Parking (sf) Residential Subtotal	24,316	49
	Residential Subtotal	0	117	117		5,960			10				0 я		Residential Subtotal Non-Residentail Subtotal	117 36,964			73 27				20		Non-Residentail Subtotal	31,004	13
	Non-Residentail Subtotal	5,960	36,964	31,004	Non-Residentail Sublotal	5,960			10				8		Non-Residentali Subtotal	30,964			2'				20		Hon-residentali Cabtoles	01,001	
ı	Multi-Family Housing (DU's)	49	119	70	Multi-Family Housing (DU's)	49	0.62		30		15%		26	0.52	Multi-Family Housing (DU's)	119	0.62		74	50%	15%		31	0,26	Multi-Family Housing (DU's)	70	6
١	Institute	477,842	772,990	295,148	Institute	477,842			0		0%		0	0.00	Institule	772,990		- 1	0		0%		0	0.00	Institute	295,148	0
ı	University	625	1,450	825		625	0_17		106		15%		90	0,14	University	1,450	0.17	- 1	247		15%		210	0.14	University	825	120
+	Institute			0	Institute		-	\vdash	0		0%		0	0.00	Institute Residential Subtotal	119		-	74		0%		31		Institute Residential Subtotal	70	6
١	Residential Subtotal Non-Residentail Subtotal	49 477,842	119 772,990	70 295,148	Residential Subtotal Non-Residentail Subtotal	49 477,842			30 106				26 90		Non-Residentail Subtotal	772,990			247				210		Non-Residentail Subtotal	295,148	120
l	B 6.10				B. 13. 15.15. Mari	1 40			30				26		Residential Subtotal	341			212				125		Residential Subtotal	292	99
l	Residential Subtotal Non-Residentail Subtotal	49 516,802	341 843,335	292 326,533	Residential Subtotal Non-Residentail Subtotal	516,802			287				26		Non-Residentail Subtotal	843,335			447				360		Non-Residentail Subtotal	326,533	134
l	Senior Housing (DU's)	0	105	105	Senior Housing (DU's)	0	0.25			10%	25%	0%	0	0.00	Senior Housing (DU's)	105	0,25		26	10%	25%	0%	18	0.17	Senior Housing (DU's)	105	18
l	Library (sf)	0	8,939	8,939	Library (sf)	0	7.30			0%	25%	0%	0	0.00	Library (sf)	8,939	7.30		65	0%	25%	0%	49		Library (sf)	8,939	49
t	Residential Subtotal	0	105	105	Residential Subtotal	0			0				0		Residential Subtotal	105			26				18		Residential Subtotal	105	18
١	Non-Residentail Subtotal	0	8,939	8,939	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	8,939			65				49		Non-Residentail Subtotal	8,939	49
l	Single Family Housing (DU's)	19	0	-19	Single Family Housing (DU's)	19	1.00		19	10%	25%	0%	13	0.68	Single Family Housing (DU's)	0	1,00		0	10%	25%	0%	0	0.00	Single Family Housing (DU's)	-19	-13
I	Multi-Family Housing (DU's)		83	83	Multi-Family Housing (DU's)		0.62		0	10%	25%		0	0.00	Multi-Family Housing (DU's)	83	0.62	- 1	51 47	10%	25% 25%		34	1.07	Multi-Family Housing (DU's) General Office (sf)	83 31,276	34
l	General Office (sf)		31,276	31,276	General Office (sf)		1,49		0		25% 25%		0	0.00	General Office (sf) Business Park (sf)	31,276 14,216	1.49 1.26	- 1	18	5% 5%	25%		13	0.90	Business Park (sf)	14,216	13
ı	Business Park (sf) Medical Office (sf)		14,216 2,843	14,216 2,843	Business Park (sf) Medical Office (sf)		1.26 3.57		0		25%	10%	١	0,00	Medical Office (sf)	2,843	3,57	- 1	10	5%	25%	10%	6	2.26	Medical Office (sf)	2,843	6
ı	R & D Office (sf)		6,824	6,824	R & D Office (sf)		1.07		0		25%	1070	٥	0.00	R & D Office (sf)	6,824	1,07		7	5%	25%		5	0.73	R & D Office (sf)	6,824	5
	Restaurant-High Turnover (sf)		569	569	Restaurant-High Turnover (sf)		9.85		0		25%	20%	0	0.00	Restaurant-High Tumover (sf)	569	9.85		6	5%	25%	20%	3	6,01	Restaurant-High Turnover (sf)	569	3
1	Retail (sf)		1,137	1,137	Retail (sf)		3.71		0		25%	50%	0	0.00	Retail (sf)	1,137	3.71		4	5%	25%	50%	1	1.25	Retail (sf)	1,137	1
I	Residential Subtotal	19	83	64	Residential Subtotal	19		1 1	19				13		Residential Subtotal	83			51	- 1			34		Residential Subtotal	64	22
١	Non-Residentail Subtotal	0	56,865	56,865	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	56,865			92				63		Non-Residentail Subtotal	56,865	03
1	Single Family Housing (DU's)	7	0	-7	Single Family Housing (DU's)	7	1.00		7	10%	15%	0%	5	0.77	Single Family Housing (DU's)	0	1,00		0	10%	15%	0%	0	0.00	Single Family Housing (DU's)	-7	-5
l	Multi-Family Housing (DU's)	23	255	232	Multi-Family Housing (DU's)	23	0.62		14	10%	15%		11	0.47	Multi-Family Housing (DU's)	255	0.62		158	10%	15%		121	0.47	Multi-Family Housing (DU's)	232	110
l	Pump Station (sf)	8,408		-8,408	Pump Station (sf)	8,408			0		0%		0	0,00	Pump Station (sf)				0		0%		0	0.00	Pump Station (sf)	-8,408	0
	General Office (sf)	8,408	95,186	86,778	General Office (sf)	8,408	1.49		13	5%	15%		10	1.25	General Office (sf)	95,186	1.49		142	5%	15%		115 44	1.03	General Office (sf) Business Park (sf)	86,778 43,266	104
	Business Park (sf)		43,266	43,266	Business Park (sf)		1.26		0		15% 15%	4.097	0	0,00	Business Park (sf) Medical Office (sf)	43,266 8,653	1.26 3.57		55 31	5% 5%	15% 15%	10%	23	2,60	Medical Office (sf)	8,653	23
	Medical Office (sf) R & D Office (sf)		8,653 20,768	8,653 20,768	Medical Office (sf) R & D Office (sf)		3.57 1.07		0		15%	10%	"	0.00	R & D Office (sf)	20,768	1.07		22	5%	15%	1070	18	0.86	R & D Office (sf)	20,768	18
1	Restaurant-High Tumover (sf)		1,731	1,731	Restaurant-High Tumover (sf)		9.85		0		15%	20%	0	0.00	Restaurant-High Turnover (sf)	1,731	9.85		17	5%	15%	20%	11	6.34	Restaurant-High Turnover (sf)	1,731	11
	Retail (sf)		3,461	3,461	Relail (sf)		3.71		0		15%	50%	0	0.00	Retail (sf)	3,461	3.71		13	5%	15%	50%	5	1.52	Retail (sf)	3,461	. 5
Ī	Residential Subtotal	30	255	225	Residential Subtotal	30			21				16		Residential Subtotal	255			158				121		Residential Subtotal	225	105
	Non-Residentail Subtotal	16,816	173,065	156,249	Non-Residentail Sublotal	16,816		1	13				10		Non-Residentail Subtotal	173,065			280				216		Non-Residentail Subtotal	156,249	205
L	Parking (sf)	150,000	351,610	201,610	Parking (sf)	150,000			0		0%		0	0.00	Parking (sf)	351,610			0		0%		0	0.00	Parking (sf)	201,610	0
l	Residential Subtotal	0	0	0	Residential Subtotal	0	1		0				0		Residential Subtotal	0			0				0		Residential Subtotal	201,610	0
	Non-Residentail Subtotal	150,000	351,610	201,610	Non-Residentail Subtotal	150,000			0				0		Non-Residentail Subtotal	351,610			0				0		Non-Residentail Sublotal	201,010	1 "
	Elementary School (sf)	86,684	86,684	0	Elementary School (sf)	86,684	1,21		105		15%		89	1.03	Elementary School (sf)	86,684	1,21		105		15%		89	1.03	Elementary School (sf)	0	0
	Multi-Family Housing (DU's)		553	553	Multi-Family Housing (DU's)		0.62		0	10%	15%		0	0.00	Multi-Family Housing (DU's)	553	0.62		343	10%	15%		262	0.47	Multi-Family Housing (DU's) General Office (sf)	553 158,812	262 191
	General Office (sf)		158,812	158,812	General Office (sf)		1:49		0		15%)	0	0.00	General Office (sf)	158,812	1.49		237 91	5% 5%	15% 15%		191 73	1.21	Business Park (sf)	72,187	73
	Business Park (sf) Medical Office (sf)		72,187 14,437	72,187 14,437	Business Park (sf) Medical Office (sf)		1,26 3.57		0		15% 15%	10%	0	0.00	Business Park (sf) Medical Office (sf)	72,187 14,437	3.57		52	5%	15%	10%	38	2.62	Medical Office (sf)	14,437	38
	R & D Office (sf)		34,650	34,650	R & D Office (sf)	1	1.07		0		15%	10%	0	0.00	R & D Office (sf)	34,650	1.07		37	5%	15%		30	0.86	R & D Office (sf)	34,650	30
	Restaurant-High Turnover (sf)		2,888	2,888	Restaurant-High Turnover (sf)		9.85		0		15%	20%	0	0.00	Restaurant-High Turnover (sf)	2,888	9.85		28	5%	15%	20%	18	6.26	Restaurant-High Tumover (sf)	2,898	18
	Retail (sf)		5,775	5,775	Retail (sf)		3.71		0		15%	50%	0	0.00	Retail (sl)	5,775	3.71		21	5%	15%	50%	8	1.47	Retail (sf)	5,775	8
ľ	Residential Subtotal	0	553	553	Residential Subtotal	0			0				0		Residential Subtotal	553			343				262		Residential Subtotal	553	
-1	Non-Residentail Subtotal	86,684	375,433	288,749	Non-Residentail Subtotal	86,684	I	ı 1	105			I	89	1	Non-Residentail Subtotal	375,433	1	11	571				448	1	Non-Residentail Subtotal	288,749	359

		d Uses					ENIONIH.	THE O	enerations	*							Lature	Trip Ger	TET GET ETT	-					Net Trip Ger			
Group	Land Use	Existing	Future	Net Change	Land Use	Quantity	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Nel Vehicle Trips	Net Trip Rate	Land Use	Quantity	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transil	% Pass- By	Net Vehicle Trips	Net Trip Rale	Land Use	Quantity	Net Vehicl Trips	e Total Trip
\Box																				400/	450/			0.47	Multi Family Hayaina (DUIs)	141	67	
3F	Multi-Family Housing (DU's)	4	145	141	Multi-Family Housing (DU's)	4	0.62		2	10%	15%		2	0,38	Multi-Family Housing (DU's)	145	0.62 1.49		90 81	10% 5%	15% 15%		69 65	0.47 1.21	Multi-Family Housing (DU's) General Office (sf)	54,172	65	
3F 3F	General Office (sf) Business Park (sf)		54,172 24,624	54,172 24,624	General Office (sf) Business Park (sf)		1.49 1.26		0		15% 15%		0	0.00	General Office (sf) Business Park (sf)	54,172 24,624	1.26		31	5%	15%		25	1.02	Business Park (sf)	24,624	25	
3F	Medical Office (sf)		4,925	4,925	Medical Office (sf)		3.57		0		15%	10%	0	0,00	Medical Office (sf)	4,925	3,57		18	5%	15%	10%	13	2.66	Medical Office (sf)	4,925	13	1
3F	R & D Office (sf)		11,819	11,819	R & D Office (sf)		1.07		0		15%	10%	0	0,00	R & D Office (sf)	11,819	1.07		13	5%	15%		10	0.89	R & D Office (sf)	11,819	10	
3F	Restaurant-High Turnover (sf)		984	984	Restaurant-High Turnover (sf)		9_85		0		15%	20%	0	0.00	Restaurant-High Tumover (sf)	984	9.85		10	5%	15%	20%	6	6.57	Restaurant-High Turnover (sf)	984	6	
3F	Retail (sf)		1,970	1,970	Retail (sf)		3,71		0		15%	50%	- 0	0.00	Retail (sf)	1,970	3.71		7	5%	15%	50%	3	1.43	Retail (sf)	1,970	3	4
3F	Residential Subtotal	4	145	141	Residential Subtotal	4			2				2		Residential Subtotal	145			90				69		Residential Subtotal	141	67	
3F	Non-Residentail Subtotal	0	98,494	98,494	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	98,494			160				123		Non-Residentail Sublotal	98,494	123	
3G	Single Family Housing (DU's)	19	0	-19	Single Family Housing (DU's)	19	1_00		19	10%	15%	0%	15	0,77	Single Family Housing (DU's)	0	1.00		0	10%	15%	0%	0	0.00	Single Family Housing (DU's)	-19	-15	1
3G	Multi-Family Housing (DU's)	5	134	129	Multi-Family Housing (DU's)	5	0.62		3	10%	15%		2	0,46	Multi-Family Housing (DU's)	134	0.62		83	10%	15%		63	0.47	Multi-Family Housing (DU's)	129	61	
3G	General Office (sf)		50,255	50,255	General Office (sf)		1_49		0		15%		0	0,00	General Office (sf)	50,255	1,49		75	5%	15%		61	1,21	General Office (sf)	50,255	61	
3G	Business Park (sf)		22,843	22,843	Business Park (sf)		1,26		0		15%		0	0,00	Business Park (sf)	22,843	1,26		29	5%	15%	4004	23	1.03	Business Park (sf)	22,843	23 12	1
3G	Medical Office (sf)		4,569	4,569	Medical Office (sf)		3,57		0		15%	10%	0	0,00	Medical Office (sf)	4,569	3,57		16	5%	15%	10%	12 10	2.54	Medical Office (sf) R & D Office (sf)	4,569 10,965	12	1
	R & D Office (sf)		10,965	10,965	R & D Office (sf)		1,07		0		15%		0	0.00	R & D Office (sf)	10,965	1,07		12	5%	15%	000/	10	0.88	Restaurant-High Turnover (sf)	914	10	1
3G	Restaurant-High Turnover (sf)		914	914	Restaurant-High Turnover (sf)		9,85		0		15%	20%	0	0,00	Restaurant-High Turnover (sf)	914 1,827	9.85 3.71		9 7	5% 5%	15% 15%	20% 50%	6 3	6.36 1.55	Restaurant-High Turnover (st) Retail (sf)	1,827	3	1
3G	Retail (sf)	2.250	1,827	1,827	Retail (sf)	0.050	3.71		*	E0/	15%	50%		4 70	Retail (sf)	1,827	3.71		, l	5%	15%	40%	ا م	0.00	Grocery (sf)	-3,359	-6	
3G 3G	Grocery (sf) Residential Subtotal	3,359 24	134	-3,359 110	Grocery (sf) Residential Subtotal	3,359	3.71	_	12 22	5%	15%	40%	17	1,73	Grocery (sf) Residential Sublotal	134	3/1	-	83	370	1070	TU /0	63	0.00	Residential Subtotal	110	47	1
3G 3G	Non-Residentail Subtotal	3,359	91,373	88,014	Non-Residentail Subtotal	3,359			12				6		Non-Residentail Subtotal	91,373			148			_	114		Non-Residentail Subtotal	88,014	108	-
															B. 11. 11.10.11.11	4 500			751				568		Residential Subtotal	1,198	520	.
3	Residential Subtotal Non-Residentail Subtotal	77 256,859	1,275 1,155,779	1,198 898,920	Residential Subtotal Non-Residentail Subtotal	77 256,859			64 130				47 106		Residential Subtotal Non-Residentail Subtotal	1,569 1,354,586			1,316				1,012		Non-Residentail Sublotal	697,310	907	
4A	Single Family Housing (DU's)		48	48	Single Family Housing (DU's)		1,00		0	10%	25%	0%	0	0,00	Single Family Housing (DU's)	48	1.00		48	10%	25%	0%	32	0.68	Single Family Housing (DU's)	48	32	
	Shopping Center (sf)	49,447	40,761	-8,686	Shopping Center (sf)	49,447	3.71		183	5%	15%	50%	74	1.49	Shopping Center (sf)	40,761	3.71		151	5%	15%	40%	73	1.79	Shopping Center (sf)	-8,686	-1	
4A	Residential Subtotal	0	48	48	Residential Sublolal	0			0		.072	9070	0	1110	Residential Subtotal	48			48				32		Residential Subtotal	48	32	
4A	Non-Residentall Subtotal	49,447	40,761	-8,686	Non-Residentail Subtolal	49,447			183				74		Non-Residentail Subtotal	40,761			151				73		Non-Residentail Subtotal	-8,686	-1	
4B	Shopping Center (sf)	139,839	179,355	39,516	Shopping Center (sf)	139,839	5,36		750	5%	15%	30%	424	3.03	Shopping Center (sf)	179,355	3.71		886	5%	15%	30%	501	2.79	Shopping Center (sf)	39,516	77	
4B	Multi-Family Housing (DU's)		264	264	Multi-Family Housing (DU's)		0,62		0	10%	25%		0	0.00	Multi-Family Housing (DU's)	264	0,62		164	10%	25%		111	0.42	Multi-Family Housing (DU's)	264	111	1
4B	Retail (sf)			0	Retail (sf)		3,71		0		15%		0	0,00	Retail (sf)	1	""								Relail (sf)		0	
4B	Restaurant-High Turnover (sf)			0	Restaurant-High Turnover (sf)	1	9.85		0		15%		0	0.00	Restaurant-High Tumover (sf)										Restaurant-High Turnover (sf)	1.	0	
4B	Restaurant-Fast Food (sf)			0	Restaurant-Fast Food (sf)	il u	32,65		0		15%		0	0,00	Reslaurant-Fast Food (sf)										Restaurant-Fast Food (sf)		0	
4B	General Office (sf)			0	General Office (sf)		1.49		0		15%		0	0.00	General Office (sl)										General Office (sf)		0	4
4B 4B	Residential Subtotal Non-Residentail Subtotal	139,839	264 179,355	264 39,516	Residential Subtotal Non-Residentail Subtotal	139,839			0 750				0 424		Residential Subtotal Non-Residentail Subtotal	264 179,355			164 886				111 501		Residential Subtotal Non-Residentail Subtotal	264 39,516	111	
/ 1/							1																					
4	Residential Subtotal	0	312	312	Residential Subtotal	0	1		0				0		Residential Subtotal	390			212) I		1	143		Residential Subtotal	312	143	
	Non-Residentail Subtotal	189,286	220,116	30,830	Non-Residentail Subtotal	189,286			933				498		Non-Residentail Subtotal	275,145			1,037				574		Non-Residentail Subtotal	30,830	76	
5	Single Family Housing (DU's)	5	63	58	Single Family Housing (DU's)	5	1,00		5	0%	25%	0%	4	0.75	Single Family Housing (DU's)	11	1.00		11	0%	25%	0%	8	0.75	Single Family Housing (DU's) Multi-Family Housing (DU's)	6	5	
5	Multi-Family Housing (DU's)	78	30	-48	Multi-Family Housing (DU's)	78	0,62		48	1	25%		36	0,46	Multi-Family Housing (DU's)	87	0.62		54 16		25% 25%		41 12	0.47	Church (sf)	26,428	11	
5	Church (sf) Residential Subtotal	1,900 83	28,328	26,428 10	Church (sf) Residential Subtotal	1,900	0.55		53		25%		40	0.39	Church (sf) Residential Sublotal	28,328 93	0.55	_	65		25%		49	0.42	Residential Subtotal	15		Ħ
5	Non-Residentail Subtotal	1,900	93 28,328	26,428	Non-Residentail Subtotal	1,900			1				1		Non-Residentail Subtotal	28,328			16				12		Non-Residentail Subtotal	26,428	11	
6	Single Family Housing (DU's)	5	30	25	Single Family Housing (DU's)	5	1,00		5	0%	15%	0%	4	0,85	Single Family Housing (DU's)	0	1.00		0	0%	15%	0%	0	0.00	Single Family Housing (DU's)	-5	-4	
6	Multi-Family Housing (DU's)	267	248	-19	Multi-Family Housing (DU's)	267	0.62		166		15%		141	0.53	Multi-Family Housing (DU's)	279	0.62		173		15%		147	0.53	Multi-Family Housing (DU's)	12	€	4
6	Residential Subtotal Non-Residentail Subtotal	272 0	278 0	6 0	Residential Subtotal Non-Residentail Subtotal	272 0			171 0				145 0		Residential Subtotal Non-Residentail Subtotal	278 0			173 0				147 0		Residential Subtotal Non-Residentail Subtotal	6	2	1
7	Single Family Housing (DU's)	37	60	23	Single Family Housing (DU's)	37	1.00		37	0%	15%	0%	31	0.85	Single Family Housing (DU's)	0	1.00		0	0%	15%	0%	0	0.00	Single Family Housing (DU's)	-37	-31	
7	Multi-Family Housing (DU's)	33	10	-23	Multi-Family Housing (DU's)	33	0.62		20		15%		17	0.52	Multi-Family Housing (DU's)	70	0.62		43		15%		37	0.52	Multi-Family Housing (DU's)	37	20	
7	Open Space (sf)	16,728	16,728	0	Open Space (sf)	16,728	0.09		0		0%		0	0.00	Open Space (sf)	16,728	0.09		0		0%		0	0.00	Open Space (sf)	0	(4
7	Residential Subtotal	70	70	0	Residential Subtotal	70			57				48		Residential Subtotal	70			43				37		Residential Subtotal	0	-12	
7	Non-Residentail Subtotal	16,728	16,728	0	Non-Residentail Subtotal	16,728			0				0		Non-Residentail Subtotal	16,728			0				0		Non-Residentail Sublotal	0		
8	Single Family Housing (DU's)	41	63	22	Single Family Housing (DU's)	41	1.00		41	0%	15%	0%	35	0.85	Single Family Housing (DU's)	64	1.00		64	0%	15%	0%	54	0,85	Single Family Housing (DU's)	23		
8	Multi-Family Housing (DU's)	58	39	-19	Multi-Family Housing (DU's)	58	0.62		36		15%		31	0.53	Multi-Family Housing (DU's)	39	0.62		24		15%		20	0,52		-19		
	Residential Subtotal Non-Residentail Subtotal	99	102 0	3	Residential Subtotal Non-Residentail Subtotal	99			77 0				65 0		Residential Subtotal Non-Residentail Subtotal	102 0			88 0				75 0		Residential Subtotal Non-Residentail Subtotal	0		ė
9	Single Family Housing (DU's)	116	63 57	-53	Single Family Housing (DU's)	116	1.00		116	0%	25% 25%	0%	87	0.75	Single Family Housing (DU's) Multi-Family Housing (DU's)	121	1.00		121	0%	25% 25%	0%	91	0,75	Single Family Housing (DU's) Multi-Family Housing (DU's)	5		,
	MARKET - COLUMN CONTRACTOR							- 1			75.0%						. 11.62		U		×376					. 0		-
9	Multi-Family Housing (DU's) Residential Subtotal	116	120	5/	Multi-Family Housing (DU's) Residential Subtotal	116	0.02	\vdash	116		2076		87	0.00	Residential Subtotal	120	U.U.		121				91	2.00	Residential Subtolal	4	1 4	E.

	Lan	nd Uses					Existing	Trip G	enerations	5							Future 1	Trip General	ions					Net Trip Ger	erations		
	1	T	Ī			T -	Ī	T _{Engt}	Base	% Project	%	% Pass-	Net	Net Trip				Foot - Base		t %	% Pass-	Net Vehicle	Net Trip		0	Net Vehicle	Total Trips
Group	Land Use	Existing	Future	Net Change	Land Use	Quantity	Trip Rates	notes	Vehicle Trips	Internal/ Walk	Transit	By	Vehicle Trips	Rate	Land Use	Quantily		notes Vehic		Transit	By	Trips	Rate	Land Use	Quantity	Trips	
10	Single Family Housing (DU's)	61	91	30	Single Family Housing (DU's)	61	1.00		61	0%	25%	0%	46	0,75	Single Family Housing (DU's)	132	1,00	1:		25%	0%	99	0.75	Single Family Housing (DU's)	71	53	
10	Multi-Family Housing (DU's)	68	41	-27	Multi-Family Housing (DU's)	68	0,62		42		25% 25%		32	0,46	Multi-Family Housing (DU's) Church (sf)	2,112	0,62 0.55		0	25% 25%		0	0,00	Multi-Family Housing (DU's) Church (sf)	-68	-32	1
10	Church (sl) Residential Sublolal	2,112	2,112	3	Church (sf) Residential Subtotal	2,112	0.55	_	104		25%		78		Residential Sublotal	132	0.55	1:	33	2070		100		Residential Subtotal	3	22	1
10	Non-Residentail Subtotal	2,112	2,112	0	Non-Residentali Subtotal	2,112			1				1		Non-Residentail Subtotal	2,112			1			1		Non-Residentail Subtotal	0	0	
																											1
11	Single Family Housing (DU's)	37	91	54	Single Family Housing (DU's)	37	1,00		37	0%	25%	0%	28	0.75	Single Family Housing (DU's)	76	1,00		6 0%	25%	0%	57	0,75	Single Family Housing (DU's)	39	29	1
11	Multi-Family Housing (DU's)	30		-30	Multi-Family Housing (DU's)	30	0.62		19		25%		14	0.48	Multi-Family Housing (DU's)	0	0.62		0	25%		0	0,00	Multi-Family Housing (DU's)	-30	-14	
. 11	Light Industrial (sf)			-	Light Industrial (sf)	-	0.97		0	-	0%		0	0.00	Light Industrial (sf) Residential Sublotal	04	0.97		0	0%		57	0.00	Light Industrial (sf) Residential Subtotal	9	15	1
11	Residential Subtotal Non-Residentail Subtotal	67	91	24	Residential Subtotal Non-Residentail Subtotal	67			56 0				42		Non-Residental Subtotal	91			76			0		Non-Residentail Subtotal	0	0	
1	Norm (esidemail Subtotal		Ů		Non-residentali Subtotal	"							ľ		Non-residentali Gubtotali				"								
12	General Office (sf)	0	1,658	1,658	General Office (sf)	0	1.49		0	0%	15%		0		General Office (sf)	1,658	1,49		2 5%	15%	0%	2		General Office (sf)	1,658	2	
12	Business Park (sf)	0	19,348	19,348	Business Park (sf)	0	1,26		0	0%	15%		0		Business Park (sf)	19,348	1,26		24 5%	15%	0%	19		Business Park (sf)	19,348	19	
12	Retail (sf)	0	27,641	27,641	Retail (sf)	0	3.71		0	0%	15%		0		Retail (sf)	27,641	3,71	14		15%	50%	42		Retail (sf)	27,641	42	
12	R & D Office (sf)	0	5,528	5,528	R & D Office (sf)	0	1_07		0	0%	15%		0		R & D Office (sf)	5,528	1.07		6 5%	15%	0%	5	40.44	R & D Office (sf)	5,528 1,106	15	1
12	Restaurant-Fast Food (sf) Residential Subtotal	0	1,106	1,106	Restaurant-Fast Food (sf) Residential Subtotal	0	32.65	1	0		15%		0	0,00	Restaurant-Fast Food (sf) Residential Subtotal	1,106	32.65	-	0 5%	15%	50%	15	13,14	Restaurant-Fast Food (sf) Residential Subtotal	1,106	0	1
12 12	Non-Residental Subtotal	0	55,281	55,281	Non-Residentail Sublotal	0			0				"		Non-Residentail Subtotal	55,281			1			82		Non-Residentail Subtotal	55,281	82	
"			30,201	SUIEUT	San Assessment Golden	1							ľ														
13	Single Family Housing (DU's)			0	Single Family Housing (DU's)		1,00		0	0%	15%	0%	0	0,00	Single Family Housing (DU's)		1.00		0 0%	15%	0%	0	0.00	Single Family Housing (DU's)	0	0	
13	Multi-Family Housing (DU's)	6	6	0	Multi-Family Housing (DU's)	6	0.62		4		15%		3	0,57	Multi-Family Housing (DU's)	6	0,62		4	15%		3	0,57	Multi-Family Housing (DU's)	0	0	
13	Children Care (sf)	9,379	9,379	0	Children Care (sf)	9,379	12,34		116		15%	10%	89	9.46	Children Care (sf)	9,379	12,34	- 1	16	15%	10%	89	9.46	Children Care (sf) Light Industrial (sf)	0 0	0	1
13	Light Industrial (sf) General Office (sf)	26,566	26,566	0	Light Industrial (sf)	26,566	0.97 1.49		26	0%	0%		26	0,98	Light Industrial (sf) General Office (sf)	26,566 2,386	0.97 1.49		26 5%	10%		26	0.98	General Office (sf)	2,386	3	l.
13 13	Business Park (sf)	0	2,386 27,833	2,386 27,833	General Office (sf) Business Park (sf)	0	1.26		0	0%	10% 10%		"		Business Park (sf)	27.833	1 26		35 5%	10%		30		Business Park (sf)	27,833	30	l
13	Retail (sf)	0	39,761	39,761	Retail (sf)	0	3,71	1	0	0%	10%		0		Retail (sf)	39,761	3.71	- 1	18 5%	10%	50%	63		Retail (sf)	39,761	63	
13	R & D Office (sf)	0	7,952	7,952	R & D Office (sf)	0	1.07		0	0%	10%		0		R & D Office (sf)	7,952	1,07		9 5%	10%	1	8		R & D Office (sf)	7,952	8	1
13	Restaurant-Fast Food (sf)	0	1,590	1,590	Restaurant-Fast Food (sf)	0	32.65		0		10%		. 0	0.00	Restaurant-Fast Food (sf)	1,590	32.65	_	52 5%	10%	50%	22	13.98	Restaurant-Fast Food (sf)	1,590	22	-
13	Residential Subtotal	6	6	0	Residential Subtotal	6			4				3		Residential Subtotal	6		- 1	4			3		Residential Subtotal	70.500	127	
13	Non-Residentail Subtotal	35,945	115,467	79,522	Non-Residentail Subtotal	35,945			142			1	115		Non-Residentail Subtotal	115,467		3	90			241		Non-Residentail Subtotal	79,522	127	
14	Single Family Housing (DU's)			0	Single Family Housing (DU's)		1.00		٥	0%	0%	0%		0.00	Single Family Housing (DU's)		1.00		0 0%	0%	0%	0	0.00	Single Family Housing (DU's)	0	0	
14	Multi-Family Housing (DU's)			0	Multi-Family Housing (DU's)		0.62		0		0%	1	0	0.00	Multi-Family Housing (DU's)		0.62		0	0%		0	0.00	Multi-Family Housing (DU's)	0	0	
14	Non-Residential (sf)			0	Non-Residential (sf)				0		0%		0	0.00	Non-Residential (sf)				0	0%		0	0.00	Non-Residential (sf)	0	٥	4
14	Residential Subtotal	0	0	0	Residential Subtotal	0			0				0		Residential Subtotal	0			0			0		Residential Subtotal	0	0	
14	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0			0				0		Non-Residentail Subtotal	0			0			0		Non-Residentail Subtotal	0	U	
Total	Single Family Housing (DU's)	347	609	262	Single Family Housing (DU's)	347	1,00	1,2	347				268	0.77	Single Family Housing (DU's)	609	1.00		52		1	342	0.56	Single Family Housing (DU's)	262	150	
	Multi-Family Housing (DU's)	621	2,206	1,585	Multi-Family Housing (DU's)	621	0,62	1,9	384				314	0.51	Multi-Family Housing (DU's)	2,206	0.62	1,9 1,2				940	0.43	Multi-Family Housing (DU's) Senior Housing (DU's)	1,585 105	719 18	
1	Senior Housing (DU's) Retail / Medical Office (sf)	0	105	105 0	Senior Housing (DU's) Retail / Medical Office (sf)	0	0.25		0				0	0.00	Senior Housing (DU's) Retail / Medical Office (sf)	105	0.25		26			10		Retail / Medical Office (sf)	0	0	
	Hospital / General Office (sf)	0	0	0	Hospital / General Office (sf)				0				0	0.00	Hospital / General Office (sf)	0			0			0		Hospital / General Office (sf)	0	0	
	Clinic	34,850	38,586	3,736	Clinic	34,850	5.18		181				136		Clinic	38,586	5.18	2	00			150		Clinic	3,736	14	
	Hospital	0	1,118	1,118	Hospital	0			0						Hospital	1,118			0					Hospital	1,118	0	1
	Fire Station	4,110	6,325	2,215	Fire Station	4,110			0				0		Fire Station	6,325			0			0		Fire Station	2,215	0	
	Library	0	8,939	8,939	Library	0	7.30		0				0		Library	8,939	7.30		0			49		Library	8,939 295,148	49	
	Institute University	477,842 625	772,990 1,450	295,148 825	Institute University	477,842 625	0.17		0 106				90	0.14	Institute University	772,990 1,450	0.17		47			210	0.14	University	825	120	
	General Office (sf)	8,408	393,745	385,337	General Office (sf)	8,408	1.49		13				10	VIII7	General Office (sf)	393,745	1.49		3B	Ш		471	1.20	General Office (sf)	385,337	460	
	Business Park (sf)	0	224,317	224,317	Business Park (sf)	0	1.26	1,4	0				0	0.00	Business Park (sf)	224,317	1.26		33			228	1.02	Business Park (sl)	224,317	228	
	Medical Office (sf)	0	35,427	35,427	Medical Office (sf)	0	3.57	1,11	0	1			0	0.00	Medical Office (sf)	35,427	3,57		27			91	2,58	Medical Office (sf)	35,427	91	
	R & D Office (sf)	0	98,506	98,506	R & D Office (sf)	0	1,07		0				0		R & D Office (sf)	98,506	1.07		06			85		R & D Office (sf)	98,506	85	
	Restaurant-High Tumover (sf)	0	7,086	7,086	Restaurant-High Turnover (sf)	0	9,85	1,5	0				0	0,00	Restaurant-High Turnover (sf)	7,086	9.85		70			45 37	6.32	Restaurant-High Turnover (sf) Restaurant-Fast Food (sf)	7,086 2,696	45 37	
	Restaurant-Fast Food (sf)	0	2,696	2,696	Restaurant-Fast Food (sf)	2 350	32.65		0 12				0		Restaurant-Fast Food (sf) Grocery (sf)	2,696	32.65 3.71		0			37		Grocery (sf)	-3,359	-6	
	Grocery (sf) Retail (sf)	3,359 0	0 81,572	-3,359 81,572	Grocery (sf) Retail (sf)	3,359	3.71	1,6	0				0	0,00	Retail (sf)	81,572	3.71	1.6 3	03			126	1.54	Retail (sf)	81,572	126	
	Pump Station (sf)	B,408	0	-8,408	Pump Station (sf)	8,408]	"	0				, o		Pump Station (sf)	0	"		0			0		Pump Station (sf)	-8,408	0	
	Parking (sf)	150,000	375,926	225,926	Parking (sf)	150,000			0				0		Parking (sf)	375,926		1	0			0		Parking (sf)	225,926	0	
	Elementary School (sf)	86,684	86,684	0	Elementary School (sf)	86,684	1.21		105				89		Elementary School (sf)	86,684	1,21	- 1	05			89		Elementary School (sf)	0	0	
	Shopping Center (sf)	189,286	220,116	30,830	Shopping Center (sf)	189,286	3,71		933				498		Shopping Center (sf)	220,116	3.71	1,0				574	1	Shopping Center (sf)	30,830	76	
	Church (sf)	4,012	30,440	26,428	Church (sf)	4,012	0.55		2				2		Church (sf)	30,440 16,728	0,55		0			13	l	Church (sf) Open Space (sf)	26,428	11	1
	Open Space (sf) Light Industrial (sf)	16,728 26,566	16,728 26,566	0	Open Space (sf) Light Industrial (sf)	16,728 26,566	0.97	1.8	26				26	0.98	Open Space (sf) Light Industrial (sf)	26,566	0.97	1.8	26			26	0.98	Light Industrial (sf)	0	0	1
	Children Care (sf)	9,379	9,379	0	Children Care (sl)	9,379	12.34		116				89	5,50	Children Care (sf)	9,379	12.34		16			89	117	Children Care (sf)	0	0	1
																						0.505				2.004	
	Total Residential (DU's)	968	2,920	1,952	Total Residential (DU's)	968			2,225 731				1,527 581		Total Residential (DU's)	2,920		5,1 1,7				3,582 1,299		Total Residential (DU's)	1,952	2,224 887	
	Non-Residential (sf)	1,910,523	4,576,559	2,666,036	Non-Residential (sf)	1,910,523			1,494				945		Non-Residential (sf)	4,576,559		3,3				2,282		Non-Residential (sf)	2,666,036	1,337	
	1/	,	,		· · · /										ζ: /											1	

	Lar	nd Uses					Existing	Trip Ge	eneration	<u>s</u>							Future	Trip G	ieneration	<u>s</u>					Net Trip Gen	erations		
Group	Land Use	Existing	Future	Net Change	Land Use	Quantity	Trip Rates	Fool - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Nel Trip Rate	Land Use	Quantity	Trip Rates	Foot - notes	Base Vehicle Trips	% Project Internal/ Walk	% Transit	% Pass- By	Net Vehicle Trips	Net Trip Rate	Land Use	Quantity	Net Vehicle Trips	Total Trips
				1								·																
	Residential Subtotal Non-Residential Subtotal	890,891	2,139,413	1.248.522	Residential Subtotal	890,891	0	0	0	0	0	0	0	0	Residential Subtotal Non-Residentali Subtotal	100 2.139.413	0	0	0	0	0	0	0	0	Residential Subtotal Non-Residentail Subtotal	100 1,248,522	76 1,608	1,684
2A	Residential Subtotal	0	105	105	Residential Subtotal	0 0 0 0	0	0	0	0	0	0	0	0	Residential Subtotal	105	0	0	65	0	0	0	44	0	Residential Subtotal	105	44	1,004
2A	Non-Residentail Subtotal	33,000	33,381	381	Non-Residentali Subtotal	33,000	0	0	171	.0	0	0	128	0	Non-Residentali Subtotal	33,381	0	0	173	0	0	0	130	0	Non-Residentail Subtotal	381	2	45
2B	Residential Subtotal	0	117	117	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	117	0	0	73	0	0	0	49	0	Residential Subtotal	117	49	
2B	Non-Residentail Subtotal	5,960	36,964	31,004	Non-Residentail Subtotat	5,960	0	0	10	0	0	0	8	0	Non-Residentail Subtotal	36,964	0	0	27	0	0	0	20	0	Non-Residentail Subtotal	31,004	13	62
2C	Residential Subtotal	49	119	70	Residential Subtotal	49	0	0	30	0	0	0	26	0	Residential Subtotal	119	0	0	74	0	O	0	31	0	Residential Subtotal	70	6	
2C	Non-Residentail Subtotal	477,842	772,990	295,148	Non-Residentail Subtotal	477,842	0	D	106	0	0	0	90	0	Non-Residentail Subtotal	772,990	0	0	247	0	0	0	210	0	Non-Residentail Subtotal	295,148	120	126
3A	Residential Subtotal	0	105	105	Residential Sublotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	105	0	0	26	0	0	0	18	0	Residential Subtotal	105	18	(
3A	Non-Residentail Subtotal	0	8,939	8,939	Non-Residentail Subtotal	0	0	0	. 0	0	0	0	0	0	Non-Residentail Subtotal	8,939	0	0	65	0	0	0	49	0	Non-Residentail Subtotal	8,939	49	66
3B	Residential Subtolal	19	83	64	Residential Subtotal	19	0	0	19	0	0	0	13	0	Residential Subtotal	83	0	0	51	0	0	0	34	0	Residential Subtotal	64	22	()
3B	Non-Residentail Subtotal	0	56,865	56,865	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	56,865	. 0	0	92	0	0	0	63	0	Non-Residentail Subtotal	56,865	63	84
3C	Residential Subtotal	30	255	225	Residential Subtotal	30		0	21	0	0	0	16	0	Residential Subjotal	255	0	0	158	0	0	0	121	0	Residential Subtotal	225	105	(-1)
3C	Non-Residentail Subtotal	16,816	173,065	156,249	Non-Residental Subtotal	16,816		0	13	0	0	0	10	0	Non-Residentail Subtotal	173,065	0	0	280	0	0	0	216	0	Non-Residentail Subtotal	156,249	205	310
3D	Residential Subtotal	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	
3D 3E	Non-Residental Subjetal	150,000	351,610	201,610	Non-Residentail Subtotal Residential Subtotal	150,000	0	.0	0	0	0	0	0	0	Non-Residentail Subtotal	351,610	0	0	0	0	0	0	0	0	Non-Residental Subtotal	201,610	262	0
3E	Residential Subtotal Non-Residental Subtotal	86.684	553 375,433	553 288,749	Non-Residental Subtotal	0 86.684	, ,	0	105	0	0	0	0 89	0	Residential Subtotal Non-Residentail Subtotal	553 375,433	0	0	343 571	0	0	0	262 448	0	Residential Subtotal Non-Residentail Subtotal	553 288,749	359	621
3F	Residential Subtolal	4	145	141	Residential Subtotal	4	0	0	2	0	0	0	2	0	Residential Subtotal	145	0	0	90	0	0	0	69	0	Residential Subtotal	141	67	021
3F	Non-Residentail Subtotal	0	98,494	98,494	Non-Residentall Subtotal	0	0	٥	0	0	0	0	0	0	Non-Residentail Subtotal	98,494	ا ا	٥	160	0	0	0	123	0	Non-Residentail Subtotal	98,494	123	191
3G	Residential Subtotal	24	134	110	Residential Subtotal	24	0	0	22	0	0	0	17	0	Residential Subtotal	134	0	0	83	0	0	0	63	0	Residential Subtotal	110	47	
3G	Non-Residentall Subtotal	3,359	91,373	88,014	Non-Residentail Subtotal	3,359	0	0	12	0	0	0	6.	0	Non-Residentail Subtotal	91,373	0	0	148	0	0	0	114	0	Non-Residentail Subtotal	88,014	108	155
4A	Residential Subtotal	0	48	48	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	48	0	0	48	0	0	0	32	0	Residential Subtotal	48	32	
4A	Non-Residentail Subtotal	49,447	40,761	-8,686	Non-Residentall Subtotal	49,447	0	0	183	0	0	. 0	74	0	Non-Residentail Subtotal	40,761	0	0	151	0	0	0	73	0	Non-Residentail Subtotal	-8,686	1	32
4B	Residential Subtotal	0	264	264	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	264	0	0	164	0	0	0	111	0	Residential Subtotal	264	111	
4B	Non-Residentail Subtotal	139,839	179,355	39,516	Non-Residentail Subtotal	139,839	0	. 0	750	. 0	0	0	424	0	Non-Residentail Subtotal	179,355	0	0	886	0	0	0	501	0	Non-Residentail Subtotal	39,516	77	188
5	Residential Subtotal	83	93	10	Residential Subtolal	83	0	D	53	0	0	0	39,75	0	Residential Subtotal	93	0	0	65	0	0	0	48.75	0	Residential Subtotal	15	9	
5	Non-Residentail Subtotal	1,900	28,328	26428	Non-Residentail Subtotal	1,900	0	0	1	. 0	0	. 0	1	0	Non-Residentail Subtotal	28328	0	0	16	0	0	0_	12	0	Non-Residentail Subtotal	26428	.11	20
6	Residential Subtotal	272	278	6	Residential Subtotal	272	0	0	171	0	0	0	145	0	Residential Subtotal	278	0	0	173	0	0	0	147	0	Residential Subtotal	6	2	
6	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	2
7	Residential Subtotal	70	70	0	Residential Subtotal	70	0	0	57	0	0	0	48	0	Residential Subtotal	70	0	0	43	0	0	0	37	0	Residential Subtotal	0	-12	
7	Non-Residentail Subtotal	16,728	16,728	0	Non-Residentail Subtotal	16,728	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	16,728	0	0	0	. 0	0	0	0	0	Non-Residentail Subtotal	0	0	-12
8	Residential Subtotal Non-Residentail Subtotal	99	102	3	Residential Subtotal Non-Residentail Subtotal	99	0	0	77	0	0	0	65	0	Residential Subtotal	102	0	0	88	0	0	0	75	0	Residential Subtotal Non-Residentail Subtotal	3	9	
9	Residential Subtotal	116	120	4	Residential Subtotal	116	0	0	116	0	0	0	87	0	Non-Residentail Subtotal Residential Sublotal	120	0	0	121	0	0	0	91	0	Residential Subtotal	4	4	J
9	Non-Residentail Subtotal	0	0	0	Non-Residentall Subtotal	0	٥	0	0	0	0	0	0	0	Non-Residentail Subtotal	120	0	٥	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	4
10	Residential Subtotal	129	132	3		129	0	0	104	0	0	0	7B	0	Residential Subtotal	132	0	0	133	0	0	0	100	0	Residential Subtotal	3	22	
10	Non-Residentail Subtotal	2,112	2,112	0	Non-Residentail Subtotal	2,112	0	0	1	0	0	0	1	0	Non-Residentail Subtotal	2,112	0	٥	1	0	0	0	1	0	Non-Residentail Subtotal	0	0	22
11	Residential Subtotal	67	91	24	Residential Subtotal	67	0	0	56	0	0	0	42	0	Residential Subtotal	91	0	0	76	0	0	0	57	0	Residential Subtotal	9	15	
11	Noл-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	15-
12	Residential Sublotal	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	
12	Non-Residentail Subtotal	٥	55,281	55,281	Non-Residentail Sublotal	<u>a</u>	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	55,281	0	0	171	0	0	0	82	0	Non-Residentail Subtotal	55,281	82	82
13	Residential Subtotal	6	6	0	Residential Subtotal	6	0	0	4	0	0	0	3	0	Residential Subtotal	6	0	0	4	0	0	0	3	0	Residential Subtotal	0	0	
13	Non-Residentail Subtotal	35,945	115,467	79,522	Non-Residentail Subtotal	35,945	0	0	142	0	0	0	115	0	Non-Residentail Subtotal	115,467	0	0	390	0	0	0	241	0	Non-Residentail Subtotal	79,522	127	127
14	Residential Subtotal	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	0	0	0	0	0	0	0	Residential Subtotal	0	0	
14	Non-Residentail Subtotal	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	0	0	Non-Residentail Subtotal	0	0	0	0	0	0	0	.0	0	Non-Residentail Subtotal	0	0	0
								- 1		- 1											1	-						Ĭ
	Total				Total				2,226				1,528		Total				5,256				3,676		Total		3,832	3,832
I I	Residential (DU's)	968	2,920	1,952	Residential (DU's)	968			732				582		Residential (DU's)	2,920	ı 1		1,878				1,393	1	Residential (DU's)	1,952	987	1

Table A-6. Transit Trips Generated by The Project

Land Use		adjusted) ¹ le Trips	Person	Trips ²	% By T	ransit 3			Transi	t Trips		
0	AM Peak	PM Peak	AM Peak	PM Peak	AM Peak	PM Peak	Al	M Peak Ho	our	Pl	M Peak Ho	our
	Hour	Hour	Hour	Hour	Hour	Hour	Total	In	Out	Total	În	Out
Main Labor Viscolo Malicologo												
Martin Luther King Jr. Medical Campus	5.1	(7	7.	.,	1.50/	150/	11	2		1.4		_
Single Family Housing	51	67	71	94	15%	15%	11	3	8	14	9	5
MLK Medical Campus	1,501	1,993	2,101	2,790	15%	15%	315	215	100	419	152	267
Charles R. Drew University												
Multi-Family Housing	6	7	8	10	15%	15%	1	0	1	1	1	0
University Students	141	141	197	197	15%	15%	30	23	7	30	10	20
Other Specific Plan Land Uses												
Single Family Housing	79	105	111	147	15-25%	15-25%	32	8	24	43	27	16
Multi-Family Housing	714	870	1,000	1,218	15-25%	15-25%	180	37	143	220	145	75
Senior Housing	19	23	27	32	25%	25%	7	2	5	8	4	4
General Office	572	546	801	764	15-25%	15-25%	126	111	15	121	21	100
Business Park	298	269	417	377	10-25%	10-25%	63	53	10	57	15	42
Medical Office	82	121	115	169	15-25%	15-25%	18	15	3	27	8	19
R & D Office	113	101	158	141	10-25%	10-25%	24	18	6	21	2	19
Restaurant-High Turnover	73	67	102	94	15-25%	15-25%	16	9	7	14	9	5
Restaurant-Fast Food	116	84	162	118	10-15%	10-15%	20	10	10	14	8	6
Retail	75	288	105	403	10-25%	10-25%	13	8	5	51	26	25
Elementary School	0	0	0	0	15%	15%	0	0	0	0	0	0
Shopping Center	22	99	31	139	15%	15%	5	3	2	21	10	11
Other/Miscellaneous/Parking	34	88	- 48	123	15-25%	15-25%	12	6	6	33	15	18
Open Space	0	0	0	0	0%	0%	0	0	0	0	0	0
Light Industrial	0	0	0	0	0%	0%	0	0	0	0	0	0
Children Care	- 0	0	0	0	15%	15%	0	0	0	0	0	0
	0											
Tota	1 3,896	4,869	5,454	6,816	0-25%	0-25%	873	521	352	1,094	462	632

Appendix B Intersection Configurations

Intersection	Existing Configuration	Specific Plan
19. Compton Ave. & 120th St.	₹₩	
29. Wilmington Ave. & 120th St. West	#\ \$	↓
34. Willowbrook W. Ave. & 119th St.	# 	* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
40. Mona Bivd. & 119th St.	41	<u>↓</u> \\\

11/7/16

Figure B-1
Intersection Configurations Changed in Specific Plan

The **Mobility** Group Transportation Strategies & Solutions

Intersection	Existing Configuration	Specific Plan	Mitigation
3. Avalon Blvd. & El Segundo Bl.	₩	Same as Existing	
4. Avalon Blvd. & Rosecrans Ave.	♣₩	Same as Existing	章 \\\\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
7. Central Ave. & 105 Fwy Ramps WB	MII	Same as Existing	<u>111 ₹</u>
9. Central Ave. & 120th St.	₩ =	Same as Existing	<u>₩</u> }
0. Central Ave. & El Segundo Bl.	₹₩	Same as Existing	<u>₩</u>
11. Central Ave. & Rosecrans Ave.	<u>₩</u> ‡	Same as Existing	₹ ₩
7. Compton Ave. & Imperial Hwy.	<u>₩</u>	Same as Existing	₩
9. Compton Ave. & 120th St.	₹\\\\ \	## ##	Same as Specific Plan
rigure B-2 ntersection Configurations - Mitig			The Mobility Grou

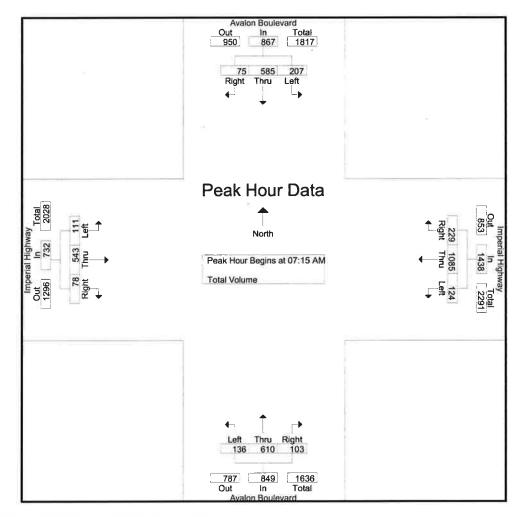
Intersection	Existing Configuration	Specific Plan	Mitigation
21. Compton Ave. & El Segundo Bl.	₩	Same as Existing	<u>₩</u>
27. Wilmington Ave. & 105 Fwy Ramps EB	₩ #	Same as Existing	₩# ¾ 1 1111
28. Wilmington Ave. & 118th St.	<u>+111+</u> +111+	Same as Existing	<u>→ 1114</u>
29. Wilmington Ave. & 120th St. (West)		₹ \\\\ }	Same as Specific Plan
30. Wilmington Ave. & 120th St. (East)	414 ← ⇒ 111	Same as Existing	414 4 11h
32. Wilmington Ave. & El Segundo Bl.	₹₩	Same as Existing	₹\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
33. Wilmington Ave. & Rosecrans Ave.	● #	Same as Existing	₹ /III, ₩ \\
34. Willowbrook Ave. SB & 119th St.	41 	4 * + + + + + + + + + + + + + + + + + + +	Same as Specific Plan
Figure B-2 Cont. Intersection Configurations - Mitiga			The Mobility Group Transportation Strategies & Solutions
Willowbrook TOD Specific Plan E	ik Traπic Study		

Intersection	Existing Configuration	Specific Plan	Mitigation
36. 105 Fwy Ramps & Imperial Hwy.	# * * * * * * * * * *	Same as Existing	事
40. Mona Blvd. & 119th St.	41	+ 11	Same as Specific Plan
43. Alameda St. & 103rd St.	4 -= hii	Same as Existing	41
45. Alameda St. & Imperial Hwy	# <u></u>	Same as Existing	美加
46. Alameda St. & El Segundo Blvd.	₩ \	Same as Existing	₹ 1111°
54. State St. & Imperial Hwy.	<u>₩</u> \$ ₩	Same as Existing	#W 章 章 httr
57: Central Ave. & Compton Blvd.	<u>#</u> 章 #	Same as Existing	₹ WY \$
60. Central Ave. & Alondra Blvd.	₹₩	Same as Existing	## \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
Figure B-2 cont. Intersection Configurations - Mitig Willowbrook TOD Specific Plan			The Mobility Group Transportation Strategies & Solutions

Intersection	Existing Configuration	Specific Plan	Mitigation
61. Wilmington Ave. & Alondra Blvd.	₩ \$	Same as Existing	₹ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
63. Wilmington Ave. & Walnut St.	<u>/ \ </u>	Same as Existing	<u>₩</u> \$

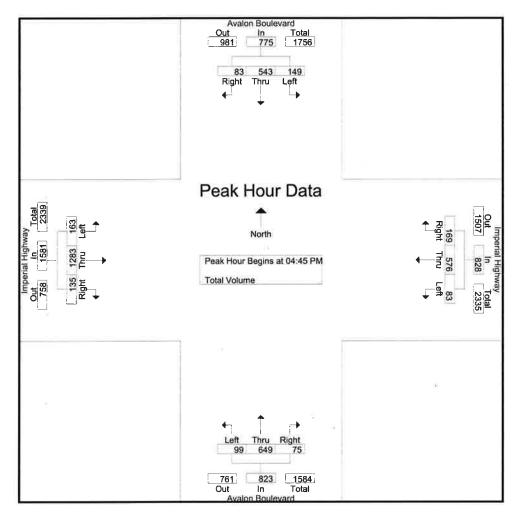
5/4/17

Group & Solutions


Figure B-2 cont.	m1 34 1:11:4
Intersection Configurations - Mitigation	The Mobility
Willowbrook TOD Specific Plan EIR Traffic Study	

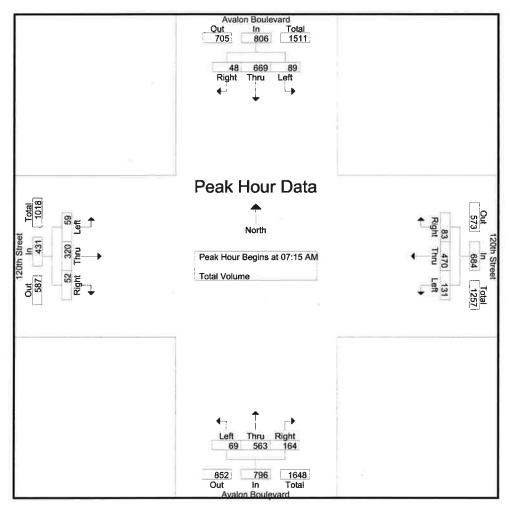
Appendix C Traffic Count Data

County of Los Angeles N/S: Avalon Boulevard E/W: Imperial Highway Weather: Clear


File Name : LACAVIMAM Site Code : 12815514 Start Date : 9/23/2015

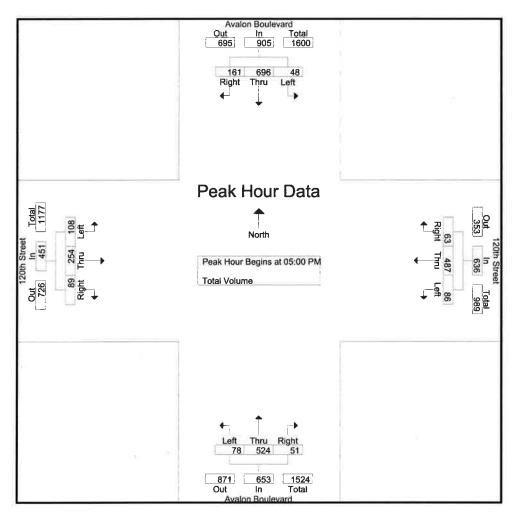
Page No : 2

	07:15 AM				07:15 AN	Л			07:15 AN	Λ			07:15 AN	1		
+0 mins.	48	125	16	189	26	266	50	342	25	146	18	189	20	111	17	148
+15 mins.	51	142	15	208	34	288	61	383	30	163	22	215	28	139	16	183
+30 mins.	57	179	19	255	39	262	61	362	32	156	39	227	41	148	27	216
+45 mins.	51	139	25	215	25	269	57	351	49	145	24	218	22	145	18	185
Total Volume	207	585	75	867	124	1085	229	1438	136	610	103	849	111	543	78	732
% App. Total	23.9	67.5	8.7		8.6	75.5	15.9		16	71.8	12.1		15.2	74.2	10.7	
PHF	.908	.817	.750	.850	.795	.942	.939	.939	.694	.936	.660	.935	.677	.917	.722	.847


County of Los Angeles N/S: Avalon Boulevard E/W: Imperial Highway Weather: Clear File Name: LACAVIMPM Site Code: 12815514 Start Date: 9/23/2015 Page No: 2

	05:00 PM	l			04:30 PM	l			05:00 PM				04:45 PN	A		
+0 mins.	46	123	15	184	23	158	30	211	23	157	25	205	46	333	31	410
+15 mins.	38	130	21	189	22	135	46	203	28	167	11	206	46	311	35	392
+30 mins.	31	154	21	206	17	147	41	205	29	166	25	220	38	312	27	377
+45 mins.	39	138	26	203	20	151	50	221	21	171	14	206	33	327	42	402
Total Volume	154	545	83	782	82	591	167	840	101	661	75	837	163	1283	135	1581
% App. Total	19.7	69.7	10.6		9.8	70.4	19.9		12.1	79	.9		10.3	81.2	8.5	
PHF	.837	.885	.798	.949	.891	.935	.835	.950	.871	.966	.750	.951	.886	.963	.804	.964

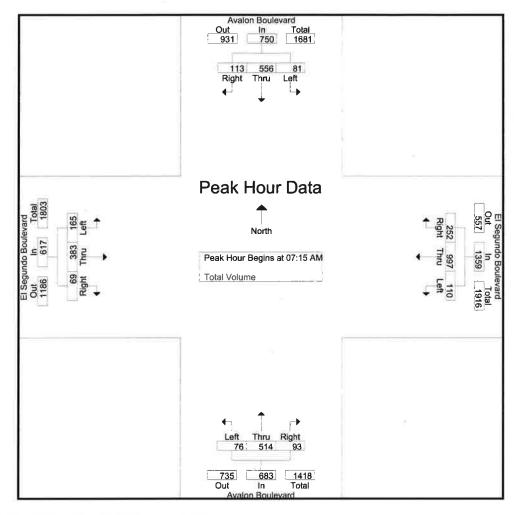
County of Los Angeles N/S: Avalon Boulevard E/W: 120th Street Weather: Clear File Name: LACAV120AM Site Code: 12815514 Start Date: 9/23/2015


Page No : 2

	07:15 AM	l			07:15 AM	1			07:15 AM	1			07:15 AM	1		
+0 mins.	11	149	7	167	30	99	21	150	7	136	26	169	8	73	5	86
+15 mins.	18	174	18	210	25	128	19	172	18	147	46	211	14	85	10	109
+30 mins.	33	181	13	227	34	133	21	188	21	147	59	227	14	95	21	130
+45 mins.	27	165	10	202	42	110	22	174	23	133	33	189	23	67	16	106
Total Volume	89	669	48	806	131	470	83	684	69	563	164	796	59	320	52	431
% App. Total	11	83	6		19.2	68.7	12.1		8.7	70.7	20.6		13.7	74.2	12.1	
PHF	.674	.924	.667	.888	.780	.883	.943	.910	.750	.957	.695	.877	.641	.842	.619	.829

County of Los Angeles N/S: Avalon Boulevard E/W: 120th Street Weather: Clear File Name : LACAV120PM Site Code : 12815514 Start Date : 9/23/2015

Page No 2


Peak Hour for	Each A	pproacl	n Begins	at:												
	04:30 PM	1			04:15 PM	l			05:00 PN	Л			05:00 PM	1		
+0 mins.	18	166	38	222	17	121	15	153	14	133	8	155	23	80	22	125
+15 mins.	19	179	43	241	19	118	14	151	20	123	4	147	25	61	24	110
+30 mins.	16	161	51	228	24	136	18	178	21	117	23	161	28	65	21	114
+45 mins.	14	187	37	238	24	135	21	180	23	151	16	190	32	48	22	102
Total Volume	67	693	169	929	84	510	68	662	78	524	51	653	108	254	89	451
% App. Total	7.2	74.6	18.2		12.7	77	10.3		11.9	80.2	7.8		23.9	56.3	19.7	
PHF	.882	.926	.828	.964	.875	.938	.810	.919	.848	.868	.554	.859	.844	.794	.927	.902

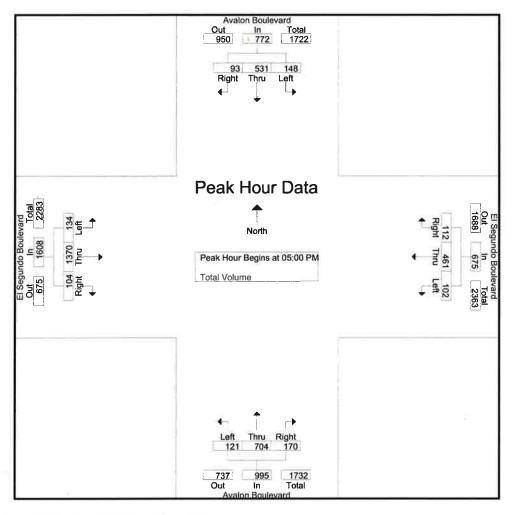
County of Los Angeles N/S: Avalon Boulevard E/W: El Segundo Boulevard

Weather: Clear

File Name : CLAAVELAM Site Code : 12815514 Start Date : 9/23/2015

Page No 2

Peak Hour for Each Approach Begins at:	Peak I	Hour fo	or Each	n Approach	n Begins at:
--	--------	---------	---------	------------	--------------


	07:15 AM	1			07:15 AN	1			07:00 AN	Λ			07:30 AM	1		
+0 mins.	10	122	28	160	16	258	44	318	22	132	25	179	43	83	15	141
+15 mins.	17	128	29	174	28	274	61	363	19	124	23	166	47	134	18	199
+30 mins.	24	155	28	207	31	199	94	324	18	141	23	182	44	103	22	169
+45 mins.	30	151	28	209	35	266	53	354	18	153	19	190	13	110	18	141
Total Volume	81	556	113	750	110	997	252	1359	77	550	90	717	147	430	73	650
% App. Total	10.8	74.1	15.1		8.1	73.4	18.5		10.7	76.7	12.6		22.6	66.2	11.2	
PHF	.675	.897	.974	.897	.786	.910	.670	.936	.875	.899	.900	.943	.782	.802	.830	.817

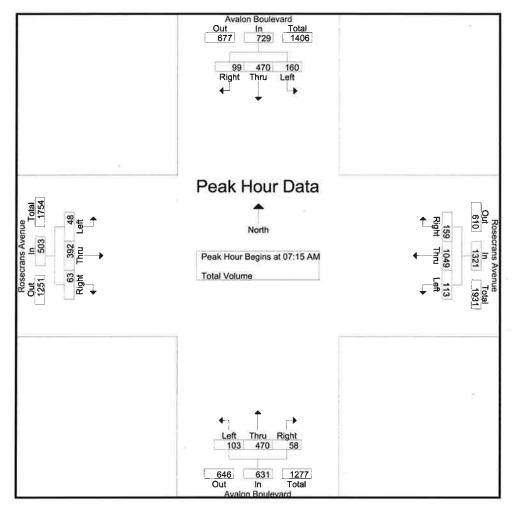
County of Los Angeles N/S: Avalon Boulevard E/W: El Segundo Boulevard

Weather: Clear

File Name : CLAAVELPM Site Code : 12815514 Start Date : 9/23/2015

Page No 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


	05:00 PM				04:15 PM
+0 mins.	37	143	17	197	18
+15 mins.	33	118	10	161	16

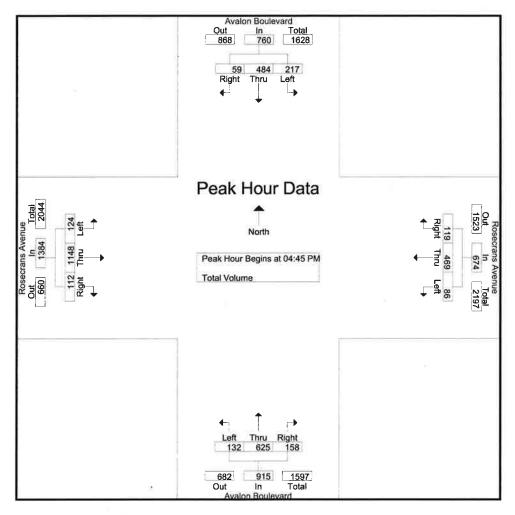
	05:00 PM				04:15 PM	I			04:45 PM	1			04:45 PN	Λ		
+0 mins.	37	143	17	197	18	100	31	149	30	197	27	254	31	335	34	400
+15 mins.	33	118	10	161	16	123	36	175	35	161	41	237	35	351	19	405
+30 mins.	40	134	35	209	29	149	25	203	28	184	50	262	31	358	30	419
+45 mins.	38	136	31	205	30	143	28	201	30	183	38	251	31	327	26	384
Total Volume	148	531	93	772	93	515	120	728	123	725	156	1004	128	1371	109	1608
% App. Total	19.2	68.8	12		12.8	70.7	16.5		12.3	72.2	15.5		8	85.3	6.8	
PHF	.925	.928	.664	.923	.775	.864	.833	.897	.879	.920	.780	.958	.914	.957	.801	.959

County of Los Angeles N/S: Avalon Boulevard E/W: Rosecrans Avenue

Weather: Clear

File Name : CLAAVROAM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

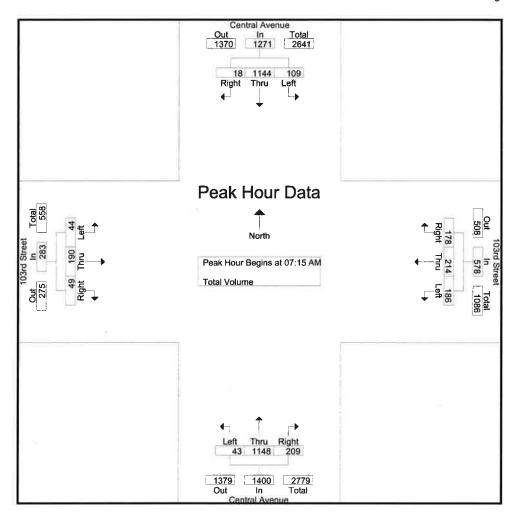

	07:15 AM	ı			07:15 AN	Λ			07:30 AM	4			07:45 AN	1		
+0 mins.	22	96	28	146	25	309	33	367	23	133	8	164	12	114	14	140
+15 mins.	37	119	- 25	181	24	263	36	323	17	109	11	137	13	96	21	130
+30 mins.	55	128	26	209	32	244	40	316	32	117	26	175	10	92	18	120
+45 mins.	46	127	20	193	32	233	50	315	26	111	21	158	14	90	17	121
Total Volume	160	470	99	729	113	1049	159	1321	98	470	66	634	49	392	70	511
% App. Total	21.9	64.5	13.6		8.6	79.4	12		15.5	74.1	10.4		9.6	76.7	13.7	
PHF	.727	.918	.884	.872	.883	.849	.795	.900	.766	.883	.635	.906	.875	.860	.833	.913

County of Los Angeles N/S: Avalon Boulevard E/W: Rosecrans Avenue

Weather: Clear

File Name : CLAAVROPM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

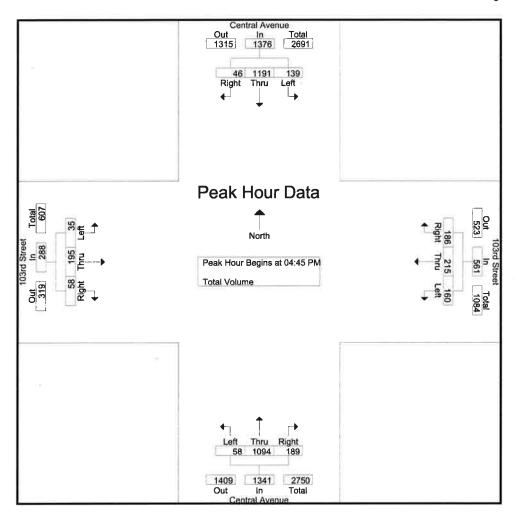

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

eak nour lor			Degins											_		
	05:00 PM	1			04:00 PM	4			04:30 PN	И			04:45 PM	/ 1		
+0 mins.	58	114	21	193	29	120	40	189	33	158	43	234	33	275	26	334
+15 mins.	53	119	9	181	21	132	37	190	27	157	32	216	35	299	28	362
+30 mins.	58	126	18	202	28	119	30	177	44	155	37	236	32	258	31	321
+45 mins.	62	114	16	192	23	122	27	172	27	150	56	233	24	316	27	367
Total Volume	231	473	64	768	101	493	134	728	131	620	168	919	124	1148	112	1384
% App. Total	30.1	61.6	8.3		13.9	67.7	18.4		14.3	67.5	18.3		9	82.9	8.1	
PHF	.931	.938	.762	.950	.871	.934	.838	.958	.744	.981	.750	.974	.886	.908	.903	.943

County of Los Angeles N/S: Central Avenue E/W: 103rd Street Weather: Clear

File Name : LACCE103AM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

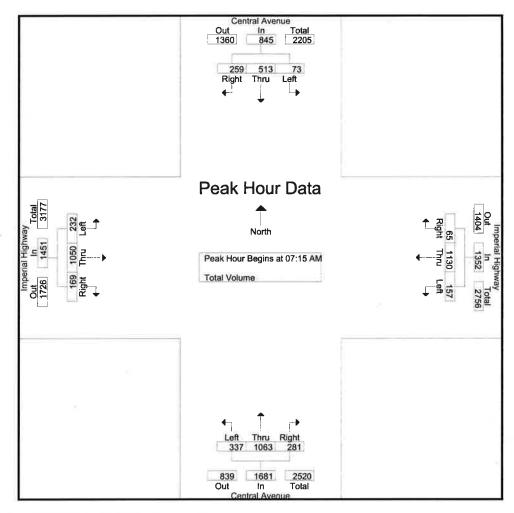

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

Peak Hour for	Each A	pproaci	i begins	ં ઢા.												
	07:15 AN				07:15 AM	l			07:00 AM	И			07:30 AN	ı		
+0 mins.	16	269	4	289	41	55	55	151	5	295	29	329	8	51	13	72
+15 mins.	27	280	2	309	51	47	51	149	8	334	39	381	10	55	15	80
+30 mins.	31	328	4	363	53	61	33	147	7	286	58	351	8	48	13	69
+45 mins.	35	267	8	310	41	51	39	131	15	285	69	369	8	44	11	63
Total Volume	109	1144	18	1271	186	214	178	578	35	1200	195	1430	34	198	52	284
% App. Total	8.6	90	1.4		32.2	37	30.8		2.4	83.9	13.6		12	69.7	18.3	
PHF	.779	.872	.563	.875	.877	.877	.809	.957	.583	.898	.707	.938	.850	.900	.867	.888

County of Los Angeles N/S: Central Avenue E/W: 103rd Street Weather: Clear

File Name : LACCE103PM Site Code : 12815514 Start Date 9/23/2015

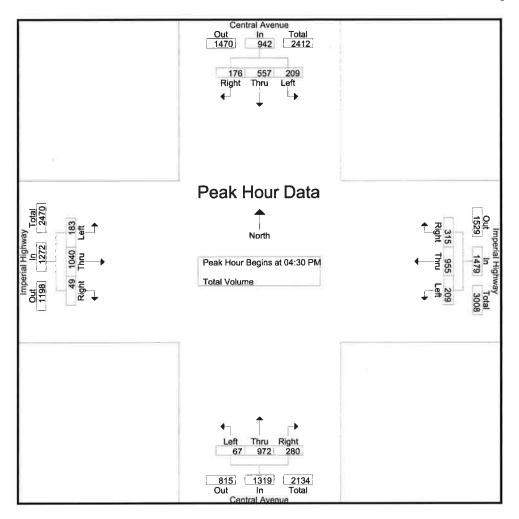
Page No : 2



Peak Hour for	Each Approach	Begins at:

	05:00 PM	1			04:15 PM	1			04:45 PN	1			05:00 PM			
+0 mins.	34	288	12	334	43	63	54	160	17	282	56	355	9	48	11	68
+15 mins.	38	323	11	372	44	68	39	151	15	278	48	341	9	54	16	79
+30 mins.	37	292	13	342	39	45	43	127	14	265	40	319	9	52	12	73
+45 mins.	41	312	5	358	39	60	59	158	12	269	45	326	13	69	12	94
Total Volume	150	1215	41	1406	165	236	195	596	58	1094	189	1341	40	223	51	314
% App. Total	10.7	86.4	2.9		27.7	39.6	32.7		4.3	81.6	14.1		12.7	71	16.2	
PHF	.915	.940	.788	.945	.938	.868	.826	.931	.853	.970	.844	.944	.769	.808	.797	.835

County of Los Angeles N/S: Central Avenue E/W: Imperial Highway Weather: Clear File Name : LACCEIMAM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

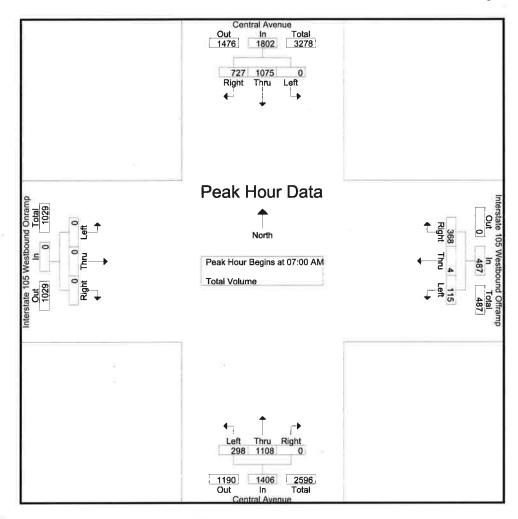
	07:15 AM				07:15 AN	Λ			07:00 AN	Л			07:15 AN	Л		
+0 mins.	18	109	83	210	30	297	20	347	79	244	75	398	60	277	31	368
+15 mins.	16	113	65	194	53	332	12	397	92	253	71	416	55	258	44	357
+30 mins.	18	167	54	239	35	236	18	289	90	265	68	423	68	242	59	369
+45 mins.	21	124	57	202	39	265	15	319	97	315	80	492	49	273	35	357
Total Volume	73	513	259	845	157	1130	65	1352	358	1077	294	1729	232	1050	169	1451
% App. Total	8.6	60.7	30.7		11.6	83.6	4.8		20.7	62.3	17		16	72.4	11.6	
PHF	.869	.768	.780	.884	.741	.851	.813	.851	.923	.855	.919	.879	.853	.948	.716	.983

County of Los Angeles N/S: Central Avenue E/W: Imperial Highway Weather: Clear File Name : LACCEIMPM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

	04:45 PM				04:30 PM	1			04:45 PN	Л			05:00 PN	Λ		
+0 mins.	40	137	47	224	49	256	78	383	14	255	77	346	46	237	12	295
+15 mins.	68	148	38	254	55	226	73	354	19	248	69	336	62	301	14	377
+30 mins.	55	140	49	244	56	240	79	375	15	238	79	332	49	237	6	292
+45 mins.	46	130	47	223	49	233	85	367	17	279	67	363	55	243	12	310
Total Volume	209	555	181	945	209	955	315	1479	65	1020	292	1377	212	1018	44	1274
% App. Total	22.1	58.7	19.2		14.1	64.6	21.3		4.7	74.1	21.2		16.6	79.9	3.5	
PHF	.768	.938	.923	.930	.933	.933	.926	.965	.855	.914	.924	.948	.855	.846	.786	.845

County of Los Angeles N/S: Central Avenue


E/W: Interstate 105 Westbound Ramps

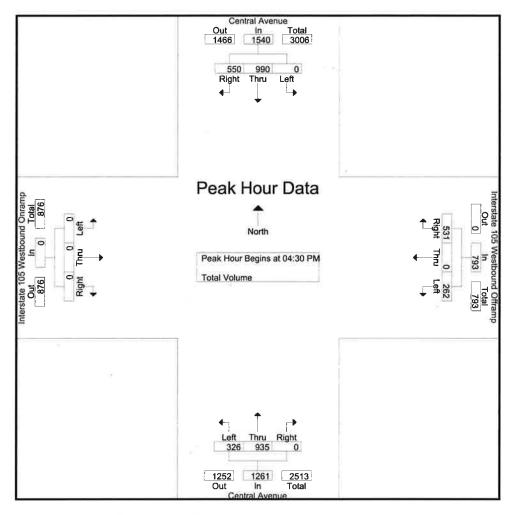
Weather: Clear

File Name : LACCE105WAM

Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

	07:00 AN	1			07:45 AM				07:15 AN	M			07:00 AM	I		
+0 mins.	0	243	182	425	45	3	101	149	84	285	0	369	0	0	0	0
+15 mins.	0	280	203	483	49	2	81	132	84	266	0	350	0	0	0	0
+30 mins.	0	312	194	506	31	0	88	119	57	302	0	359	0	0	0	0
+45 mins.	0	240	148	388	44	1	92	137	62	285	0	347	0	0	.0	0
Total Volume	0	1075	727	1802	169	6	362	537	287	1138	0	1425	0	0	0	0
% App. Total	0	59.7	40.3		31.5	1.1	67.4		20.1	79.9	0		0	0	0	
PHF	.000	.861	.895	.890	.862	.500	.896	.901	.854	.942	.000	.965	.000	.000	.000	.000


County of Los Angeles N/S: Central Avenue

E/W: Interstate 105 Westbound Ramps

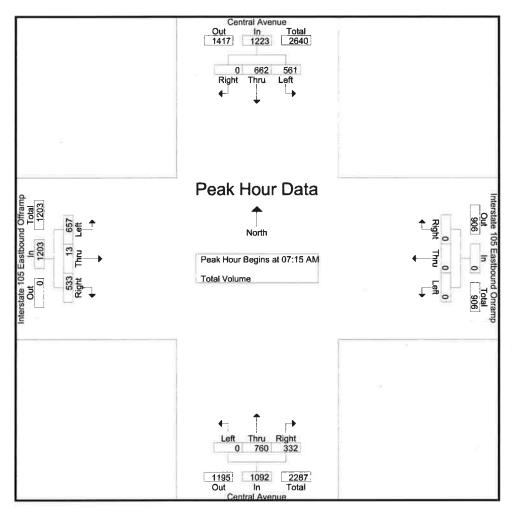
Weather: Clear

File Name : LACCE105WPM

Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

	05:00 PN	Λ			04:00 PM				04:30 PM	1			04:00 PM			
+0 mins.	0	229	151	380	74	0	161	235	77	239	0	316	0	0	0	- 0
+15 mins.	0	306	142	448	70	0	146	216	82	234	0	316	0	0	0	0
+30 mins.	0	246	109	355	66	0	134	200	81	224	0	305	0	0	0	0
+45 mins.	0	234	126	360	75	0	132	207	86	238	0	324	0	0	0	0
Total Volume	0	1015	528	1543	285	0	573	858	326	935	0	1261	0	0	0	0
% App. Total	0	65.8	34.2		33.2	0	66.8		25.9	74.1	0		0	0	0	
PHF	.000	.829	.874	.861	.950	.000	.890	.913	.948	.978	.000	.973	.000	.000	.000	.000

Counts Unlimited PO Box 1178 Corona, CA 92878 (951) 268-6268


County of Los Angeles N/S: Central Avenue

E/W: Interstate 105 Eastbound Ramps

Weather: Clear

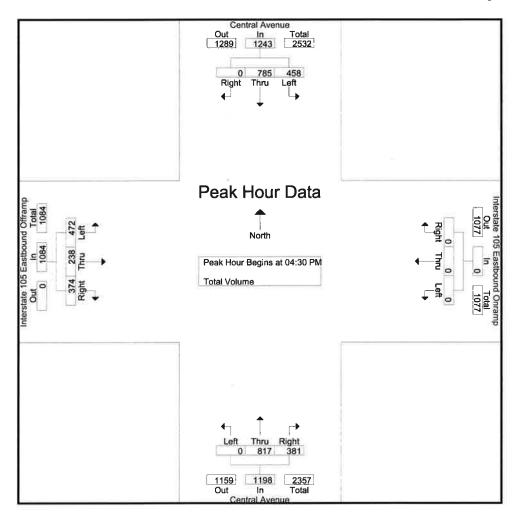
File Name: LACCE105EAM Site Code: 12815514 Start Date: 9/23/2015

Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

eak Hour for	Each A	pproaci	n begins	s at:	,											
	07:15 AM	ı			07:00 AM				07:15 AM				07:00 AM			
+0 mins.	167	126	0	293	0	0	0	0	0	200	88	288	143	1	77	221
+15 mins.	158	175	0	333	0	0	0	0	0	201	94	295	180	3	120	303
+30 mins.	106	179	0	285	0	0	0	0	0	170	71	241	169	6	144	319
+45 mins.	130	182	0	312	0	0	0	0	0	189	79	268	193	4	169	366
Total Volume	561	662	0	1223	0	0	0	0	0	760	332	1092	685	14	510	1209
% App. Total	45.9	54.1	0		0	0	0		0	69.6	30.4		56.7	1.2	42.2	
PHF	.840	.909	.000	.918	.000	.000	.000	.000	.000	.945	.883	.925	.887	.583	.754	.826

Counts Unlimited PO Box 1178 Corona, CA 92878 (951) 268-6268

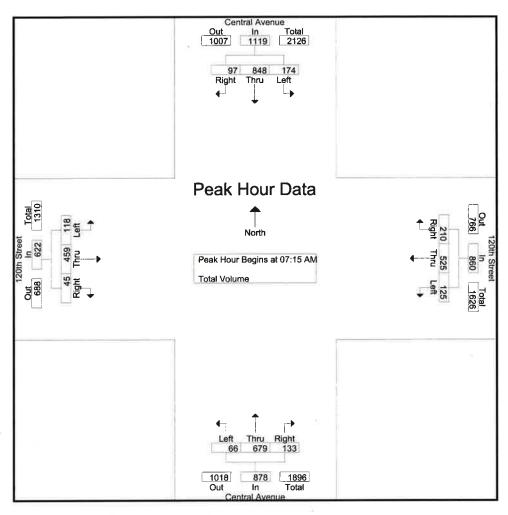

County of Los Angeles N/S: Central Avenue

E/W: Interstate 105 Eastbound Ramps

Weather: Clear

File Name : LACCE105EPM Site Code : 12815514

Start Date : 9/23/2015 Page No : 2

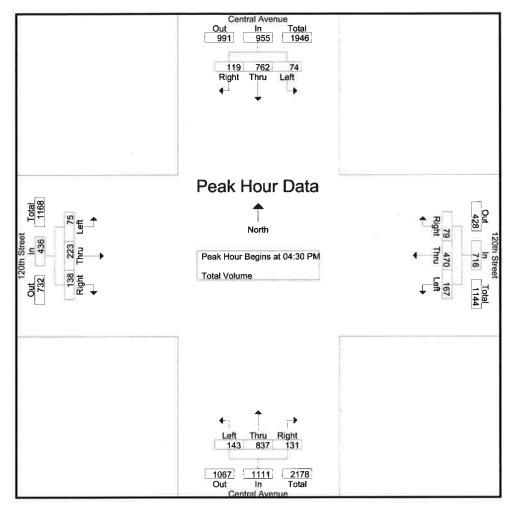


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:45 PM	t			04:00 PM	1			04:30 PM	4			05:00 PM	1		
+0 mins.	129	185	0	314	0	0	0	0	0	211	85	296	116	62	86	264
+15 mins.	117	171	0	288	0	0	0	0	0	199	79	278	123	61	103	287
+30 mins.	139	209	0	348	0	0	0	0	0	207	104	311	135	66	90	291
+45 mins.	140	180	0	320	0	0	0	0	0	200	113	313	122	54	107	283
Total Volume	525	745	0	1270	0	0	0	0	0	817	381	1198	496	243	386	1125
% App. Total	41.3	58.7	0		0	0	0		0	68.2	31.8		44.1	21.6	34.3	
PHF	.938	.891	.000	.912	.000	.000	.000	.000	.000	.968	.843	.957	.919	.920	.902	.966

County of Los Angeles N/S: Central Avenue E/W: 120th Street Weather: Clear

File Name : CLACE120AM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2



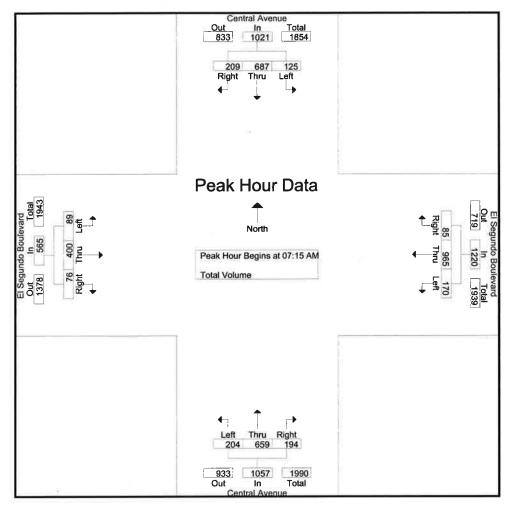
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:15 AM	1			07:15 AM	l			07:15 AM	1			07:15 AM			
+0 mins.	39	150	25	214	25	104	37	166	17	181	14	212	26	67	7	100
+15 mins.	40	204	16	260	33	138	59	230	21	164	44	229	26	136	8	170
+30 mins.	47	255	32	334	34	171	79	284	10	160	47	217	26	167	17	210
+45 mins.	48	239	24	311	33	112	35	180	18	174	28	220	40	89	13	142
Total Volume	174	848	97	1119	125	525	210	860	66	679	133	878	118	459	45	622
% App. Total	15.5	75.8	8.7		14.5	61	24.4		7.5	77.3	15.1		19	73.8	7.2	
PHF	.906	.831	.758	.838	.919	.768	.665	.757	.786	.938	.707	.959	.738	.687	.662	.740

County of Los Angeles N/S: Central Avenue E/W: 120th Street Weather: Clear File Name: CLACE120PM Site Code: 12815514 Start Date: 9/23/2015

Page No : 2

Peak	Hour	for	Each	Ap	proach	Begins	at:
1 Can	11001	101		1 10	DI OUCII	Dognio	u.

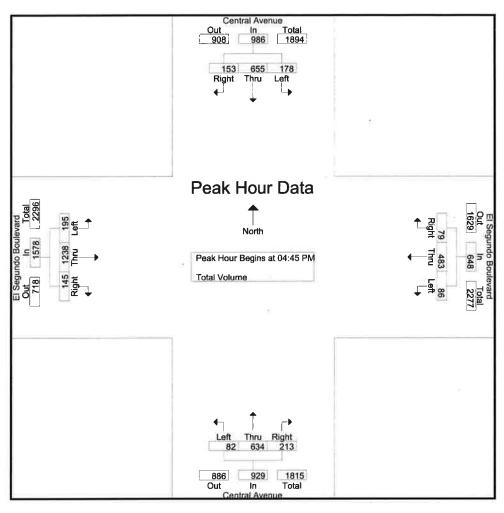

	04:30 PM				04:15 PM	4			05:00 PN	4			04:30 PN			
+0 mins.	12	178	24	214	38	129	24	191	29	209	38	276	17	58	41	116
+15 mins.	23	203	28	254	40	120	19	179	41	224	29	294	18	54	34	106
+30 mins.	14	167	33	214	42	117	19	178	43	188	31	262	23	62	40	125
+45 mins.	25	214	34	273	47	115	20	182	47	224	27	298	17	49	23	89
Total Volume	74	762	119	955	167	481	82	730	160	845	125	1130	75	223	138	436
% App. Total	7.7	79.8	12.5		22.9	65.9	11.2		14.2	74.8	11.1		17.2	51.1	31.7	
PHF	.740	.890	.875	.875	.888	.932	.854	.955	.851	.943	.822	.948	.815	.899	.841	.872

County of Los Angeles N/S: Central Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CLACEELAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

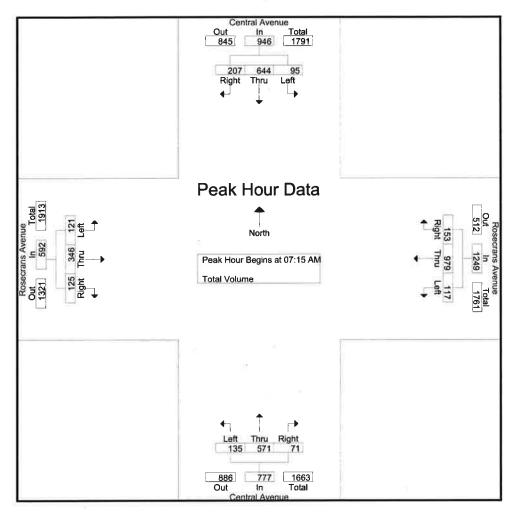

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

ount i loui loi		pprodo														
	07:30 AM	1			07:15 AM				07:15 AN	4			07:30 AM			
+0 mins.	28	173	59	260	34	253	22	309	44	183	28	255	24	92	12	128
+15 mins.	40	182	55	277	40	256	21	317	42	165	30	237	22	133	32	187
+30 mins.	35	220	51	306	41	227	19	287	55	152	74	281	25	100	20	145
+45 mins.	19	122	39	180	55	229	23	307	63	159	62	284	24	105	20	149
Total Volume	122	697	204	1023	170	965	85	1220	204	659	194	1057	95	430	84	609
% App. Total	11.9	68.1	19.9		13.9	79.1	7		19.3	62.3	18.4		15.6	70.6	13.8	
PHF	.763	.792	.864	.836	.773	.942	.924	.962	.810	.900	.655	.930	.950	.808	.656	.814

County of Los Angeles N/S: Central Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CLACEELPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

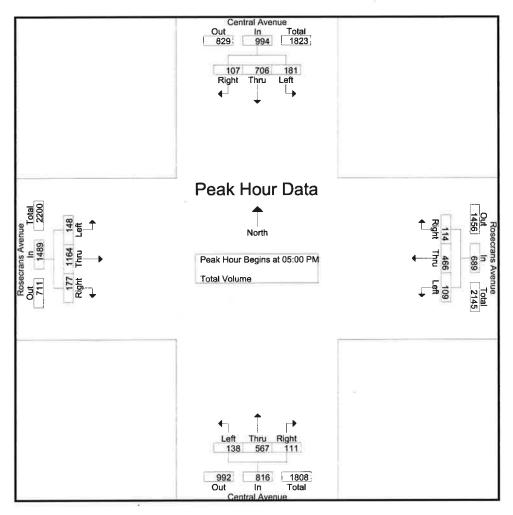

	05:00 PM	l			04:45 PM	1			04:45 PM	4			05:00 PN	A		
+0 mins.	46	181	40	267	21	137	16	174	22	187	55	264	61	290	31	382
+15 mins.	43	148	42	233	24	120	20	164	23	144	56	223	52	359	42	453
+30 mins.	44	174	31	249	21	92	19	132	16	154	60	230	36	306	35	377
+45 mins.	50	167	35	252	20	134	24	178	21	149	42	212	59	307	39	405
Total Volume	183	670	148	1001	86	483	79	648	82	634	213	929	208	1262	147	1617
% App. Total	18.3	66.9	14.8		13.3	74.5	12.2		8.8	68.2	22.9		12.9	78	9.1	
PHF	.915	.925	.881	.937	.896	.881	.823	.910	.891	.848	.888	.880	.852	.879	.875	.892

County of Los Angeles N/S: Central Avenue E/W: Rosecrans Avenue

Weather: Clear

File Name : CLACEROAM Site Code : 12815514 Start Date : 9/23/2015

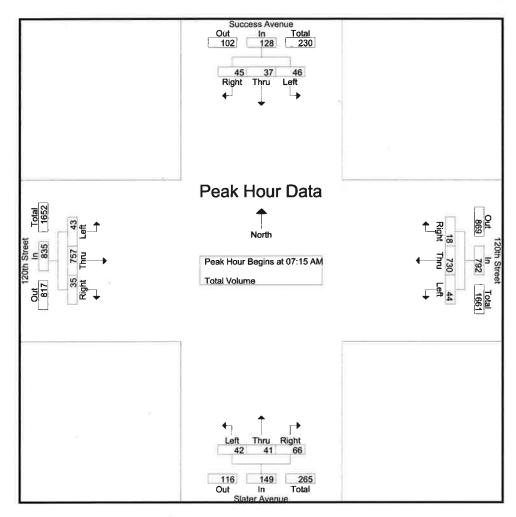
Page No 32


	07:30 AM				07:00 AN	И			07:15 AM	1			07:45 AM	1		
+0 mins.	21	151	36	208	21	243	36	300	40	151	10	201	27	108	33	168
+15 mins.	32	189	56	277	15	254	27	296	30	139	19	188	43	85	33	161
+30 mins.	27	179	65	271	36	270	39	345	25	143	23	191	22	101	23	146
+45 mins.	22	114	55	191	41	244	48	333	40	138	19	197	27	92	31	150
Total Volume	102	633	212	947	113	1011	150	1274	135	571	71	777	119	386	120	625
% App. Total	10.8	66.8	22.4		8.9	79.4	11.8		17.4	73.5	9.1		19	61.8	19.2	
PHF	.797	.837	.815	.855	.689	.936	.781	.923	.844	.945	.772	.966	.692	.894	.909	.930

County of Los Angeles N/S: Central Avenue E/W: Rosecrans Avenue

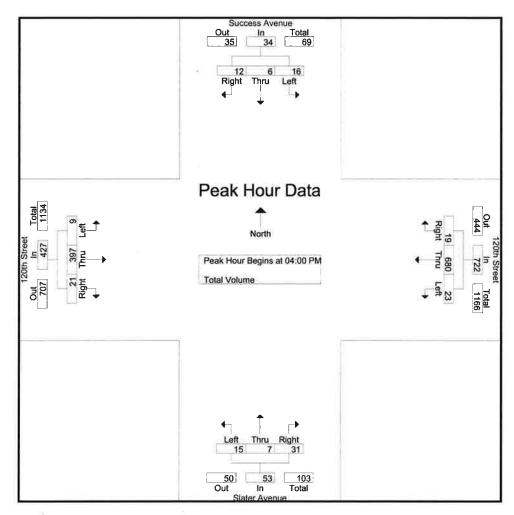
Weather: Clear

File Name : CLACEROPM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

	05:00 PM				04:00 PN	4			05:00 PN	4			05:00 PN	A		
+0 mins.	44	180	18	242	31	108	20	159	40	141	21	202	49	279	35	363
+15 mins.	36	171	22	229	30	132	25	187	23	135	41	199	53	295	45	393
+30 mins.	53	159	29	241	32	117	33	182	45	133	28	206	25	300	49	374
+45 mins.	48	196	38	282	38	104	32	174	30	158	21	209	21	290	48	359
Total Volume	181	706	107	994	131	461	110	702	138	567	111	816	148	1164	177	1489
% App. Total	18.2	71	10.8		18.7	65.7	15.7		16.9	69.5	13.6		9.9	78.2	11.9	
PHF	.854	.901	.704	.881	.862	.873	.833	.939	.767	.897	.677	.976	.698	.970	.903	.947

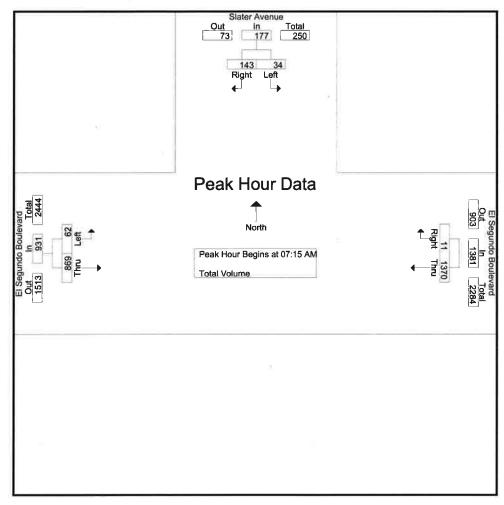
County of Los Angeles N/S: Slater Avenue E/W: 120th Street Weather: Clear File Name : CLASL120AM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

reak Hour to	Lacinn	pproaci	Degina	al.												
	07:30 AM	l			07:15 AN	1			07:15 AN	1			07:15 AN	1		
+0 mins.	12	8	7	27	4	115	3	122	5	3	12	20	2	136	5	143
+15 mins.	17	15	10	42	12	209	2	223	16	10	23	49	5	212	12	229
+30 mins.	10	12	25	47	22	255	5	282	13	17	24	54	14	257	11	282
+45 mins.	6	5	6	17	6	151	8	165	8	11	7	26	22	152	7	181
Total Volume	45	40	48	133	44	730	18	792	42	41	66	149	43	757	35	835
% App. Total	33.8	30.1	36.1		5.6	92.2	2.3		28.2	27.5	44.3		5.1	90.7	4.2	
PHF	.662	.667	.480	.707	.500	.716	.563	.702	.656	.603	.688	.690	.489	.736	.729	.740

County of Los Angeles N/S: Slater Avenue E/W: 120th Street Weather: Clear File Name : CLASL120PM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

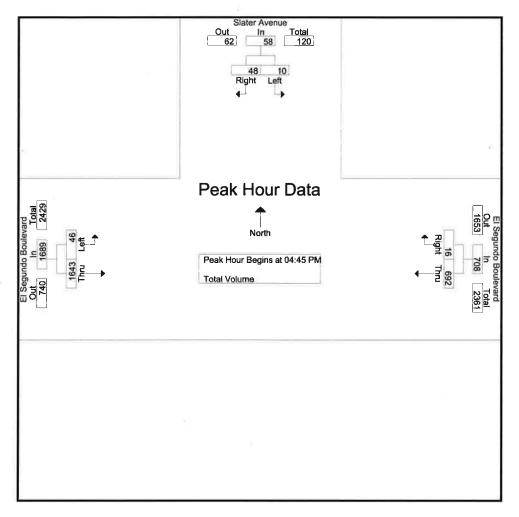

	04:00 PM	1			05:00 PM	1			05:00 PN	4			04;30 PM	ł		
+0 mins.	4	1	3	8	6	152	3	161	1	4	13	18	1	119	4	124
+15 mins.	4	2	2	8	8	172	2	182	2	4	6	12	1	109	5	115
+30 mins.	6	2	4	12	10	172	3	185	4	7	17	28	5	99	2	106
+45 mins.	2	1	3	6	7	187	5	199	3	6	18	27	1	77	5	83
Total Volume	16	6	12	34	31	683	13	727	10	21	54	85	8	404	16	428
% App. Total	47.1	17.6	35.3		4.3	93.9	1.8		11.8	24.7	63.5		1.9	94.4	3.7	
PHF	.667	.750	.750	.708	.775	.913	.650	.913	.625	.750	.750	.759	.400	.849	.800	.863

County of Los Angeles N/S: Slater Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name ; CLASLELAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

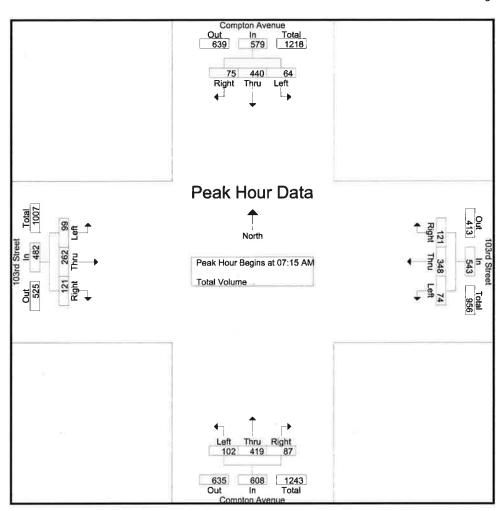

	07:15 AM			07:15 AM			07:30 AM		
+0 mins.	2	21	23	310	1	311	20	211	231
+15 mins.	7	29	36	400	1	401	23	297	320
+30 mins.	16	66	82	361	5	366	12	224	236
+45 mins.	9	27	36	299	4	303	9	145	154
Total Volume	34	143	177	1370	11	1381	64	877	941
% App. Total	19.2	80.8		99.2	8.0		6.8	93.2	
PHF	.531	.542	.540	.856	.550	.861	.696	.738	.735

County of Los Angeles N/S: Slater Avenue

E/W: El Segundo Boulevard Weather: Clear

File Name : CLASLELPM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

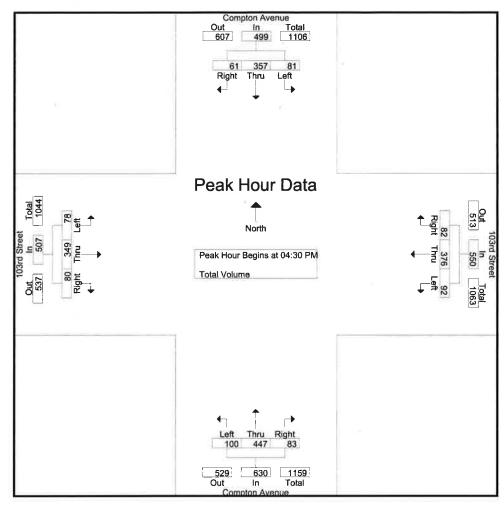


	04:45 PM			04:45 PM			05:00 PM		
+0 mins.	2	13	15	183	5	188	9	398	407
+15 mins.	2	17	19	180	2	182	16	430	446
+30 mins.	4	6	10	135	7	142	13	417	430
+45 mins.	2	12	14	194	2	196	20	397	417
Total Volume	10	48	58	692	16	708	58	1642	1700
% App. Total	17.2	82.8		97.7	2.3		3.4	96.6	
PHF	.625	.706	.763	.892	.571	.903	.725	.955	.953

County of Los Angeles N/S: Compton Avenue E/W: 103rd Street Weather: Clear

File Name: LACCO103AM

Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

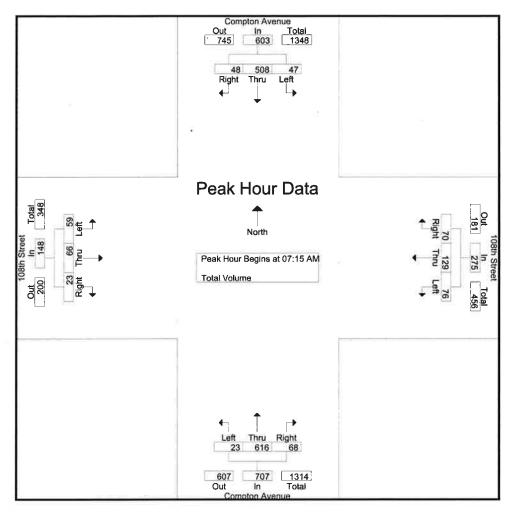


Peak Hour for	Each A	pproacl	n Begins	at:												
	07:15 AN				07:30 AN	Λ			07:15 AN	1			07:30 AM	1		
+0 mins.	10	89	19	118	15	99	44	158	27	104	15	146	33	67	23	123
+15 mins.	11	128	27	166	24	90	28	142	17	116	23	156	24	89	47	160
+30 mins.	22	118	11	151	24	84	25	133	30	107	27	164	25	66	35	126
+45 mins.	21	105	18	144	17	83	30	130	- 28	92	22	142	14	61	27	102
Total Volume	64	440	75	579	80	356	127	563	102	419	87	608	96	283	132	511
% App. Total	11.1	76	13		14.2	63.2	22.6		16.8	68.9	14.3		18.8	55.4	25.8	
PHF	.727	.859	.694	.872	.833	.899	.722	.891	.850	.903	.806	.927	.727	.795	.702	.798

County of Los Angeles N/S: Compton Avenue E/W: 103rd Street Weather: Clear

File Name ; LACCO103PM Site Code : 12815514 Start Date : 9/23/2015

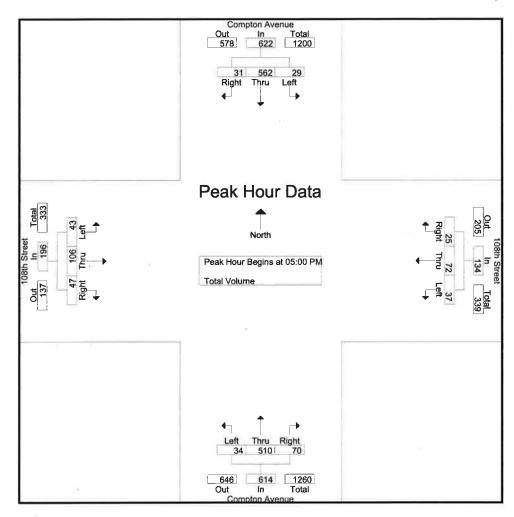
Page No : 2



	04:00 PM				04:00 PM	1			04:30 PM	1			04:30 PM	ı		
+0 mins.	15	102	16	133	22	100	24	146	36	104	25	165	19	87	25	131
+15 mins.	13	89	14	116	18	102	26	146	24	111	17	152	24	91	21	136
+30 mins.	19	87	23	129	25	109	26	160	21	116	21	158	16	95	11	122
+45 mins.	24	93	17	134	26	76	22	124	19	116	20	155	19	76	23	118
Total Volume	71	371	70	512	91	387	98	576	100	447	83	630	78	349	80	507
% App. Total	13.9	72.5	13.7		15.8	67.2	17		15.9	71	13.2		15.4	68.8	15.8	
PHF	.740	.909	.761	.955	.875	.888	.942	.900	.694	.963	.830	.955	.813	.918	.800	.932

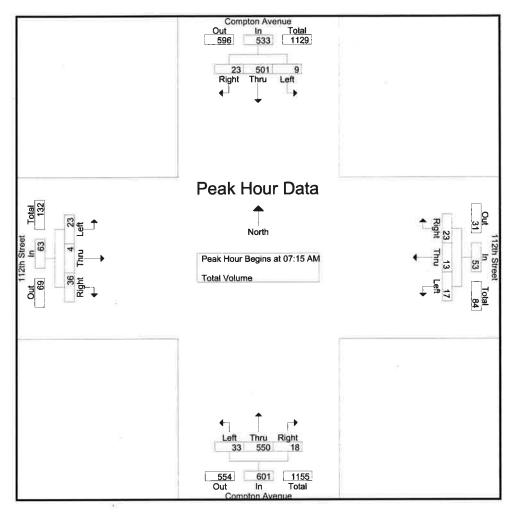
County of Los Angeles N/S: Compton Avenue E/W: 108th Street Weather: Clear

File Name: LACCO108AM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

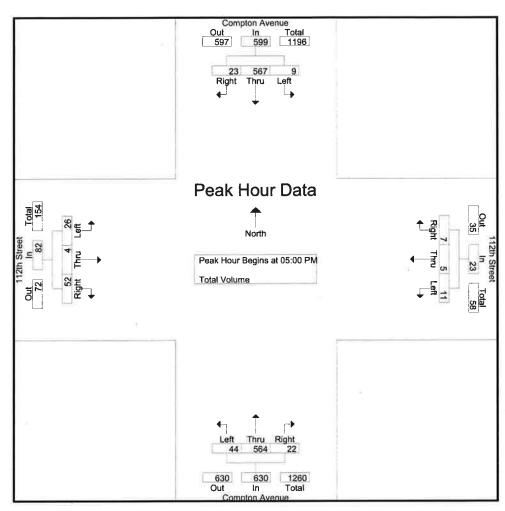
	07:30 AM				07:30 AM	1			07:15 AN	4			07:00 AM	l		
+0 mins.	9	149	10	168	12	36	22	70	3	151	8	162	9	18	3	30
+15 mins.	18	123	20	161	27	38	27	92	11	151	17	179	10	13	10	33
+30 mins.	16	121	13	150	28	34	12	74	5	150	19	174	8	16	1	25
+45 mins.	6	108	12	126	16	17	11	44	4	164	24	192	28	24	8	60
Total Volume	49	501	55	605	83	125	72	280	23	616	68	707	55	71	22	148
% App. Total	8.1	82.8	9.1		29.6	44.6	25.7		3.3	87.1	9.6		37.2	48	14.9	
PHF	.681	.841	.688	.900	.741	.822	.667	.761	.523	.939	.708	.921	.491	.740	.550	.617

County of Los Angeles N/S: Compton Avenue E/W: 108th Street Weather: Clear


File Name: LACCO108PM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

	05:00 PM	1			05:00 PM	1			04:15 PM	1			05:00 PM	1		
+0 mins.	10	157	8	175	8	15	10	33	8	4130	13	151	9	22	13	44
+15 mins.	8	121	11	140	8	23	2	33	9	139	15	163	9	20	15	44
+30 mins.	4	150	7	161	9	14	7	30	11	130	19	160	13	32	13	58
+45 mins.	7	134	5	146	12	20	6	38	11	123	25	159	12	32	6	50
otal Volume	29	562	31	622	37	72	25	134	39	522	72	633	43	106	47	196
% App. Total	4.7	90.4	5		27.6	53.7	18.7		6.2	82.5	11.4		21.9	54.1	24	
PHF	.725	895	.705	.889	.771	.783	.625	.882	.886	.939	.720	.971	.827	.828	.783	.845

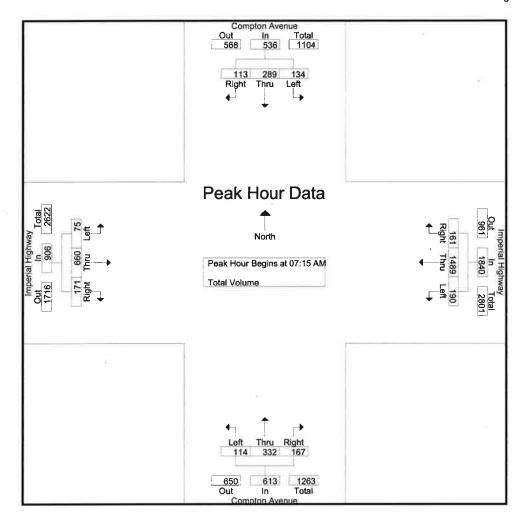
County of Los Angeles N/S: Compton Avenue E/W: 112th Street Weather: Clear


File Name: LACCO112AM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

	07:15 AM				07:15 AM	1			07:15 AM	4			07:00 AM	l		
+0 mins.	1	126	4	131	3	1	3	7	4	127	3	134	8	0	10	18
+15 mins.	1	163	3	167	3	2	7	12	6	159	6	171	4	1	5	10
+30 mins.	2	113	7	122	7	5	8	20	11	123	4	138	5	1	11	17
+45 mins.	5	99	9	113	4	5	5	14	12	141	5	158	8	1	11	20
Total Volume	9	501	23	533	17	13	23	53	33	550	18	601	25	3	37	65
% App. Total	1.7	94	4.3		32.1	24.5	43.4		5.5	91.5	3		38.5	4.6	56.9	
PHF	.450	.768	.639	.798	.607	.650	.719	.663	.688	.865	.750	.879	.781	.750	.841	.813

County of Los Angeles N/S: Compton Avenue E/W: 112th Street Weather: Clear File Name: LACCO112PM Site Code: 12815514 Start Date: 9/23/2015

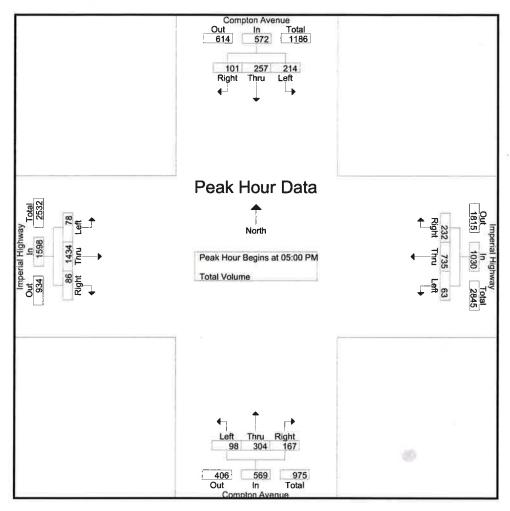
Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

	05:00 PM	1			04:45 PN	Λ			04:00 PM	1			04:45 PM			
+0 mins.	3	152	6	161	2	1	3	6	13	141	6	160	3	0	10	13
+15 mins.	0	131	5	136	3	1	3	7	4	157	10	171	7	0	15	22
+30 mins.	1	152	8	161	3	2	0	5	19	127	13	159	7	2	15	24
+45 mins.	5	132	4	141	4	2	2	8	11	143	9	163	7	1_	15	23
Total Volume	9	567	23	599	12	6	8	26	47	568	38	653	24	3	55	82
% App. Total	1.5	94.7	3.8		46.2	23.1	30.8		7.2	87	5.8		29.3	3.7	67.1	
PHF	450	933	.719	930	.750	.750	.667	.813	.618	.904	.731	.955	.857	.375	.917	.854

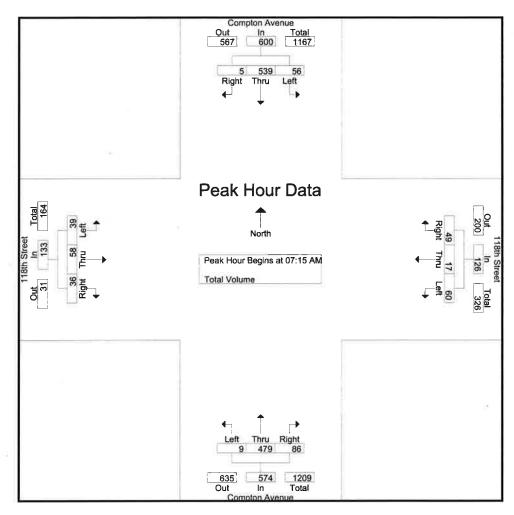
County of Los Angeles N/S: Compton Avenue E/W: Imperial Highway Weather: Clear


File Name : LACCOIMAM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

	07:15 AM				07:00 AN	Λ			07:15 AN	1			07:15 AM			
+0 mins.	34	73	28	135	47	348	38	433	30	62	39	131	15	133	32	180
+15 mins.	35	79	26	140	46	394	35	475	26	89	32	147	18	175	56	249
+30 mins.	29	90	29	148	49	402	35	486	32	104	51	187	19	187	60	266
+45 mins.	36	47	30	113	51	405	39	495	26	77	45	148	23	165	23	211
Total Volume	134	289	113	536	193	1549	147	1889	114	332	167	613	75	660	171	906
% App. Total	25	53.9	21.1		10.2	82	7.8		18.6	54.2	27.2		8.3	72.8	18.9	
PHF	.931	.803	.942	.905	.946	.956	.942	.954	.891	.798	.819	.820	.815	.882	.713	.852

County of Los Angeles N/S: Compton Avenue E/W: Imperial Highway Weather: Clear

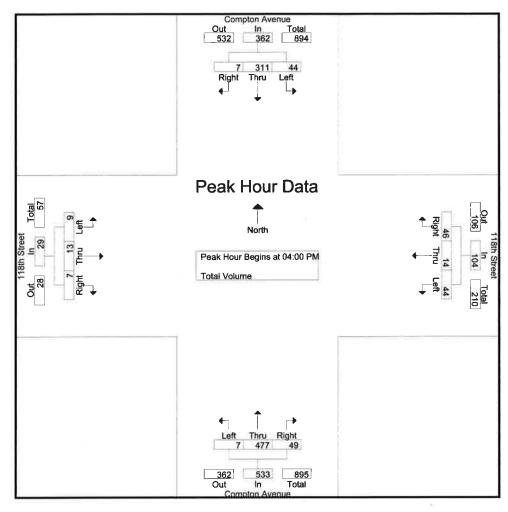
File Name :: LACCOIMPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2



Peak H	lour for	Each A	pproach	Begins at:
I can I	ioui ioi	Lacin	ppidadii	Degins at.

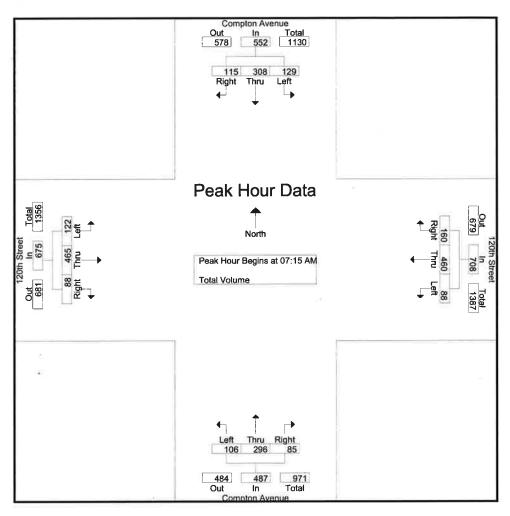
	04:00 PM	l			04:45 PM	1			04:15 PN	4			05:00 PN	4		
+0 mins.	94	90	47	231	23	178	67	268	20	77	51	148	14	356	24	394
+15 mins.	40	58	25	123	20	205	55	280	32	79	52	163	14	350	16	380
+30 mins.	44	66	27	137	13	196	64	273	19	74	51	144	26	367	25	418
+45 mins.	44	46	29	119	16	180	55	251	30	73	46	149	24	361	21	406
otal Volume	222	260	128	610	72	759	241	1072	101	303	200	604	78	1434	86	1598
% App. Total	36.4	42.6	21		6.7	70.8	22.5		16.7	50.2	33.1		4.9	89.7	5.4	
PHF	.590	.722	.681	.660	.783	.926	.899	.957	.789	.959	.962	.926	.750	.977	.860	.956

County of Los Angeles N/S: Compton Avenue E/W: 118th Street Weather: Clear File Name: CLACO118AM Site Code: 12815514 Start Date: 9/23/2015


Page No : 2

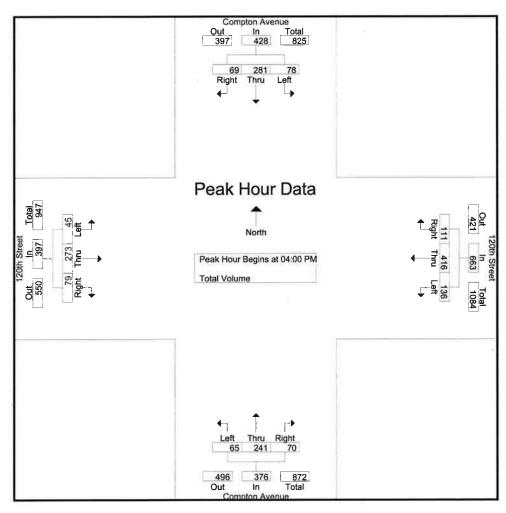
	07:15 AM				07:30 AM	1			07:15 AM	f			07:15 AM			
+0 mins.	8	119	1	128	22	3	10	35	4	113	9	126	2	6	12	20
+15 mins.	9	146	0	155	18	8	16	42	3	123	25	151	12	14	9	35
+30 mins.	20	158	3	181	15	5	15	35	0	135	32	167	17	21	12	50
+45 mins.	19	116	- 1	136	15	4	9	28	2	108	20	130	8	17	3	28
Total Volume	56	539	5	600	70	20	50	140	9	479	86	574	39	58	36	133
% App. Total	9.3	89.8	0.8		50	14.3	35.7		1.6	83.4	15		29.3	43.6	27.1	
PHF	700	853	417	829	795	625	781	833	563	887	672	859	574	690	750	665

County of Los Angeles N/S: Compton Avenue E/W: 118th Street Weather: Clear File Name : CLACO118PM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

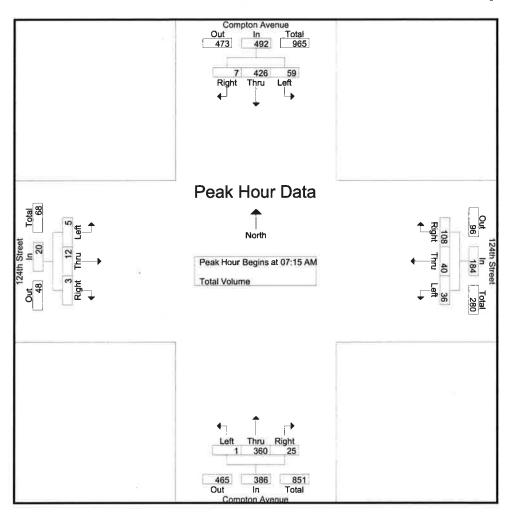
	04:00 PN	1			04:15 PM	1			04:00 PN	4			04:30 PM	1		
+0 mins.	13	79	4	96	12	3	16	31	4	104	14	122	2	5	2	ę
+15 mins.	16	79	1	96	13	7	18	38	0	127	17	144	1	4	1	6
+30 mins.	10	73	1	84	6	3	8	17	2	133	12	147	0	4	2	6
+45 mins.	5	80	1	86	12	4	11	27	1	113	6	120	3	7	3	13
Total Volume	44	311	7	362	43	17	53	113	7	477	49	533	6	20	8	34
% App. Total	12.2	85.9	1.9		38.1	15	46.9		1.3	89.5	9.2		17.6	58.8	23.5	
PHF	.688	.972	.438	.943	. 827	.607	.736	.743	.438	.897	.721	.906	.500	.714	.667	.654

County of Los Angeles N/S: Compton Avenue E/W: 120th Street Weather: Clear File Name: CLACO120AM Site Code: 12815514 Start Date: 9/23/2015


Page No : 2

Peak Hour for	Each A	pproacl	n Begins	at:												
	07:15 AM	1			07:15 AM	100			07:15 AN	Λ			07:15 AN	1		
+0 mins.	17	84	24	125	12	86	32	130	20	76	18	114	27	73	14	114
+15 mins.	30	89	20	139	32	129	41	202	29	78	22	129	34	106	25	165
+30 mins.	47	69	44	160	30	158	47	235	33	76	21	130	34	164	28	226
+45 mins.	35	66	27	128	14	87	40	141	24	66	24	114	27	122	21	170
Total Volume	129	308	115	552	88	460	160	708	106	296	85	487	122	465	88	675
% App. Total	23.4	55.8	20.8		12.4	65	22.6		21.8	60.8	17.5		18.1	68.9	13	
PHF	.686	.865	.653	.863	.688	.728	.851	.753	.803	.949	.885	.937	.897	.709	.786	.747

County of Los Angeles N/S: Compton Avenue E/W: 120th Street Weather: Clear File Name : CLACO120PM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

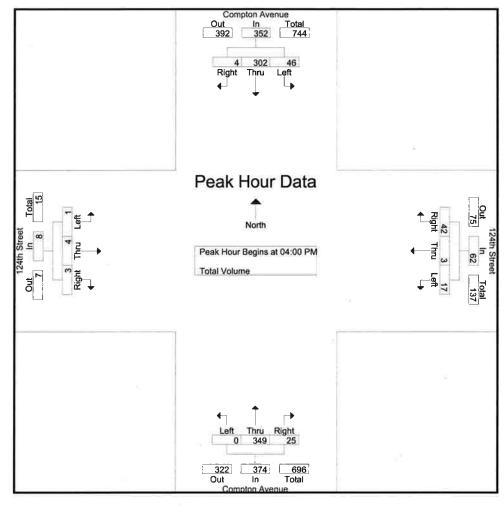
Peak Hour for	Each A	pproacl	n Begins	at:												
	04:00 PM				05:00 PN	1			04:15 PN	A			04:30 PM	ı		
+0 mins.	24	66	13	103	25	97	27	149	11	77	13	101	15	89	26	130
+15 mins.	18	91	15	124	41	103	27	171	19	48	23	90	12	79	20	111
+30 mins.	16	65	19	100	31	119	24	174	24	59	17	100	6	70	14	90
+45 mins.	20	59	22	101	38	133	19	190	9	60	17	86	5	51	20	76
Total Volume	78	281	69	428	135	452	97	684	63	244	70	377	38	289	80	407
% App. Total	18.2	65.7	16.1		19.7	66.1	14.2		16.7	64.7	18.6		9.3	71	19.7	
PHF	.813	.772	.784	.863	.823	.850	.898	.900	.656	.792	.761	.933	.633	.812	.769	.783

County of Los Angeles N/S: Compton Avenue E/W: 124th Street Weather: Clear File Name : CLACO124AM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak Hour for Each Approach Begins at:

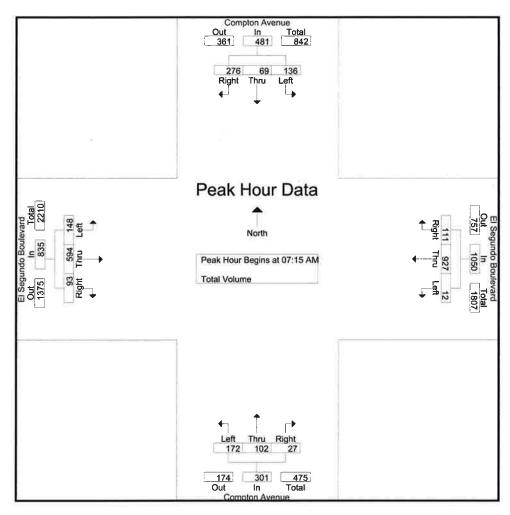

	07:15 AM				07:15 AM	1			07:15 AN	A			07:15 AN	1		
+0 mins.	12	100	1	113	3	6	26	35	0	72	4	76	1	4	1	6
+15 mins.	13	130	2	145	14	9	31	54	0	97	5	102	2	1	1	4
+30 mins.	20	114	2	136	12	20	31	63	0	103	10	113	1	4	0	5
+45 mins.	14	82	2	98	7	5	20	32	1	88	6	95	1	3	1	5
otal Volume	59	426	7	492	36	40	108	184	1	360	25	386	5	12	3	20
% App. Total	12	86.6	1.4		19.6	21.7	58.7		0.3	93.3	6.5		25	60	15	
PHF	.738	.819	.875	.848	.643	.500	.871	.730	.250	.874	.625	.854	.625	.750	.750	.833

County of Los Angeles N/S: Compton Avenue E/W: 124th Street Weather: Clear

File Name : CLACO124PM

Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

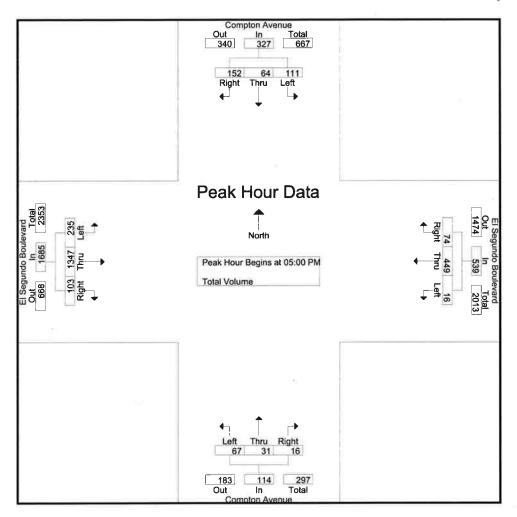

	04:15 PM	l			05:00 PM	1			04:00 PM	A			04:15 PM	1		
+0 mins.	12	88	1	101	9	4	12	25	0	89	5	94	1	0	1	2
+15 mins.	13	69	0	82	6	5	8	19	0	94	7	101	0	2	2	4
+30 mins.	8	65	1	74	7	0	9	16	0	82	8	90	0	1	0	1
+45 mins.	12	84	1	97	3	2	16	21	. 0	84	5	89	2	1	0	3
Total Volume	45	306	3	354	25	11	45	81	0	349	25	374	3	4	3	10
% App. Total	12.7	86.4	0.8		30.9	13.6	55.6		0	93.3	6.7		30	40	30	
PHF	.865	.869	.750	.876	.694	.550	.703	.810	.000	.928	.781	.926	.375	.500	.375	.625

County of Los Angeles N/S: Compton Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name CLACOELAM Site Code : 12815514 Start Date : 9/23/2015

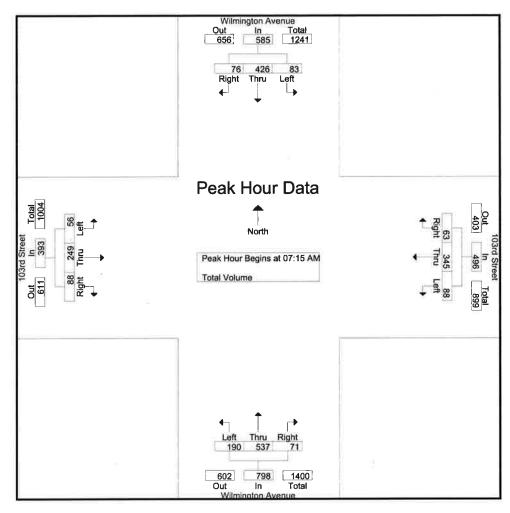
Page No : 2



reak Hour for	Each Ap	proac	n Begins	at:												
	07:15 AM				07:00 AM				07:15 AN	1			07:30 AN	4		
+0 mins.	29	13	61	103	0	216	17	233	33	16	7	56	37	155	13	205
+15 mins.	36	17	81	134	1	223	24	248	49	29	5	83	33	199	39	271
+30 mins.	48	21	83	152	5	270	26	301	60	39	11	110	51	154	35	240
+45 mins.	23	18	51	92	6	240	34	280	30	18	4	52	21	102	23	146
Total Volume	136	69	276	481	12	949	101	1062	172	102	27	301	142	610	110	862
% App. Total	28.3	14.3	57.4		1.1	89.4	9.5		57.1	33.9	9		16.5	70.8	12.8	
PHF	.708	.821	.831	.791	.500	.879	.743	.882	.717	.654	.614	.684	.696	.766	.705	.795

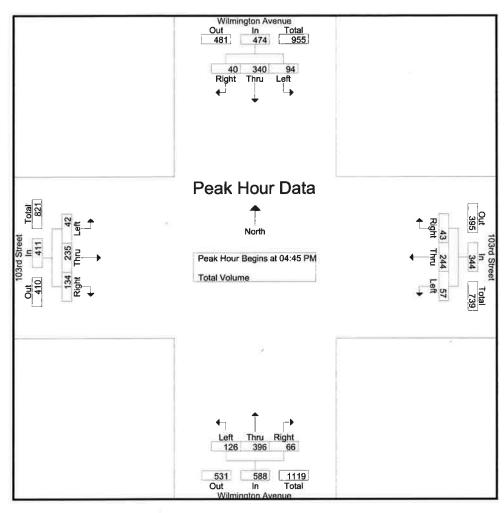
County of Los Angeles N/S: Compton Avenue E/W: El Segundo Boulevard

Weather: Clear


File Name : CLACOELPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

	05:00 PM				04:15 PM	ı			05:00 PN	Л			05:00 PM	Λ		
+0 mins.	25	21	45	91	4	112	25	141	20	9	2	31	52	329	31	412
+15 mins.	29	15	29	73	4	109	21	134	9	8	3	20	58	344	27	429
+30 mins.	28	14	47	89	4	130	24	158	23	5	6	34	60	338	18	416
+45 mins.	29	14	31	74	5	117	17	139	15	9	5	29	65	336	27	428
Total Volume	111	64	152	327	17	468	87	572	67	31	16	114	235	1347	103	1685
% App. Total	33.9	19.6	46.5		3	81.8	15.2		58.8	27.2	14		13.9	79.9	6.1	
PHF	.957	.762	.809	.898	.850	.900	.870	.905	.728	.861	.667	.838	.904	.979	.831	.982

County of Los Angeles N/S: Wilmington Avenue E/W: 103rd Street Weather: Clear File Name: LACWI103AM Site Code: 12815514 Start Date: 9/23/2015

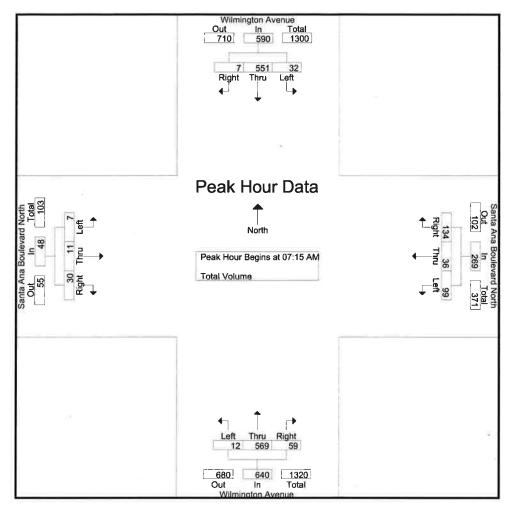

Page No 2

Peak Hour for	Each A	pproacl	n Begins	at:												
	07:15 AM	1			07:15 ÅN	1			07:15 AN	A			07:30 AM	ı		
+0 mins.	17	96	10	123	12	71	14	97	37	115	16	168	12	62	15	89
+15 mins.	20	111	13	144	28	86	10	124	42	144	12	198	23	85	37	145
+30 mins.	28	117	25	170	21	107	20	148	55	149	19	223	15	66	26	107
+45 mins.	18	102	28	148	27	81	19	127	56	129	24	209	12	61	25	98
Total Volume	83	426	76	585	88	345	63	496	190	537	71	798	62	274	103	439
% App. Total	14.2	72.8	13		17.7	69.6	12.7		23.8	67.3	8.9		14.1	62.4	23.5	
PHF	.741	.910	.679	.860	.786	.806	.788	.838	.848	.901	.740	.895	.674	.806	.696	.757

County of Los Angeles N/S: Wilmington Avenue E/W: 103rd Street Weather: Clear

File Name : LACWI103PM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Peak Hour for	Each A	pproacl	h Begins	at:												
	05:00 PM	1			04:45 PM	4			04:30 PM	1			04:00 PM	1		
+0 mins.	17	90	12	119	10	75	13	98	34	90	19	143	13	75	26	114
+15 mins.	26	83	- 6	115	18	53	8	79	27	100	12	139	12	51	36	99
+30 mins.	30	89	11	130	14	57	11	82	38	94	20	152	8	67	37	112
+45 mins.	44	97	10	151	15	59	11	85	32	105	18	155	10	58	38	106
Total Volume	117	359	39	515	57	244	43	344	131	389	69	589	43	251	137	431
% App. Total	22.7	69.7	7.6		16.6	70.9	12.5		22.2	66	11.7		10	58.2	31.8	
PHF	.665	.925	.813	.853	.792	.813	.827	.878	.862	.926	.863	.950	.827	.837	.901	.945

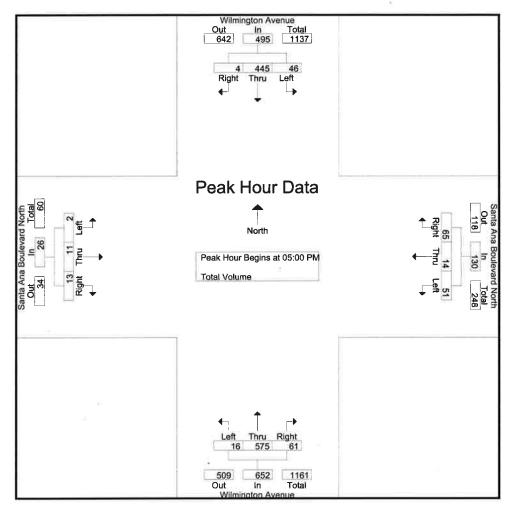

County of Los Angeles N/S: Wilmington Avenue

E/W: Santa Ana Boulevard North

Weather: Clear

File Name : LACWISNAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

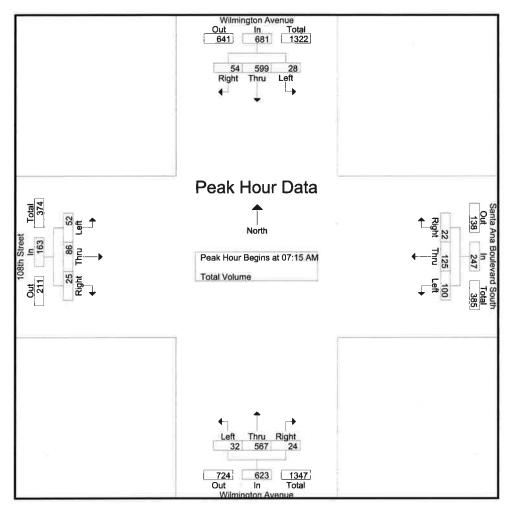

	07:15 AM	1			07:15 AN	1			07:30 AN	1			07:30 AN	1		
+0 mins.	6	134	1	141	14	3	27	44	4	141	19	164	0	3	7	10
+15 mins.	10	153	2	165	27	7	43	77	5	157	22	184	3	3	12	18
+30 mins.	7	137	3	147	33	12	30	75	1	142	8	151	4	4	9	17
+45 mins.	9	127	1	137	25	14	34	73	2	142	7	151	0	2	3	5
Total Volume	32	551	7	590	99	36	134	269	12	582	56	650	7	12	31	50
% App. Total	5.4	93.4	1.2		36.8	13.4	49.8		1.8	89.5	8.6		14	24	62	
PHF	.800	.900	.583	.894	.750	.643	.779	.873	.600	.927	.636	.883	.438	.750	.646	.694

County of Los Angeles N/S: Wilmington Avenue

E/W: Santa Ana Boulevard North

Weather: Clear

File Name ; LACWISNPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

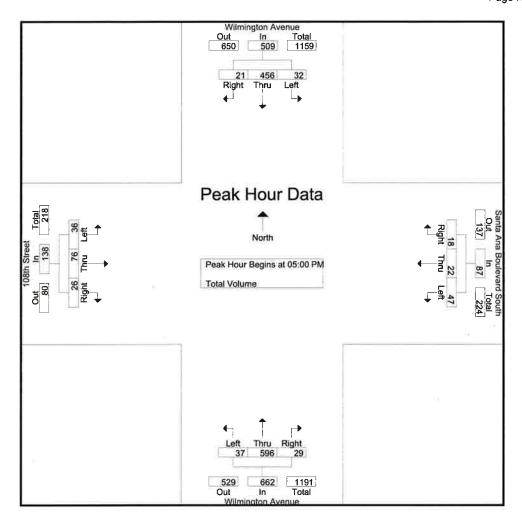

	05:00 PM	}			04:00 PM	1			04:45 PN	1			04:15 PN	1		
+0 mins.	9	102	1	112	13	6	22	41	2	145	17	164	2	5	4	11
+15 mins.	11	107	1	119	13	4	25	42	4	143	13	160	2	7	5	14
+30 mins.	10	110	0	120	17	5	22	44	4	145	16	165	1	4	4	9
+45 mins.	16	126	2	144	12	3	16	31	5	150	16	171	0	5	6	11
Total Volume	46	445	4	495	55	18	85	158	15	583	62	660	5	21	19	45
% App. Total	9.3	89.9	8.0		34.8	11.4	53.8		2.3	88.3	9.4		11.1	46.7	42.2	
PHF	.719	.883	.500	.859	.809	.750	.850	.898	.750	.972	.912	.965	.625	.750	.792	.804

County of Los Angeles N/S: Wilmington Avenue

E/W: Santa Ana Boulevard South

Weather: Clear

File Name :: LACWISSAM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

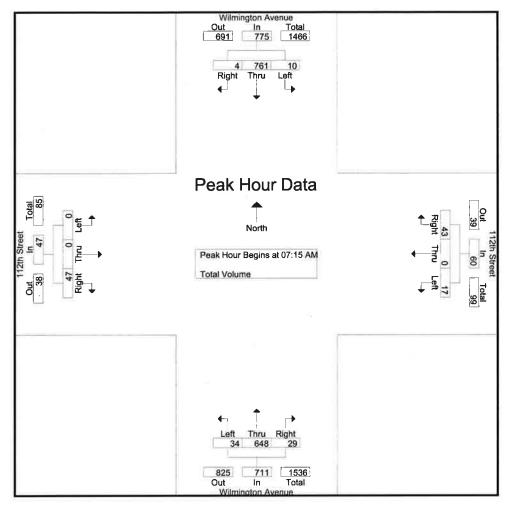

	07:15 AM				07:15 AM	1			07:30 AN	1			07:15 AN			
+0 mins.	2	141	6	149	20	22	4	46	- 7	149	6	162	6	17	4	27
+15 mins.	8	168	12	188	26	29	4	59	9	159	4	172	13	12	3	28
+30 mins.	10	153	21	184	33	44	9	86	10	128	9	147	17	34	11	62
+45 mins.	8	137	15	160	21	30	.5	56	7	143	7	157	16	23	7	46
Total Volume	28	599	54	681	100	125	22	247	33	579	26	638	52	86	25	163
% App. Total	4.1	88	7.9		40.5	50.6	8.9		5.2	90.8	4.1		31.9	52.8	15.3	
PHF	.700	.891	.643	.906	.758	.710	.611	.718	.825	.910	.722	.927	.765	.632	.568	.657

County of Los Angeles N/S: Wilmington Avenue

E/W: Santa Ana Boulevard South

Weather: Clear

File Name : LACWISSPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

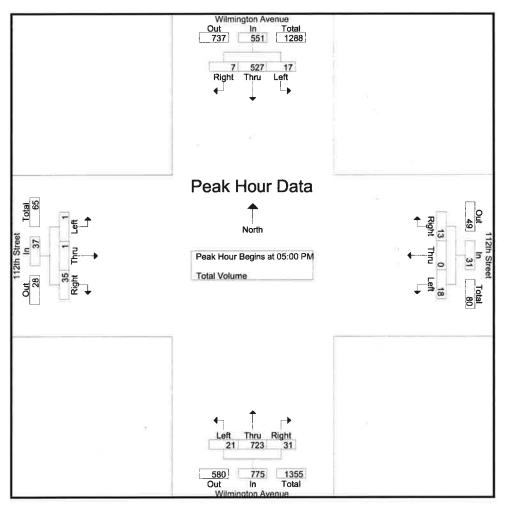


	05:00 PM	l			05:00 PM	Л			04:45 PN	Л			05:00 PM	1		
+0 mins.	5	112	6	123	12	3	4	19	1	152	3	156	11	22	7	40
+15 mins.	9	112	6	127	9	9	2	20	7	148	5	160	4	22	2	28
+30 mins.	10	108	6	124	10	6	7	23	6	158	5	169	5	14	13	32
+45 mins.	8	124	3	135	16	4	5	25	13	155	14	182	16	18	4	38
Total Volume	32	456	21	509	47	22	18	87	27	613	27	667	36	76	26	138
% App. Total	6.3	89.6	4.1		54	25.3	20.7		4	91.9	4		26.1	55.1	18.8	
PHF	.800	.919	.875	.943	.734	.611	.643	.870	.519	.970	.482	.916	.563	.864	.500	.863

County of Los Angeles N/S: Wilmington Avenue E/W: 112th Street Weather: Clear

File Name: LACWI112AM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

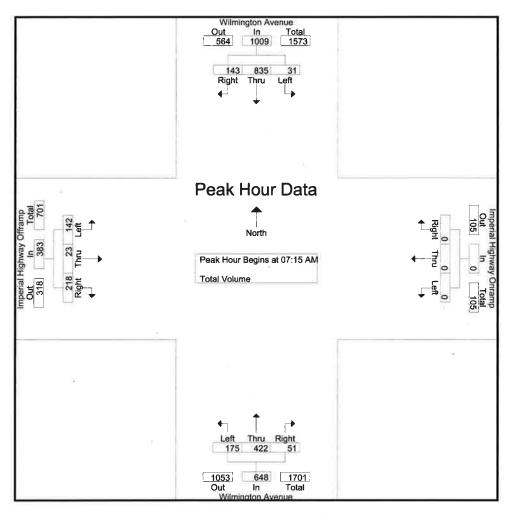

	07:15 AM				07:15 AM				07:30 AN	4			07:30 AM	1		
+0 mins.	0	183	0	183	3	0	8	11	4	173	4	181	0	0	11	11
+15 mins.	0	206	1	207	3	0	7	10	16	183	8	207	0	0	11	11
+30 mins.	4	187	1	192	5	0	10	15	13	151	10	174	0	0	14	14
+45 mins.	6	185	2	193	6	0	18	24	6	164	7	177	0	0	13	13
Total Volume	10	761	4	775	17	0	43	60	39	671	29	739	0	0	49	49
% App. Total	1.3	98.2	0.5		28.3	0	71.7		5.3	90.8	3.9		0	0	100	
PHF	.417	.924	.500	.936	.708	.000	.597	.625	.609	.917	.725	.893	.000	.000	.875	.875

County of Los Angeles N/S: Wilmington Avenue E/W: 112th Street

Weather: Clear

File Name : LACWI112PM Site Code : 12815514 Start Date : 9/23/2015

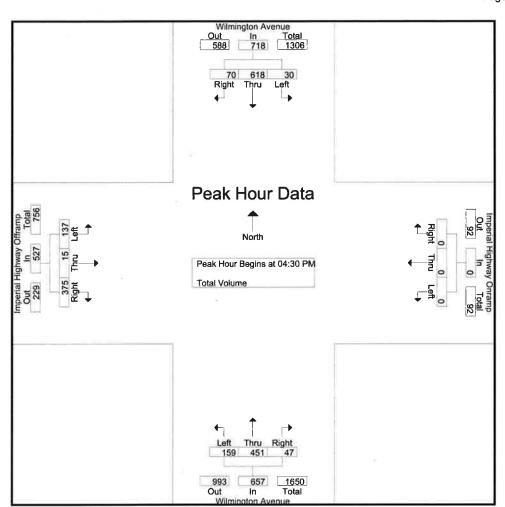
Page No : 2


	05:00 PM	1			05:00 PM	1			05:00 PN	1			04:00 PM			
+0 mins.	3	127	0	130	6	0	5	11	8	190	6	204	0	1	14	15
+15 mins.	3	134	2	139	2	0	5	7	6	173	7	186	1	1	9	11
+30 mins.	4	135	2	141	6	0	1	7	2	193	7	202	1	0	11	12
+45 mins.	7	131	3	141	4	0	2	6	5	167	11	183	0	2	10	12
Total Volume	17	527	7	551	18	0	13	31	21	723	31	775	2	4	44	50
% App. Total	3.1	95.6	1.3		58.1	0	41.9		2.7	93.3	4		4	8	88	
PHF	.607	.976	.583	.977	.750	.000	.650	.705	.656	.937	.705	.950	.500	.500	.786	.833

County of Los Angeles N/S: Wilmington Avenue E/W: Imperial Highway

Weather: Clear

File Name : LACWIIMAM Site Code : 12815514 Start Date : 9/23/2015

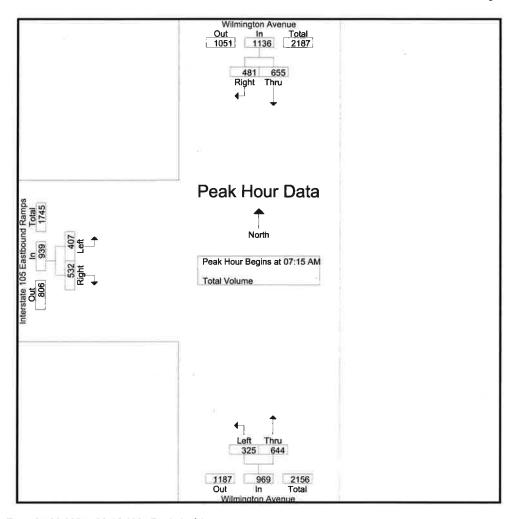

Page No 2

	07:15 AM				07:00 AM	1			07:15 AN	1			07:15 AM	1		
+0 mins.	10	203	37	250	0	0	0	0	47	95	13	155	22	6	49	77
+15 mins.	9	227	33	269	0	0	0	0	39	108	13	160	30	9	66	105
+30 mins.	5	197	38	240	0	0	0	0	56	118	14	188	51	1	52	104
+45 mins.	7	208	35	250	0	0	0	0	33	101	11	145	39	7	51	97
Total Volume	31	835	143	1009	.0	0	.0	0	175	422	51	648	142	23	218	383
% App. Total	3.1	82.8	14.2		0	0	0		27	65.1	7.9		37.1	6	56.9	
PHF	.775	.920	.941	.938	.000	.000	.000	.000	.781	.894	.911	.862	.696	.639	.826	.912

County of Los Angeles N/S: Wilmington Avenue E/W: Imperial Highway Weather: Clear

File Name : LACWIIMPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Peak Hour for	Each A	oproact	n Begins	at:												
	04:30 PM				04:00 PM	A			04:15 PN	1			05:00 PM	1		
+0 mins.	9	168	10	187	0	0	0	0	42	120	12	174	35	4	94	133
+15 mins.	6	150	16	172	0	0	0	0	37	117	9	163	30	5	93	128
+30 mins.	8	148	20	176	0	0	0	0	44	109	9	162	30	4	107	141
+45 mins.	7	152	24	183	0	0	0	0	39	114	16	169	39	6	102	147
Total Volume	30	618	70	718	0	0	0	0	162	460	46	668	134	19	396	549
% App. Total	4.2	86.1	9.7		0	0	0		24.3	68.9	6.9		24.4	3.5	72.1	
PHF	.833	.920	.729	.960	.000	.000	.000	.000	.920	.958	.719	.960	.859	.792	.925	.934


County of Los Angeles

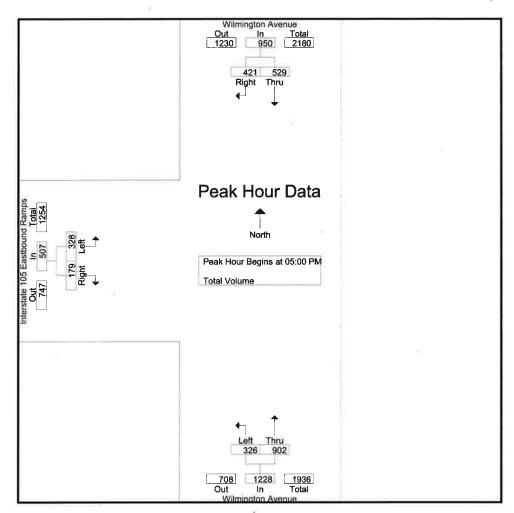
N/S: Wilmington Avenue E/W: Interstate 105 Eastbound Ramps

Weather: Clear

File Name LACWI105EAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

	07:15 AM			07:00 AM			07:30 AM		
+0 mins.	142	135	277	92	158	250	124	153	277
+15 mins.	157	143	300	95	143	238	84	126	210
+30 mins.	189	97	286	97	191	288	100	132	232
+45 mins.	167	106	273	78	164	242	99	129	228
Total Volume	655	481	1136	362	656	1018	407	540	947
% App. Total	57.7	42.3		35.6	64.4		43	57	
PHF	.866	.841	.947	.933	.859	.884	.821	.882	.855

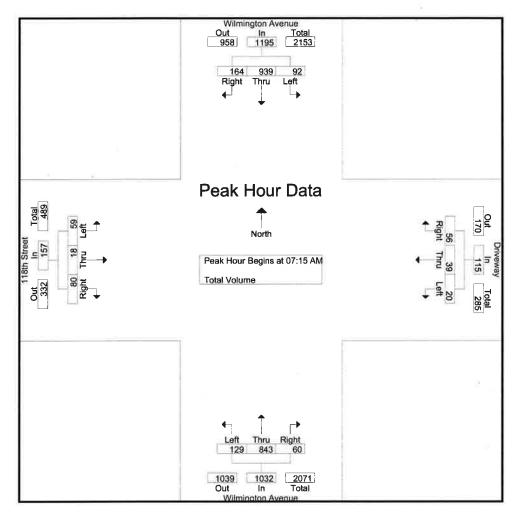

County of Los Angeles N/S: Wilmington Avenue

E/W: Interstate 105 Eastbound Ramps

Weather: Clear

File Name :: LACWI105EPM

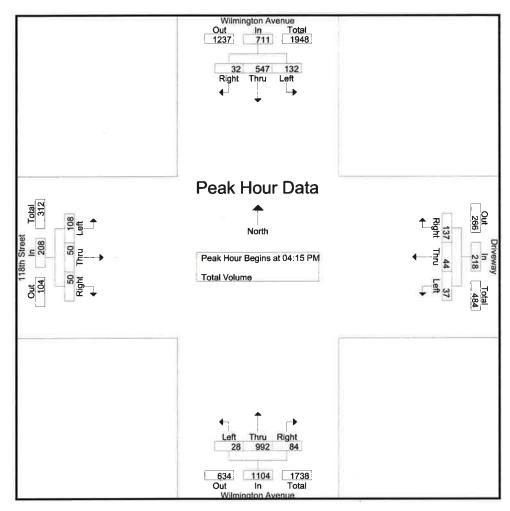
Site Code : 12815514 Start Date : 9/23/2015 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

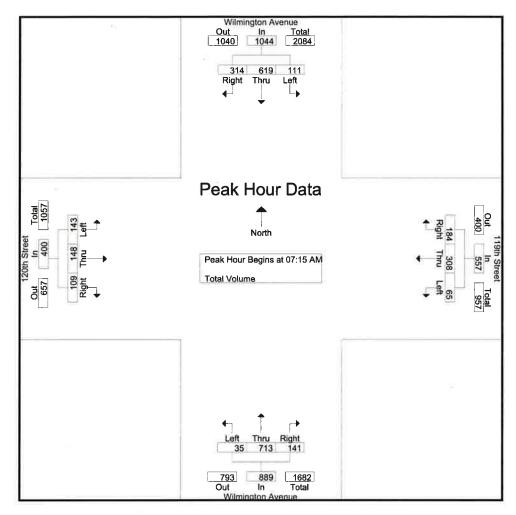
	05:00 PM			04:30 PM			05:00 PM		
+0 mins.	119	93	212	100	215	315	72	45	117
+15 mins.	117	122	239	94	227	321	86	33	119
+30 mins.	117	114	231	91	242	333	78	41	119
+45 mins.	176	92	268	82	222	304	92	60	152
Total Volume	529	421	950	367	906	1273	328	179	507
% App. Total	55.7	44.3		28.8	71.2		64.7	35.3	
PHF	.751	.863	.886	.918	.936	.956	.891	.746	.834

County of Los Angeles N/S: Wilmington Avenue E/W: 118th Street Weather: Clear File Name : CLAWI118AM Site Code : 12815514 Start Date : 9/23/2015


Page No 2

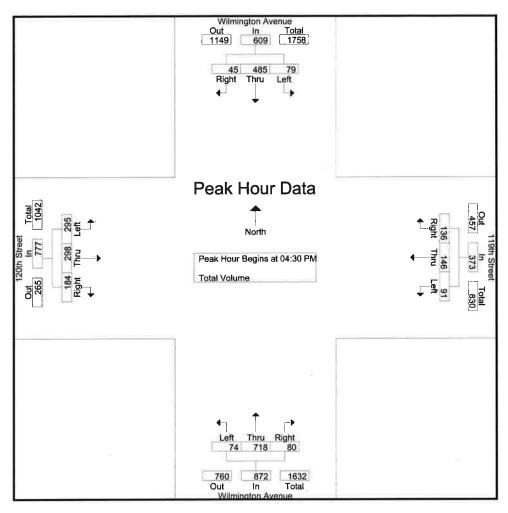
Peak Hour for	Each Ap	proacl	n Begins	s at:												
	07:15 AM				08:00 AM				07:00 AM				07:30 AM			
+0 mins.	23	208	31	262	3	13	14	30	5	221	6	232	14	3	20	37
+15 mins.	20	252	38	310	7	7	26	40	17	225	9	251	23	7	19	49
+30 mins.	26	245	50	321	7	6	24	37	36	250	17	303	12	6	31	49
+45 mins.	23	234	45	302	5		18	30	42	203	17	262	9	9	17	35
Total Volume	92	939	164	1195	22	33	82	137	100	899	49	1048	58	25	87	170
% App. Total	7.7	78.6	13.7		16.1	24.1	59.9		9.5	85.8	4.7		34.1	14.7	51.2	
PHF	.885	.932	.820	.931	.786	.635	.788	.856	.595	.899	.721	.865	.630	.694	.702	.867

County of Los Angeles N/S: Wilmington Avenue E/W: 118th Street Weather: Clear


File Name : CLAWI118PM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

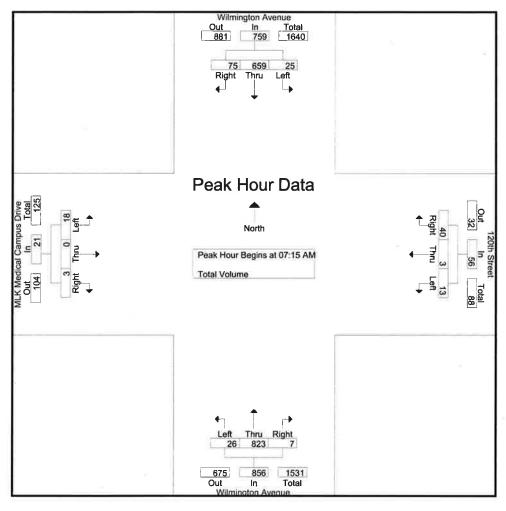
	04:15 PM				05:00 PM				04:30 PN	Л			04:15 PM			
+0 mins.	24	135	9	168	7	8	44	59	10	274	25	309	20	19	17	56
+15 mins.	39	150	11	200	12	9	32	53	5	247	18	270	33	16	14	63
+30 mins.	32	137	8	177	16	12	34	62	4	254	25	283	28	5	8	41
+45 mins.	37	125	4	166	9	9	45	63	5	241	17	263	27	10	.11	48
Total Volume	132	547	32	711	44	38	155	237	24	1016	85	1125	108	50	50	208
% App. Total	18.6	76.9	4.5		18.6	16	65.4		2.1	90.3	7.6		51.9	24	24	
PHF	.846	.912	.727	.889	.688	.792	.861	.940	.600	.927	.850	.910	.818	.658	.735	.825

County of Los Angeles N/S: Wilmington Avenue E/W: 119th Street Weather: Clear


File Name :: CLAWI119AM Site Code 12815514 Start Date : 9/23/2015 Page No : 2

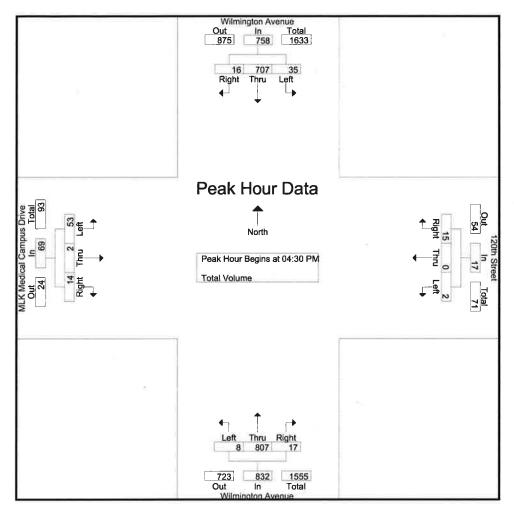
	07:15 AM				07:15 AM				07:00 AM	1			07:15 AM	1		
+0 mins.	20	140	63	223	8	76	34	118	5	184	22	211	31	23	20	74
+15 mins.	25	166	90	281	22	85	46	153	7	184	30	221	42	36	24	102
+30 mins.	27	144	95	266	14	92	53	159	6	218	41	265	32	48	38	118
+45 mins.	39	169	66	274	21	55	51	127	11	174	46	231	38	41	27	106
Total Volume	111	619	314	1044	65	308	184	557	29	760	139	928	143	148	109	400
% App. Total	10.6	59.3	30.1		11.7	55.3	33		3.1	81.9	15		35.8	37	27.2	
PHF	.712	.916	.826	.929	.739	.837	.868	.876	.659	.872	.755	.875	.851	.771	.717	.847

County of Los Angeles N/S: Wilmington Avenue E/W: 119th Street Weather: Clear File Name: CLAWI119PM Site Code: 12815514 Start Date: 9/23/2015


Page No : 2

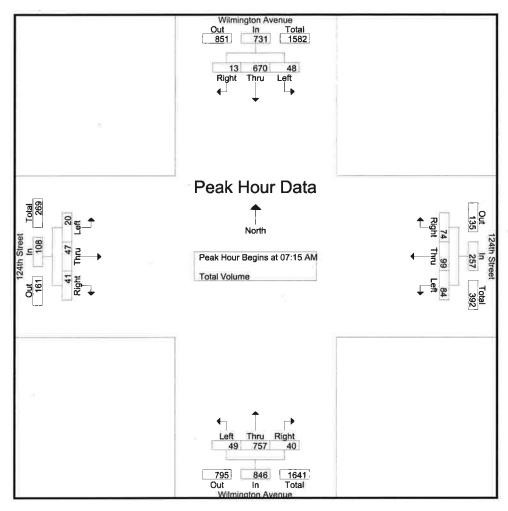
Peak Hour for	Each Ap	proacl	n Begins	at:									_			
	04:15 PM				04:30 PM	A			05:00 PN	1			04:30 PN	1		
+0 mins.	18	132	12	162	13	36	43	92	16	172	21	209	78	86	64	228
+15 mins.	23	139	14	176	26	44	30	100	18	181	15	214	75	95	45	215
+30 mins.	15	127	15	157	28	30	30	88	17	208	20	245	79	48	38	165
+45 mins.	20	115	7	142	24	36	33	93	18	169	22	209	63	69	37	169
Total Volume	76	513	48	637	91	146	136	373	69	730	78	877	295	298	184	777
% App. Total	11.9	80.5	7.5		24.4	39.1	36.5		7.9	83.2	8.9		38	38.4	23.7	
PHF	.826	.923	.800	.905	.813	.830	.791	.933	.958	.877	.886	.895	.934	.784	.719	.852

County of Los Angeles N/S: Wilmington Avenue E/W: 119th Street Weather: Clear


File Name : CLAWI120AM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

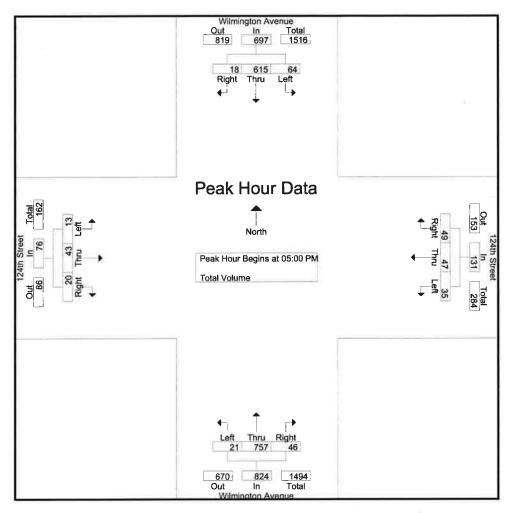
	07:30 AM	1			07:00 AM	1			07:00 AN	A			07:15 AM			
+0 mins.	7	177	17	201	0	1	8	9	3	198	1	202	2	0	0	2
+15 mins.	3	172	19	194	4	0	13	17	5	219	1	225	2	0	1	3
+30 mins.	11	177	25	213	3	1	14	18	8	241	0	249	8	0	1	9
+45 mins.	9	158	13	180	3	2	10	15	8	205	2	215	6	0	1	7
Total Volume	30	684	74	788	10	4	45	59	24	863	4	891	18	0	3	21
% App. Total	3.8	86.8	9.4		16.9	6.8	76.3		2.7	96.9	0.4		85.7	0	14.3	
PHF	.682	.966	.740	.925	.625	.500	.804	.819	.750	.895	.500	.895	.563	.000	.750	.583

County of Los Angeles N/S: Wilmington Avenue E/W: 119th Street Weather: Clear


File Name : CLAWI120PM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Peak Hour for	Each A	oproacl	n Begins	at:												
	04:15 PM				04:45 PM	f			04:30 PM	1			04:15 PM	1		
+0 mins.	5	162	2	169	1	0	6	7	3	218	2	223	10	0	5	15
+15 mins.	9	198	6	213	1	0	4	5	1	201	4	206	17	2	3	22
+30 mins.	11	181	5	197	0	0	4	4	2	171	5	178	15	0	3	18
+45 mins.	7	174	2	183	3	0	6	9	2	217	6	225	10	0	5	15
Total Volume	32	715	15	762	5	0	20	25	8	807	17	832	52	2	16	70
% App. Total	4.2	93.8	2		20	0	80		1	97	2		74.3	2.9	22.9	
PHF	.727	.903	.625	.894	.417	.000	.833	.694	.667	.925	.708	.924	.765	.250	.800	.795

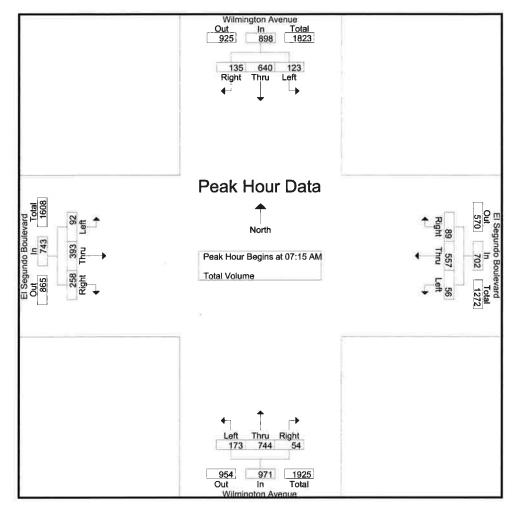
County of Los Angeles N/S: Wilmington Avenue E/W: 124th Street Weather: Clear File Name : CLAWI124AM Site Code : 12815514 Start Date : 9/23/2015


Page No : 2

Peak Hour for	Each Ap	proacl	h Begins	at:												
	07:30 AM				07:15 AM	1			07:00 AN	1			07:15 AN	1		
+0 mins.	10	185	3	198	10	21	21	52	5	169	8	182	9	8	6	23
+15 mins.	12	169	4	185	25	28	17	70	11	199	7	217	4	10	11	25
+30 mins.	16	166	2	184	34	33	19	86	12	219	13	244	5	18	15	38
+45 mins.	12	158	1	171	15	17	17	49	19	199	9	227	2	11	9	22
Total Volume	50	678	10	738	84	99	74	257	47	786	37	870	20	47	41	108
% App. Total	6.8	91.9	1.4		32.7	38.5	28.8		5.4	90.3	4.3	47	18.5	43.5	38	
PHF	.781	.916	.625	.932	.618	.750	.881	.747	.618	.897	.712	.891	.556	.653	.683	.711

County of Los Angeles N/S: Wilmington Avenue E/W: 124th Street Weather: Clear

File Name : CLAWI124PM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2


Peak Hour for	Each A	pproacl	n Begins	at:												
	04:15 PM	l			05:00 PM	4			04:30 PM	1			05:00 PM	I		
+0 mins.	13	156	0	169	9	12	6	27	2	200	12	214	4	11	3	18
+15 mins.	16	177	10	203	9	17	10	36	2	186	10	198	4	12	6	22
+30 mins.	13	151	9	173	7	8	21	36	10	166	13	189	0	12	4	16
+45 mins.	18	154	5	177	10	10	12	32	4	209	13	226	5	8	7	20
Total Volume	60	638	24	722	35	47	49	131	18	761	48	827	13	43	20	76
% App. Total	8.3	88.4	3.3		26.7	35.9	37.4		2.2	92	5.8		17.1	56.6	26.3	
PHF	.833	.901	.600	.889	.875	.691	.583	.910	.450	.910	.923	.915	.650	.896	.714	.864

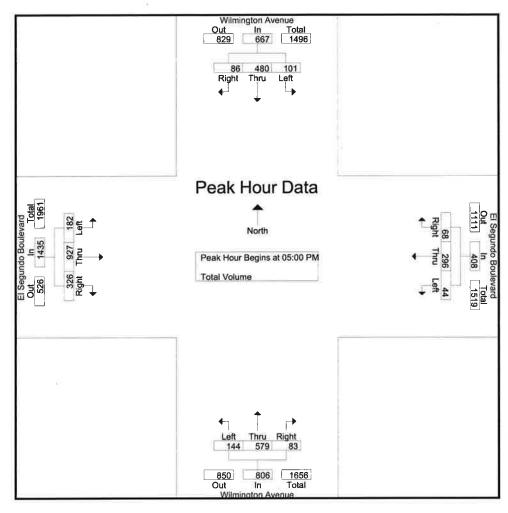
County of Los Angeles N/S: Wilmington Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CPTWIELAM Site Code : 12815514 Start Date : 9/23/2015

Page No 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:


	07:30 AM	1			07:00 AM	1			07:00 AM	1			07:30 AM	1		
+0 mins.	25	177	42	244	9	151	10	170	48	149	2	199	18	100	69	187
+15 mins.	40	193	40	273	8	153	21	182	27	192	10	229	27	118	91	236
+30 mins.	36	148	21	205	15	137	31	183	52	210	16	278	26	103	64	193
+45 mins.	23	138	24	185	13	140	19	172	46	211	16	273	25	75	41	141
Total Volume	124	656	127	907	45	581	81	707	173	762	44	979	96	396	265	757
% App. Total	13.7	72.3	14		6.4	82.2	11.5		17.7	77.8	4.5		12.7	52.3	35	
PHF	.775	.850	.756	.831	.750	.949	.653	.966	.832	.903	.688	.880	.889	.839	.728	.802

County of Los Angeles N/S: Wilmington Avenue E/W: El Segundo Boulevard

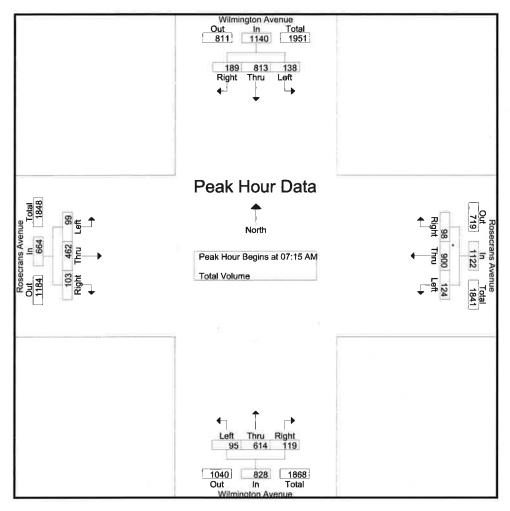
Weather: Clear

File Name : CPTWIELPM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

Peak Hour for Each Approach Begins at:


	04:15 PM	1			05:00 PM	1			04:45 PM	1			05:00 PM	1		
+0 mins.	24	122	24	170	12	71	18	101	39	141	20	200	38	213	69	320
+15 mins.	24	152	17	193	12	77	18	107	40	134	18	192	56	255	87	398
+30 mins.	24	107	28	159	11	73	20	104	31	142	20	193	42	219	87	348
+45 mins.	29	120	22	171	9	75	12	96	44	170	18	232	46	240	83	369
Total Volume	101	501	91	693	44	296	68	408	154	587	76	817	182	927	326	1435
% App. Total	14.6	72.3	13.1		10.8	72.5	16.7		18.8	71.8	9.3		12.7	64.6	22.7	
PHF	.871	.824	.813	.898	.917	.961	.850	.953	.875	.863	.950	.880	.813	.909	.937	.901

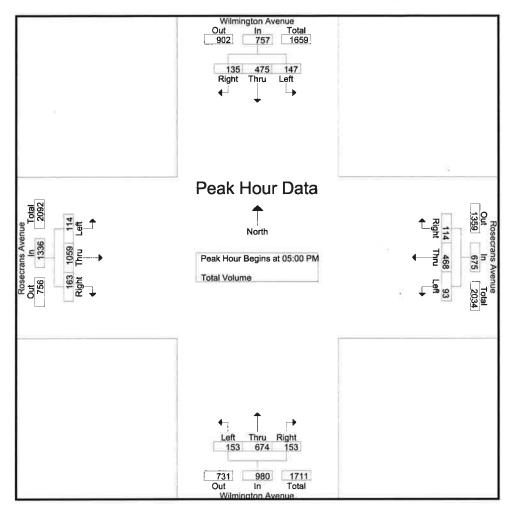
County of Los Angeles N/S: Wilmington Avenue E/W: Rosecrans Avenue

Weather: Clear

File Name: CPTWIROAM Site Code: 12815514 Start Date: 9/23/2015

Page No : 2

Peak Hour for	Each Ap	oproacl	n Begin	s at:												
	07:15 AM				07:00 AM	1			07:15 AN	At .			07:15 AN	1		
+0 mins.	25	174	30	229	21	260	18	299	22	125	17	164	18	107	24	149
+15 mins.	36	223	46	305	38	219	22	279	28	170	31	229	27	115	31	173
+30 mins.	36	225	59	320	18	232	23	273	20	169	38	227	25	147	22	194
+45 mins.	41	191	54	286	42	247	26	315	25	150	33	208	29	93	26	148
Total Volume	138	813	189	1140	119	958	89	1166	95	614	119	828	99	462	103	664
% App. Total	12.1	71.3	16.6		10.2	82.2	7.6		11.5	74.2	14.4		14.9	69.6	15.5	
PHF	.841	.903	.801	.891	.708	.921	.856	.925	.848	.903	.783	.904	.853	.786	.831	.856

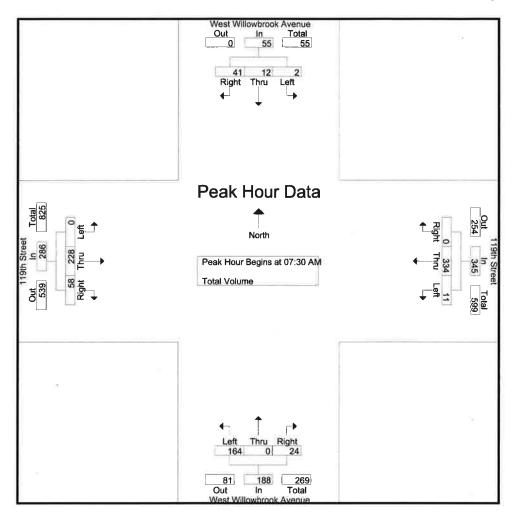

County of Los Angeles N/S: Wilmington Avenue E/W: Rosecrans Avenue

Weather: Clear

File Name : CPTWIROPM

Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

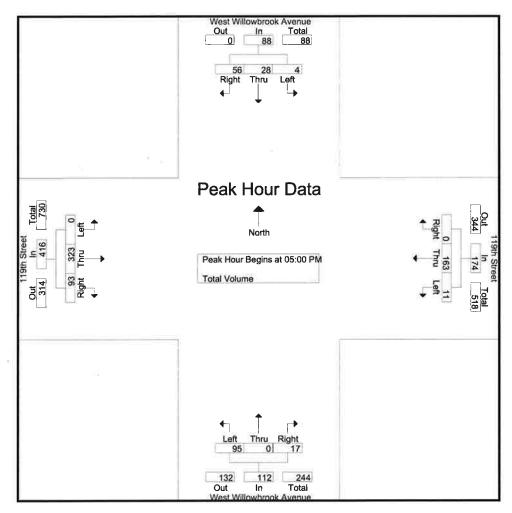

Peak Hour for	Each A	pproac	n Begins	at:												
	05:00 PM	ł			04:00 PM	1			04:30 PN	1			05:00 PM	A		
+0 mins.	31	117	36	184	36	111	29	176	32	185	36	253	20	263	37	320
+15 mins.	27	104	33	164	27	126	34	187	30	194	41	265	33	267	44	344
+30 mins.	44	127	25	196	18	116	22	156	37	165	35	237	23	278	48	349
+45 mins.	45	127	41	213	32	98	26	156	32	176	39	247	38	251	34	323
Total Volume	147	475	135	757	113	451	111	675	131	720	151	1002	114	1059	163	1336
% App. Total	19.4	62.7	17.8		16.7	66.8	16.4		13.1	71.9	15.1		8.5	79.3	12.2	
PHF	817	935	823	888	785	.895	.816	.902	.885	.928	.921	.945	.750	.952	.849	.957

County of Los Angeles N/S: West Willowbrook Avenue E/W: 119th Street

Weather: Clear

File Name : CLASW119AM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

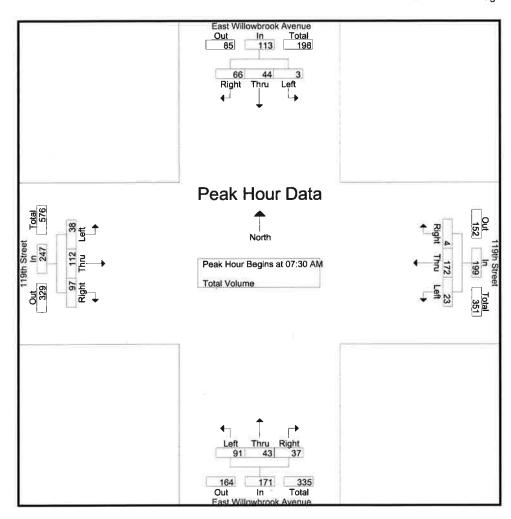

	07:00 AM				07:30 AN	1			07:15 AM	1			07:30 AN	1		
+0 mins.	0	2	15	17	3	92	0	95	40	0	3	43	0	53	10	63
+15 mins.	1	3	6	10	1	80	0	81	46	0	6	52	0	53	17	70
+30 mins.	0	5	12	17	4	96	0	100	57	0	7	64	0	65	18	83
+45 mins.	1	3	11	15	3	66	0	69	32	0	6	38	0	57	13	70
Total Volume	2	13	44	59	11	334	0	345	175	0	22	197	0	228	58	286
% App. Total	3.4	22	74.6		3.2	96.8	0		88.8	0	11.2		0	79.7	20.3	
PHF	.500	.650	.733	.868	.688	.870	.000	.863	.768	.000	.786	.770	.000	.877	.806	.861

County of Los Angeles N/S: West Willowbrook Avenue E/W: 119th Street

Weather: Clear

File Name : CLASW119PM

Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

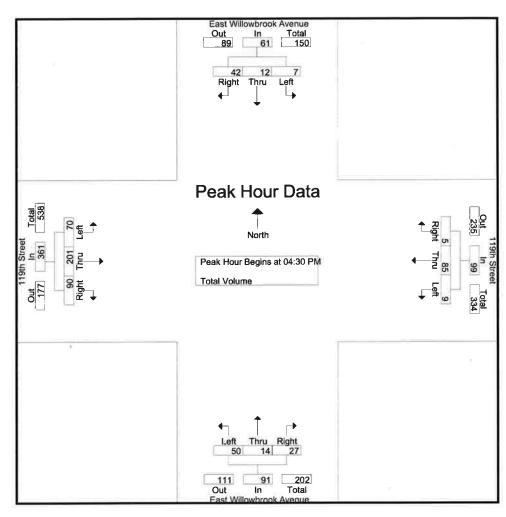

	05:00 PM	1			04:45 PN	1			04:30 PM	1			05:00 PM	1		
+0 mins.	1	4	14	19	2	47	0	49	23	0	5	28	0	81	18	99
+15 mins.	1	8	18	27	5	40	0	45	27	0	6	33	0	88	14	102
+30 mins.	1	6	11	18	2	43	0	45	27	0	2	29	0	76	25	101
+45 mins.	1	10	13	24	2	45	0	47	27	0	4	31	0	78	36	114
Total Volume	4	28	56	88	11	175	0	186	104	0	17	121	0	323	93	416
% App. Total	4.5	31.8	63.6		5.9	94.1	0		86	0	14		0	77.6	22.4	
PHF	1.000	.700	.778	.815	.550	.931	.000	.949	.963	.000	.708	.917	.000	.918	.646	.912

County of Los Angeles N/S: East Willowbrook Avenue

E/W: 119th Street Weather: Clear

File Name : CLANW119AM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

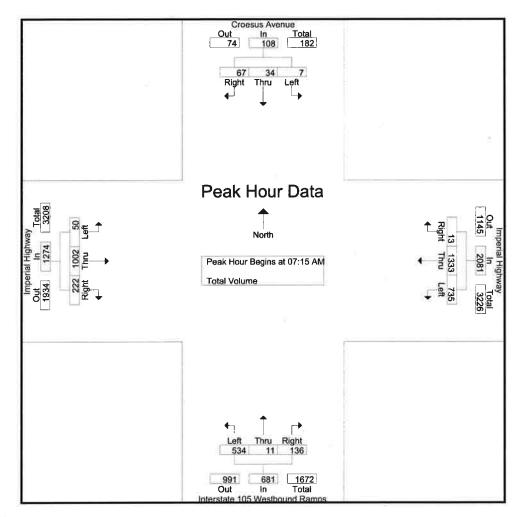

Peak Hour for	Each Ap	oproac	n Begins	s at:												
	07:15 AM				07:15 AM	1			07:30 AN	A .			07:30 AM			
+0 mins.	2	4	17	23	1	44	0	45	17	5	5	27	4	29	25	58
+15 mins.	0	21	21	42	10	47	1	58	22	12	9	43	10	21	28	59
+30 mins.	2	14	24	40	8	49	1	58	32	18	15	65	12	31	26	69
+45 mins.	0	8	- 11	19	4	47	2	53	20	- 8	8	36	12	31	18	61
Total Volume	4	47	73	124	23	187	4	214	91	43	37	171	38	112	97	247
% App. Total	3.2	37.9	58.9		10.7	87.4	1.9		53.2	25.1	21.6		15.4	45.3	39.3	
PHF	.500	.560	.760	.738	.575	.954	.500	.922	.711	.597	.617	.658	.792	.903	.866	.895

County of Los Angeles N/S: East Willowbrook Avenue

E/W: 119th Street Weather: Clear

File Name: CLANW119PM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2


	04:00 PM	1			05:00 PM	1			05:00 PM	1			04:30 PM	1		
+0 mins.	2	3	12	17	2	30	0	32	13	1	4	18	17	45	26	88
+15 mins.	2	9	7	18	2	18	4	24	8	6	8	22	18	56	23	97
+30 mins.	3	3	9	15	4	22	0	26	13	10	8	31	19	44	17	80
+45 mins.	2	3	12	17	2	18	1	21	9	7	10	26	16	56	24	96
Total Volume	9	18	40	67	10	88	5	103	43	24	30	97	70	201	90	361
% App. Total	13.4	26.9	59.7		9.7	85.4	4.9		44.3	24.7	30.9		19.4	55.7	24.9	
PHF	.750	.500	.833	.931	.625	.733	.313	.805	.827	.600	.750	.782	.921	.897	.865	.930

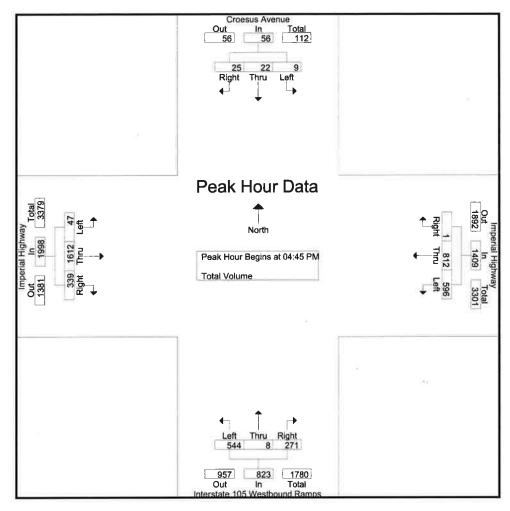
County of Los Angeles N/S: Interstate 105 Westbound Ramps E/W: Imperial Highway Weather: Clear

Start Date : 9/23/2015 Page No : 2

Site Code : 12815514

File Name : LAC105WIMAM

	07:00 AM				07:00 AN	A			08:00 AM				07:15 AN	Λ		
+0 mins.	4	17	18	39	155	292	3	450	156	7	40	203	5	240	67	312
+15 mins.	0	9	19	28	215	382	1	598	152	3	44	199	13	232	56	301
+30 mins.	1	7	20	28	197	322	0	519	105	0	40	145	20	290	59	369
+45 mins.	4	12	17	33	155	365	6	526	162	0	49	211	12	240	40	292
Total Volume	9	45	74	128	722	1361	10	2093	575	10	173	758	50	1002	222	1274
% App. Total	7	35.2	57.8		34.5	65	0.5		75.9	1.3	22.8		3.9	78.6	17.4	
PHF	.563	.662	.925	.821	.840	.891	.417	.875	.887	.357	.883	.898	.625	.864	.828	.863


County of Los Angeles N/S: Interstate 105 Westbound Ramps

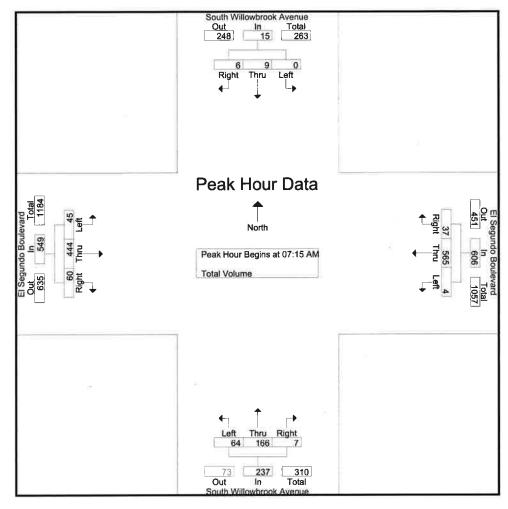
E/W: Imperial Highway

Weather: Clear

File Name : LAC105WIMPM

Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Charles I I I I was a fine	F	to Designation
Peak Hour for	Lacii Applicat	di Deulis at.


	04:15 PM	,			04:45 PN	1			04:30 PM	1			04:45 PN	1		
+0 mins.	3	8	13	24	134	201	1	336	133	4	81	218	10	398	90	498
+15 mins.	5	8	15	28	170	216	0	386	156	2	68	226	16	401	87	504
+30 mins.	5	5	11	21	137	196	0	333	111	2	70	183	10	383	81	474
+45 mins.	0	7	6	13	155	199	0	354	153	1	75	229	11	430	81	522
Total Volume	13	28	45	86	596	812	1	1409	553	9	294	856	47	1612	339	1998
% App. Total	15.1	32.6	52.3		42.3	57.6	0.1		64.6	1.1	34.3		2.4	80.7	17	
PHF	.650	.875	.750	.768	.876	.940	.250	.913	.886	.563	.907	.934	.734	.937	.942	.957

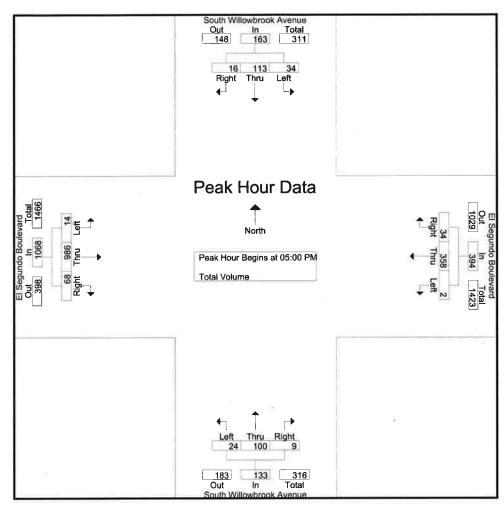
County of Los Angeles N/S: South Willowbrook Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CLASWELAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

	08:00 AM	1			07:00 AM	1			07:00 AN	1			07:15 AM	1		
+0 mins.	0	2	4	6	0	152	2	154	19	28	4	51	5	103	5	113
+15 mins.	0	2	0	2	2	151	7	160	16	43	2	61	9	112	12	133
+30 mins.	0	1	2	3	1	159	8	168	18	53	3	74	17	121	19	157
+45 mins.	8	8	4	20	1	132	16	149	17	49	1	67	14	108	24	146
Total Volume	8	13	10	31	4	594	33	631	70	173	10	253	45	444	60	549
% App. Total	25.8	41.9	32.3		0.6	94.1	5.2		27.7	68.4	4		8.2	80.9	10.9	
PHF	.250	.406	.625	.388	.500	.934	.516	.939	.921	.816	.625	.855	.662	.917	.625	.874


County of Los Angeles

N/S: South Willowbrook Avenue E/W: El Segundo Boulevard

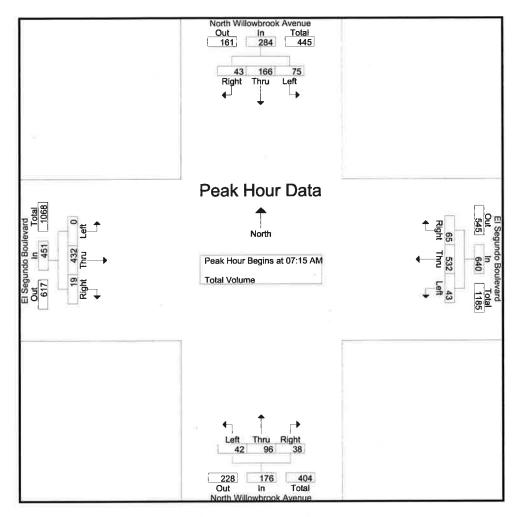
Weather: Clear

File Name : CLASWELPM Site Code : 12815514 Start Date : 9/23/2015

Page No 2

	 	D
Peak Hour		

	05:00 PM	1			04:30 PM	1			04:15 PM	1			05:00 PM	1		
+0 mins.	7	28	2	37	0	96	3	99	9	26	5	40	5	243	24	272
+15 mins.	7	23	4	34	1	88	6	95	9	28	4	41	4	254	12	270
+30 mins.	10	27	4	41	0	99	9	108	7	17	3	27	1	239	11	251
+45 mins.	10	35	6	51	1	88	9	98	5	26	3	34	4	250	21	275
Total Volume	34	113	16	163	2	371	27	400	30	97	15	142	14	986	68	1068
% App. Total	20.9	69.3	9.8		0.5	92.8	6.8		21.1	68.3	10.6		1.3	92.3	6.4	
PHF	.850	.807	.667	.799	.500	.937	.750	.926	.833	.866	.750	.866	.700	.970	.708	.971


County of Los Angeles

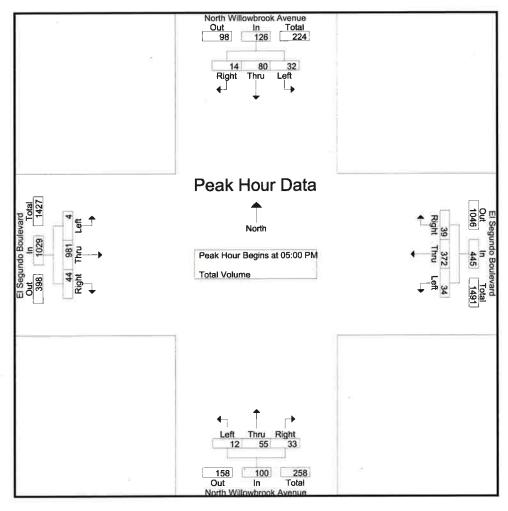
N/S: North Willowbrook Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CLANWELAM Site Code :: 12815514

Start Date : 9/23/2015 Page No 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


Peak Hour for		, p. 0 a o.	. Dog.iio							_						
	07:15 AM				07:00 AM				07:15 AN	Л			07:15 AM	1		
+0 mins.	15	19	10	-44	2	145	9	156	12	9	5	26	0	83	4	87
+15 mins.	20	38	16	74	4	141	12	157	11	33	8	52	0	116	4	120
+30 mins.	21	51	9	81	19	144	23	186	11	27	11	49	0	130	6	136
+45 mins.	19	58	8	85	17	131	19	167	8	27	14	49	0	103	5	108
Total Volume	75	166	43	284	42	561	63	666	42	96	38	176	0	432	19	451
% App. Total	26.4	58.5	15.1		6.3	84.2	9.5		23.9	54.5	21.6		0	95.8	4.2	
PHF	.893	.716	.672	.835	.553	.967	.685	.895	.875	.727	.679	.846	.000	.831	.792	.829

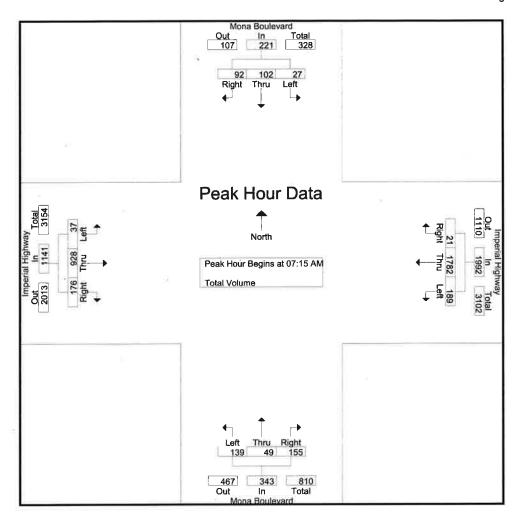
County of Los Angeles N/S: North Willowbrook Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CLANWELPM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


	05:00 PM	1			04:15 PM				04:00 PM	1			05:00 PM	1		
+0 mins.	6	22	3	31	10	86	10	106	6	17	12	35	2	235	9	246
+15 mins.	9	13	3	25	14	91	15	120	4	11	4	19	1	256	6	263
+30 mins.	9	18	4	31	4	86	12	102	5	18	9	32	1	237	13	251
+45 mins.	8	27	4	39	8	104	13	125	3	17	7	27	0	253	16	269
Total Volume	32	80	14	126	36	367	50	453	18	63	32	113	4	981	44	1029
% App. Total	25.4	63.5	11.1		7.9	81	11		15.9	55.8	28.3		0.4	95.3	4.3	
PHF	.889	.741	.875	.808	.643	.882	.833	.906	.750	.875	.667	.807	.500	.958	.688	.956

County of Los Angeles N/S: Mona Boulevard E/W: Imperial Highway Weather: Clear

Site Code : 12815514 Start Date : 9/23/2015

File Name : CLAMOIMAM

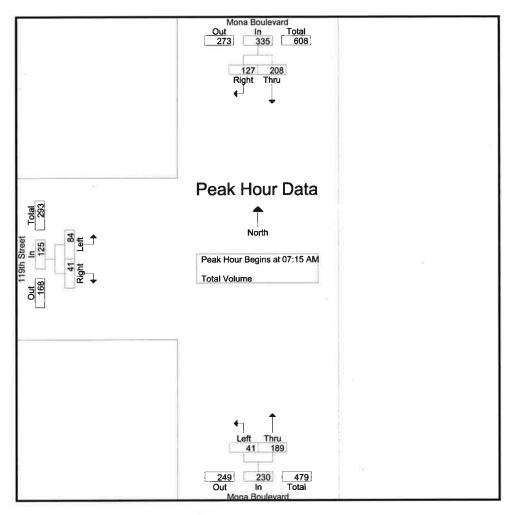
Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:15 AM				07:00 AN	А			07:15 AN	1			07:30 AM	l		
+0 mins.	6	22	25	53	28	446	10	484	47	9	41	97	11	238	41	290
+15 mins.	7	30	24	61	37	495	3	535	31	9	38	78	11	259	51	321
+30 mins.	8	32	21	61	48	477	2	527	30	18	32	80	11	227	49	287
+45 mins.	6	18	22	46	53	430	9	492	31	13	44	88	21	210	51	282
Total Volume	27	102	92	221	166	1848	24	2038	139	49	155	343	54	934	192	1180
% App. Total	12.2	46.2	41.6		8.1	90.7	1.2		40.5	14.3	45.2		4.6	79.2	16.3	
PHF	.844	.797	.920	.906	.783	.933	.600	.952	.739	.681	.881	.884	.643	.902	.941	.919

County of Los Angeles N/S: Mona Boulevard E/W: Imperial Highway Weather: Clear File Name: CLAMOIMPM Site Code: 12815514 Start Date: 9/23/2015

Page No : 2

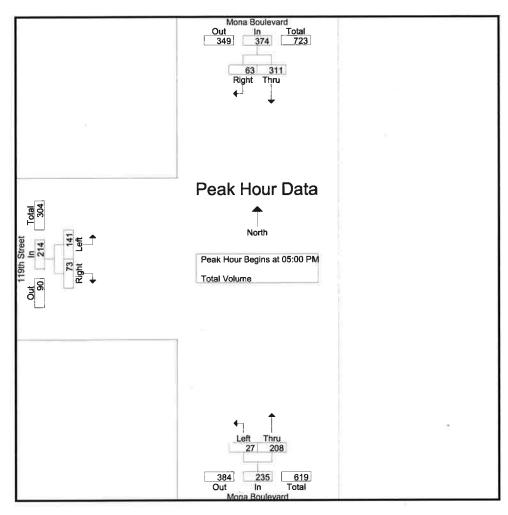


Peak Hour for	Each A	oproaci	n Begins	at:	_											
	05:00 PM				04:45 PM	A			05:00 PM	1			05:00 PM	I		
+0 mins.	12	15	16	43	36	286	8	330	50	13	63	126	13	392	57	462
+15 mins.	10	14	17	41	47	304	11	362	44	17	61	122	25	403	68	496
+30 mins.	18	21	18	57	36	286	10	332	48	19	60	127	30	399	44	473
+45 mins.	14	18	21	53	28	263	9	300	42	18	63	123	26	421	71	518
Total Volume	54	68	72	194	147	1139	38	1324	184	67	247	498	94	1615	240	1949
% App. Total	27.8	35.1	37.1		11.1	86	2.9		36.9	13.5	49.6		4.8	82.9	12.3	
PHF	.750	.810	.857	.851	.782	.937	.864	.914	.920	.882	.980	.980	.783	.959	.845	.941

County of Los Angeles N/S: Mona Boulevard E/W: 119th Street Weather: Clear

File Name: CLAMO119AM Site Code: 12815514 Start Date: 9/23/2015

Page No : 2


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

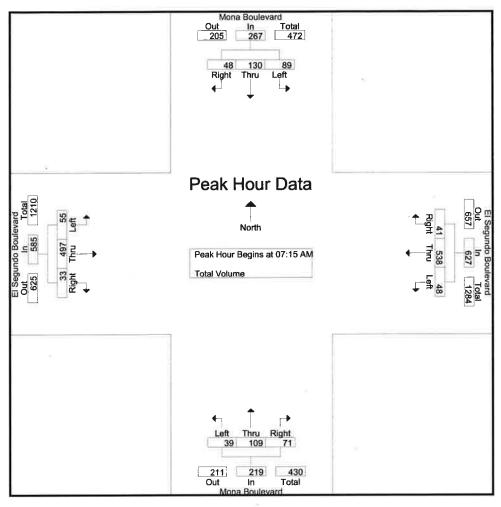
	07:15 AM			07:15 AM			07:30 AM		
+0 mins.	45	35	80	6	36	42	24	10	34
+15 mins.	59	35	94	9	63	72	23	13	36
+30 mins.	61	34	95	15	46	61	22	12	34
+45 mins.	43	23	66	11	44	55	24	9	33
Total Volume	208	127	335	41	189	230	93	44	137
% App. Total	62.1	37.9		17.8	82.2		67.9	32.1	
PHF	.852	.907	.882	.683	.750	.799	.969	.846	.951

County of Los Angeles N/S: Mona Boulevard E/W: 119th Street Weather: Clear

File Name: CLAMO119PM Site Code: 12815514 Start Date : 9/23/2015

Page No : 2

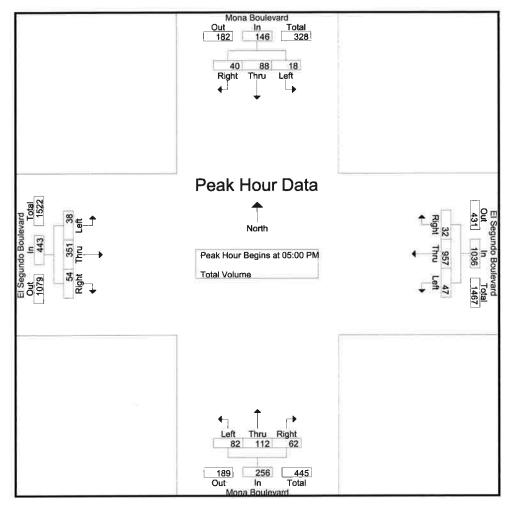
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


***************************************	05:00 PM			05:00 PM			05:00 PM		
+0 mins.	74	23	97	9	55	64	38	17	55
+15 mins.	82	13	95	6	51	57	31	22	53
+30 mins.	81	14	95	4	52	56	40	11	51
+45 mins.	74	13	87	8	50	58	32	23	55
Total Volume	311	63	374	. 27	208	235	141	73	214
% App. Total	83.2	16.8		11.5	88.5		65.9	34.1	
PHF	.948	.685	.964	.750	.945	.918	.881	.793	.973

County of Los Angeles N/S: Mona Boulevard E/W: El Segundo Boulevard

Weather: Clear

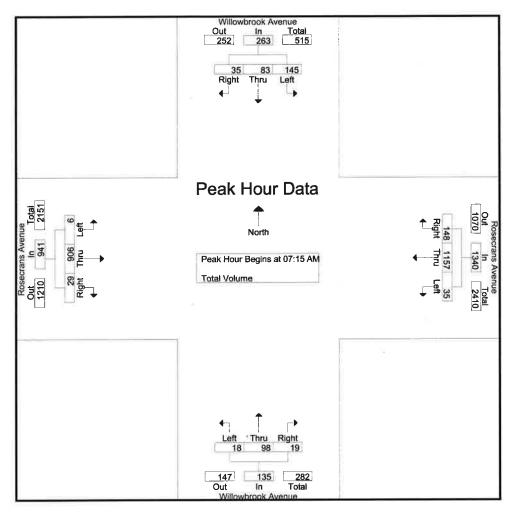
File Name: CLAMOELAM Site Code: 12815514 Start Date: 9/23/2015


Page No 2

	07:15 AM				07:15 AM				07:15 AM	1			07:15 AM			
+0 mins.	16	17	11	44	7	136	10	153	13	16	20	49	10	107	8	125
+15 mins.	29	39	13	81	18	137	15	170	12	42	18	72	16	139	6	161
+30 mins.	24	38	15	77	15	139	9	163	6	33	14	53	20	140	9	169
+45 mins.	20	36	9	65	8	126	7	141	8	18	19	45	9	111	10	130
Total Volume	89	130	48	267	48	538	41	627	39	109	71	219	55	497	33	585
% App. Total	33.3	48.7	18		7.7	85.8	6.5		17.8	49.8	32.4		9.4	85	5.6	
PHF	.767	.833	.800	.824	.667	.968	.683	.922	.750	.649	.888	.760	.688	.888	.825	.865

County of Los Angeles N/S: Mona Boulevard E/W: El Segundo Boulevard Weather: Clear

File Name : CLAMOELPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2


	04:45 PM				05:00 PM	1			05:00 PM	ı			04:30 PM	1		
+0 mins.	5	17	13	35	9	227	8	244	20	28	16	64	7	100	13	120
+15 mins.	4	24	10	38	19	255	7	281	20	32	14	66	5	94	12	111
+30 mins.	5	18	4	27	10	225	5	240	18	22	19	59	9	92	13	114
+45 mins.	5	26	15	46	9	250	12	271	24	30	13	67	9	89	17	115
Total Volume	19	85	42	146	47	957	32	1036	82	112	62	256	30	375	55	460
% App. Total	13	58.2	28.8		4.5	92.4	3.1		32	43.8	24.2		6.5	81.5	12	
PHF	.950	.817	.700	.793	.618	.938	.667	.922	.854	.875	.816	.955	.833	.938	.809	.958

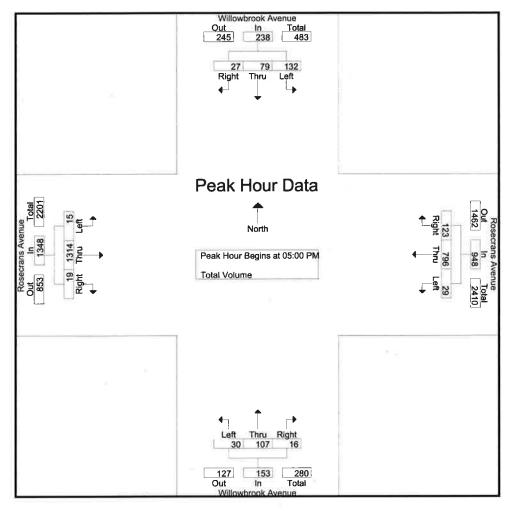
County of Los Angeles N/S: Willowbrook Avenue E/W: Rosecrans Avenue

Weather: Clear

File Name : CLASWROAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

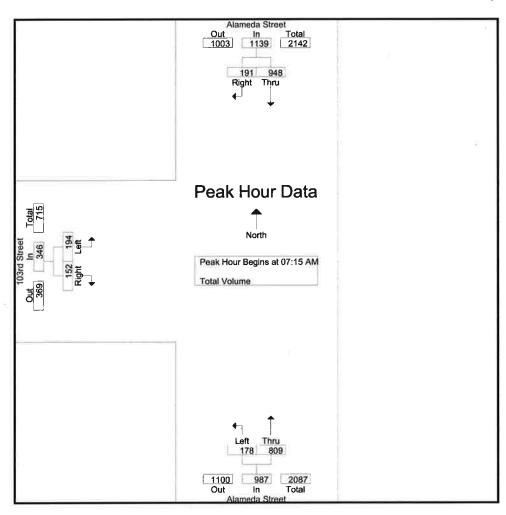

	07:15 AM				07:15 AN	4			07:15 AM	1			07:15 AM	PC		
+0 mins.	33	15	6	54	5	277	38	320	2	22	2	26	1	195	5	201
+15 mins.	41	26	10	77	10	307	46	363	6	29	3	38	1	235	4	240
+30 mins.	43	21	9	73	8	299	39	346	4	24	7	35	3	246	9	258
+45 mins.	28	21	10	59	12	274	25	311	6	23	7	36	1	230	11	242
Total Volume	145	83	35	263	35	1157	148	1340	18	98	19	135	6	906	29	941
% App. Total	55.1	31.6	13.3		2.6	86.3	11		13.3	72.6	14.1		0.6	96.3	3.1	
PHF	.843	.798	.875	.854	.729	.942	.804	.923	.750	.845	.679	.888	.500	.921	.659	.912

County of Los Angeles N/S: Willowbrook Avenue E/W: Rosecrans Avenue

Weather: Clear

File Name : CLASWROPM Site Code : 12815514 Start Date : 9/23/2015

Page No 👙 2

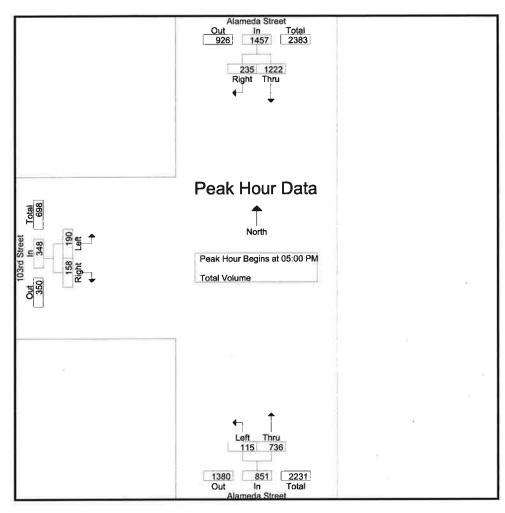

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	05:00 PM				05:00 PM	1			04:30 PM	A			04:45 PN	Л		
+0 mins.	28	22	6	56	11	192	31	234	4	32	7	43	5	347	6	358
+15 mins.	35	15	9	59	9	181	34	224	12	24	2	38	3	328	4	335
+30 mins.	30	18	6	54	4	223	30	257	5	27	4	36	4	317	2	323
+45 mins.	39	24	6	69	5	200	28	233	8	29	8	45	6	334	6	346
Total Volume	132	79	27	238	29	796	123	948	29	112	21	162	18	1326	18	1362
% App. Total	55.5	33.2	11.3		3.1	84	13		17.9	69.1	13		1.3	97.4	1.3	
PHF	.846	.823	.750	.862	.659	.892	.904	.922	.604	.875	.656	.900	.750	.955	.750	.951

County of Los Angeles N/S: Alameda Street E/W: 103rd Street Weather: Clear

File Name : LWDAL103AM Site Code : 12815514 Start Date : 9/23/2015

Page No :2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

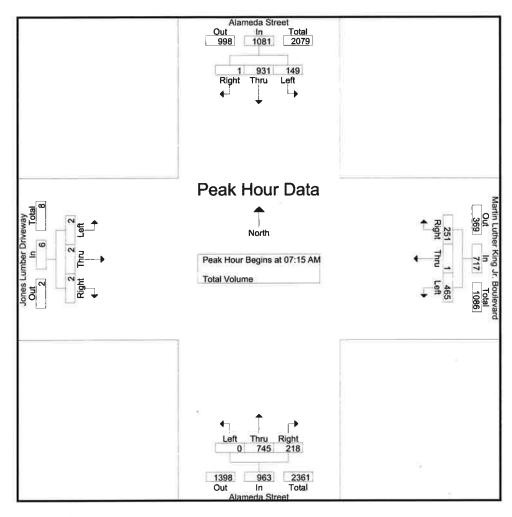
	07:15 AM			07:15 AM			08:00 AM		
+0 mins.	227	43	270	50	195	245	58	43	101
+15 mins.	207	44	251	44	194	238	39	26	65
+30 mins.	263	64	327	42	223	265	49	40	89
+45 mins.	251	40	291	42	197	239	44	49	93
Total Volume	948	191	1139	178	809	987	190	158	348
% App. Total	83.2	16.8		18	82		54.6	45.4	
PHF	.901	.746	.871	.890	.907	.931	.819	.806	.861

County of Los Angeles N/S: Alameda Street E/W: 103rd Street Weather: Clear

File Name: LWDAL103PM Site Code: 12815514 Start Date: 9/23/2015 Page No: 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	05:00 PM			04:00 PM			05:00 PM		
+0 mins.	300	55	355	30	191	221	58	43	101
+15 mins.	328	74	402	28	174	202	39	26	65
+30 mins.	282	55	337	32	194	226	49	40	89
+45 mins.	312	51	363	29	176	205	44	49	93
Total Volume	1222	235	1457	119	735	854	190	158	348
% App. Total	83.9	16.1		13.9	86.1		54.6	45.4	
PHF	.931	.794	.906	.930	.947	.945	.819	.806	.861


County of Los Angeles N/S: Alameda Street

E/W: Martin Luther King Jr. Boulevard

Weather: Clear

File Name : LWDALMLAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour for	Each A	proaci	Degins	s at.												
	07:15 AM				07:15 AM				07:15 AM	1			07:00 AN	1		
+0 mins.	34	228	1	263	108	0	57	165	0	177	55	232	3	1	0	4
+15 mins.	37	215	0	252	153	0	67	220	0	194	79	273	0	1	0	1
+30 mins.	42	243	0	285	122	0	63	185	0	171	37	208	1	0	1	2
+45 mins.	36	245	0	281	82	1	64	147	0	203	47	250	0	_1	1	2
Total Volume	149	931	1	1081	465	1	251	717	0	745	218	963	4	3	2	9
% App. Total	13.8	86.1	0.1		64.9	0.1	35		0	77.4	22.6		44.4	33.3	22.2	
PHF	.887	.950	.250	.948	.760	.250	.937	.815	.000	.917	.690	.882	.333	.750	.500	.563

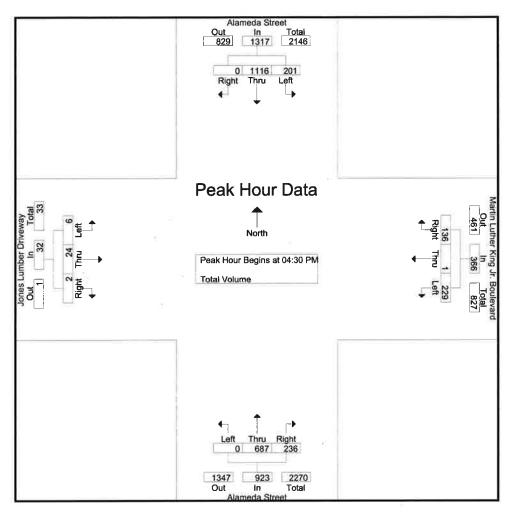
County of Los Angeles N/S: Alameda Street

E/W: Martin Luther King Jr. Boulevard

Weather: Clear

% App. Total

PHF


15.3

84.7

File Name : LWDALMLPM Site Code | 12815514 Start Date : 9/23/2015

.667

Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

04:30 PM 04:30 PM 04:30 PM 04:30 PM +0 mins. +15 mins. +30 mins. +45 mins. Total Volume 6.2

37.2

.850

74.4

.895

.000

.943

25.6

18.8

.500

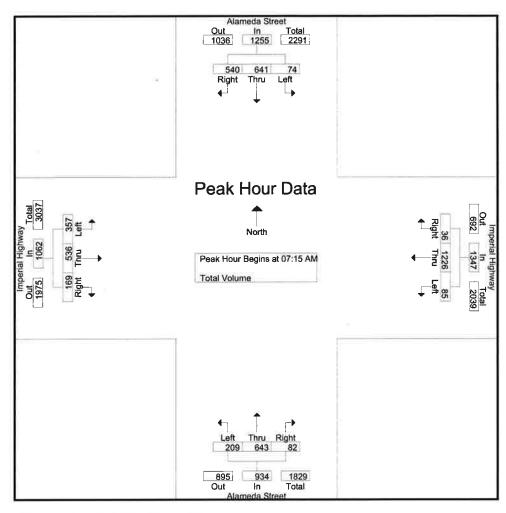
.888

.500

.545

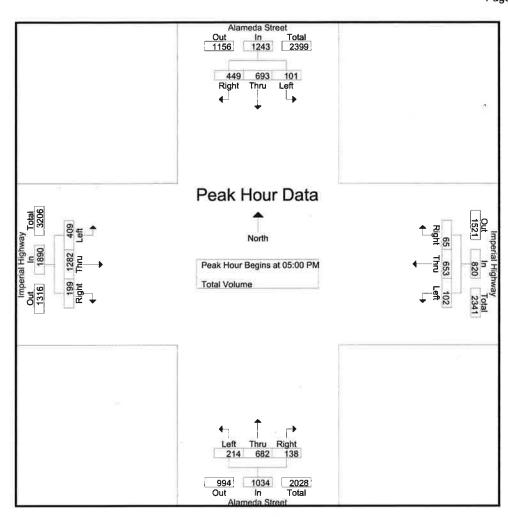
0.3

.250


62.6

.842

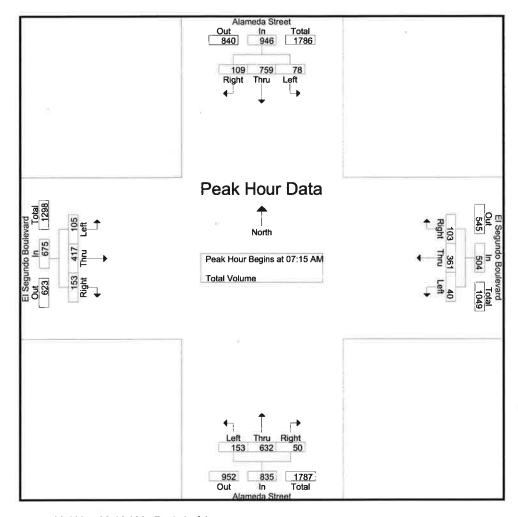
.986


County of Los Angeles N/S: Alameda Street E/W: Imperial Highway Weather: Clear File Name : CPTALIMAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2

Peak Hour for	Each A	pproacl	n Begins	s at:												
	07:15 AM				07:00 AN	Λ			07:15 AN	1			07:30 AN	1		
+0 mins.	11	149	149	309	14	307	7	328	42	208	-16	266	83	166	40	289
+15 mins.	21	172	139	332	15	318	7	340	52	136	20	208	97	120	48	265
+30 mins.	18	180	141	339	25	349	9	383	61	157	23	241	72	145	45	262
+45 mins.	24	140	111	275	28	269	11	308	54	142	23	219	77	155	31	263
Total Volume	74	641	540	1255	82	1243	34	1359	209	643	82	934	329	586	164	1079
% App. Total	5.9	51.1	43		6	91.5	2.5		22.4	68.8	8.8		30.5	54.3	15.2	
PHF	.771	.890	.906	.926	.732	.890	.773	.887	.857	.773	.891	.878	.848	.883	.854	.933

County of Los Angeles N/S: Alameda Street E/W: Imperial Highway Weather: Clear File Name: CPTALIMPM Site Code: 12815514 Start Date: 9/23/2015 Page No: 2

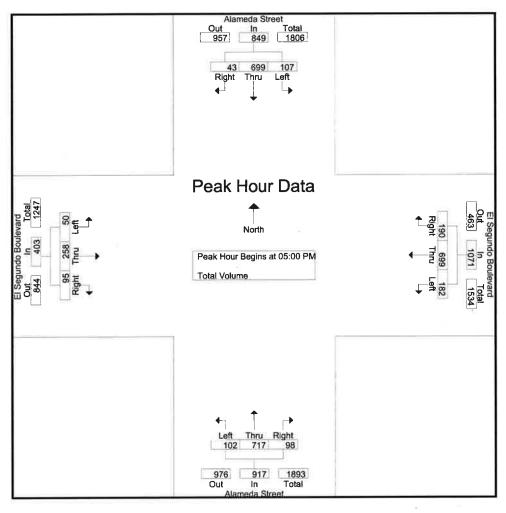


	04:30 PM				04:45 PM	1			05:00 PM				05:00 PM	1		
+0 mins.	31	131	86	248	29	162	14	205	48	149	35	232	95	346	47	488
+15 mins.	29	193	110	332	28	203	22	253	59	207	29	295	96	295	48	439
+30 mins.	38	152	117	307	24	155	17	196	56	144	27	227	102	342	55	499
+45 mins.	28	214	128	370	25	169	15	209	51	182	47	280	116	299	49	464
Total Volume	126	690	441	1257	106	689	68	863	214	682	138	1034	409	1282	199	1890
% App. Total	10	54.9	35.1		12.3	79.8	7.9		20.7	66	13.3		21.6	67.8	10.5	
PHF	.829	.806	.861	.849	.914	.849	.773	.853	.907	.824	.734	.876	.881	.926	.905	.947

County of Los Angeles N/S: Alameda Street E/W: El Segundo Boulevard Weather: Clear

File Name : CPTALELAM Site Code : 12815514 Start Date : 9/23/2015

Page No : 2



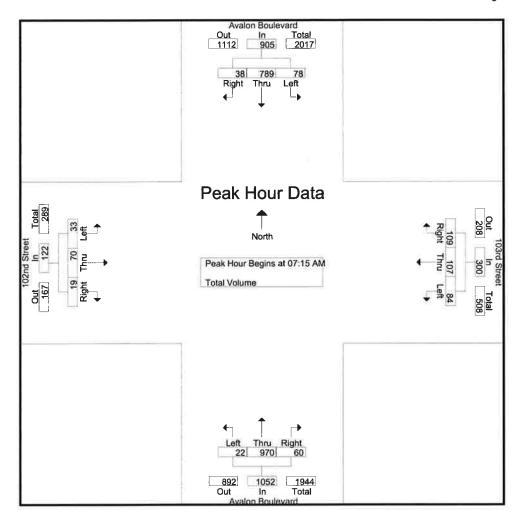
	07:15 AM				07:15 AM				07:00 AM				07:15 AM			
+0 mins.	13	149	28	190	7	95	25	127	35	163	3	201	33	71	43	147
+15 mins.	23	235	38	296	10	95	22	127	40	149	8	197	32	121	40	193
+30 mins.	22	202	22	246	5	95	34	134	34	190	14	238	18	119	39	176
+45 mins.	20	173	21	214	18	76	22	116	37	151	13	201	22	106	31	159
Total Volume	78	759	109	946	40	361	103	504	146	653	38	837	105	417	153	675
% App. Total	8.2	80.2	11.5		7.9	71.6	20.4		17.4	78	4.5		15.6	61.8	22.7	
PHF	.848	.807	.717	.799	.556	.950	.757	.940	.913	.859	.679	.879	.795	.862	.890	.874

County of Los Angeles N/S: Alameda Street E/W: El Segundo Boulevard

Weather: Clear

File Name : CPTALELPM Site Code : 12815514 Start Date : 9/23/2015 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:


	04:45 PM	1			05:00 PM	1			05:00 PM	4			05:00 PM			
+0 mins.	28	156	12	196	37	172	34	243	22	191	24	237	8	64	27	99
+15 mins.	30	172	14	216	55	194	48	297	30	172	25	227	19	70	21	110
+30 mins.	25	179	8	212	43	151	46	240	25	180	32	237	10	50	18	78
+45 mins.	26	198	13	237	47	182	62	291	25	174	17	216	13	74	29	116
Total Volume	109	705	47	861	182	699	190	1071	102	717	98	917	50	258	95	403
% App. Total	12.7	81.9	5.5		17	65.3	17.7		11.1	78.2	10.7		12.4	64	23.6	
PHF	.908	.890	.839	.908	.827	.901	.766	.902	.850	.938	.766	.967	.658	.872	.819	.869

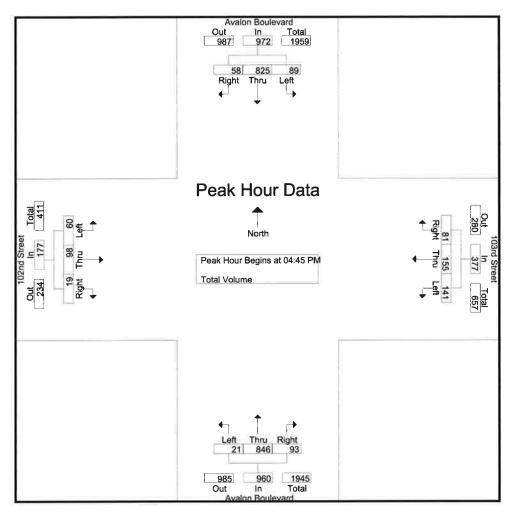
City of Los Angeles N/S: Avalon Boulevard E/W: 102nd Street/103rd Street

Weather: Clear

File Name : LACAV102nAM

Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

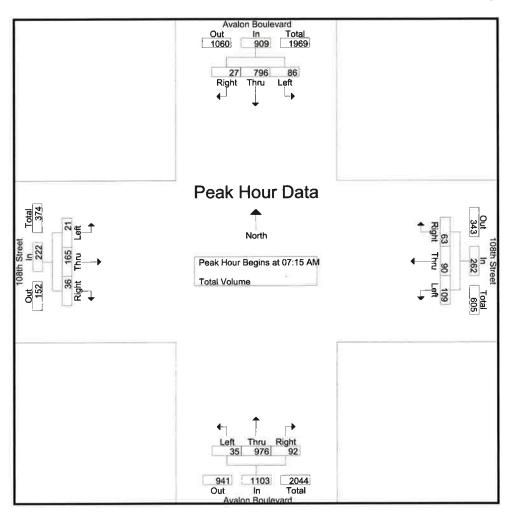

	07:15 AM				07:15 AN	1			07:00 AM	1			07:30 AN	1		
+0 mins.	14	173	3	190	23	24	29	76	2	231	6	239	7	23	5	35
+15 mins.	17	208	9	234	14	29	31	74	7	264	13	284	6	20	3	29
+30 mins.	21	216	11	248	27	32	20	79	4	254	15	273	10	15	9	34
+45 mins.	26	192	15	233	20	22	29	71	5	240	11	256	8	21	12	41
Total Volume	78	789	38	905	84	107	109	300	18	989	45	1052	31	79	29	139
% App. Total	8.6	87.2	4.2		28	35.7	36.3		1.7	94	4.3		22.3	56.8	20.9	
PHF	.750	.913	.633	.912	.778	.836	.879	.949	.643	.937	.750	.926	.775	.859	.604	.848

City of Los Angeles N/S: Avalon Boulevard

E/W: 102nd Street/103rd Street

Weather: Clear

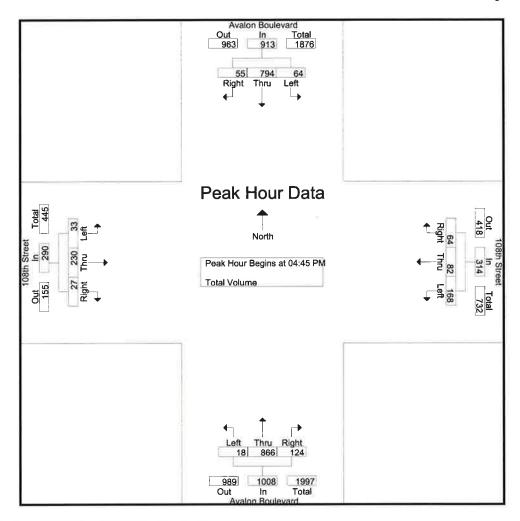
File Name : LACAV102nPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

	04:30 PM	l			04:45 PM	1			04:45 PM	1			05:00 PM	1		
+0 mins.	34	211	7	252	23	27	19	69	2	212	25	239	12	28	6	46
+15 mins.	25	201	15	241	42	47	19	108	3	212	27	242	17	30	4	51
+30 mins.	21	181	16	218	41	46	24	111	9	225	21	255	17	22	7	46
+45 mins.	20	232	12	264	35	35	19	89	7	197	20	224	14	27	4	45
Total Volume	100	825	50	975	141	155	81	377	21	846	93	960	60	107	21	188
% App. Total	10.3	84.6	5.1		37.4	41.1	21.5		2.2	88.1	9.7		31.9	56.9	11.2	
PHF	.735	.889	.781	.923	.839	.824	.844	.849	.583	.940	.861	.941	.882	.892	.750	.922

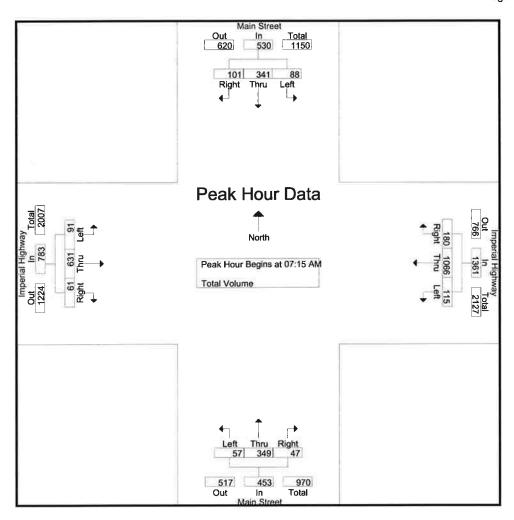
City of Los Angeles N/S: Avalon Boulevard E/W: 108th Street Weather: Clear


File Name : LACAV108tAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour for		ma be has not as to the con-	n begins	s at.	07:45 AM				07:15 AM				07:30 AN			
	07:15 AM				07:15 AM								07.30 AN			
+0 mins.	14	178	6	198	25	26	12	63	10	249	17	276	4	37	8	49
+15 mins.	19	229	6	254	33	23	13	69	9	244	18	271	8	59	14	81
+30 mins.	29	208	11	248	32	19	18	69	9	232	26	267	6	45	9	60
+45 mins.	24	181	4	209	19	22	20	61	7	251	31	289	4	27	7	38
Total Volume	86	796	27	909	109	90	63	262	35	976	92	1103	22	168	38	228
% App. Total	9.5	87.6	3		41.6	34.4	24		3.2	88.5	8.3		9.6	73.7	16.7	
PHF	.741	.869	.614	.895	.826	.865	.788	.949	.875	.972	.742	.954	.688	.712	.679	.704

City of Los Angeles N/S: Avalon Boulevard E/W: 108th Street Weather: Clear

File Name : LACAV108tPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

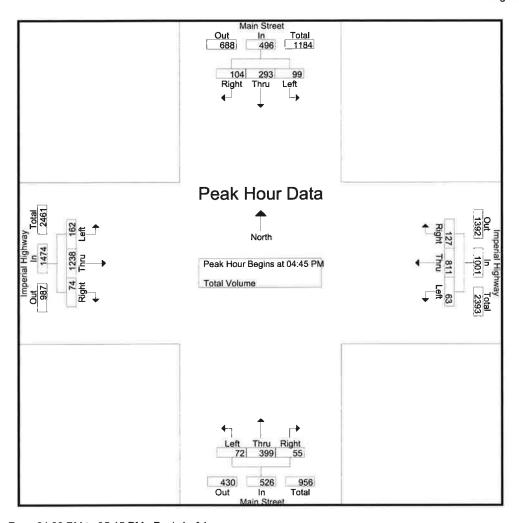


Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	04:45 PM				04:45 PM	1			04:45 PM	1			05:00 PM			
+0 mins.	15	186	11	212	39	23	12	74	3	246	28	277	9	56	7	72
+15 mins.	16	199	16	231	41	22	17	80	6	238	30	274	9	60	6	75
+30 mins.	17	213	15	245	43	19	16	78	5	202	32	239	6	69	7	82
+45 mins.	16	196	13	225	45	18	19	82	4	180	34	218	10	61	8	79
Total Volume	64	794	55	913	168	82	64	314	18	866	124	1008	34	246	28	308
% App. Total	7	87	6		53.5	26.1	20.4		1.8	85.9	12.3		11	79.9	9.1	
PHF	.941	.932	.859	.932	.933	.891	.842	.957	.750	.880	.912	.910	.850	.891	.875	.939

City of Los Angeles N/S: Main Street E/W: Imperial Highway Weather: Clear

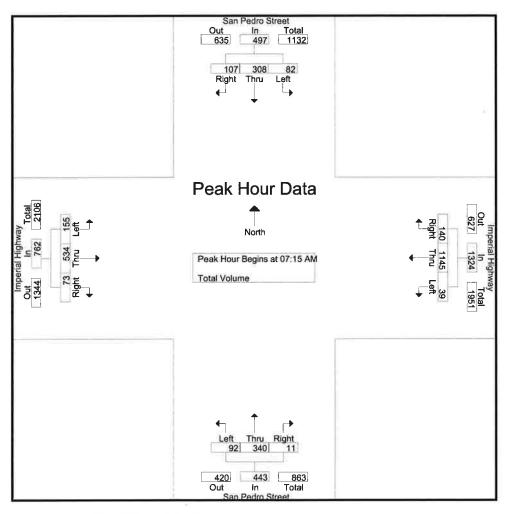
File Name : LACMAIMAM Site Code 12816682 Start Date : 12/7/2016 Page No : 2



Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

	07:15 AN	1			07:00 AN	1			07:15 AM	1			07:15 AM	!		
+0 mins.	18	83	20	121	19	309	26	354	10	86	14	110	17	130	12	159
+15 mins.	19	81	21	121	28	278	51	357	13	78	11	102	29	176	19	224
+30 mins. +45 mins.	30 21	1 08 69	26 34	164 124	31 31	242 261	52 38	325 330	16 18	97 88	13 9	126 115	25 20	184 141	21 9	230 170
Total Volume	88	341	101	530	109	1090	167	1366	57	349	47	453	91	631	61	783
% App. Total	16.6	64.3	19.1		8	79.8	12.2		12.6	77	10.4		11.6	80.6	7.8	
PHF	.733	.789	.743	.808	.879	.882	.803	.957	.792	.899	.839	.899	.784	.857	.726	.851

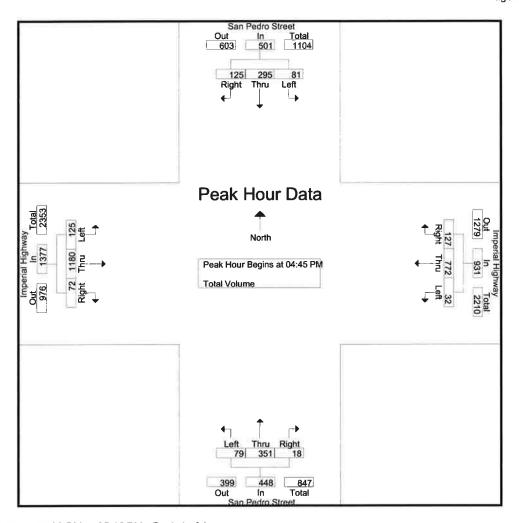
City of Los Angeles N/S: Main Street E/W: Imperial Highway Weather: Clear


File Name : LACMAIMPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour for	Each A	pproacl	n Begins	at:												
	05:00 PM)			04:45 PM	1			04:30 PN	A			04:45 PM	Л		
+0 mins.	26	81	22	129	16	192	38	246	11	83	6	100	38	314	20	372
+15 mins.	22	74	27	123	17	218	43	278	19	127	15	161	39	285	17	341
+30 mins.	26	69	29	124	16	211	24	251	16	107	17	140	42	313	19	374
+45 mins.	27	70	27	124	14	190	22	226	22	86	17	125	43	326	18	387
Total Volume	101	294	105	500	63	811	127	1001	68	403	55	526	162	1238	74	1474
% App. Total	20.2	58.8	21		6.3	81	12.7		12.9	76.6	10.5		11	84	5	
PHF	.935	.907	.905	.969	.926	.930	.738	.900	.773	.793	.809	.817	.942	.949	.925	.952

City of Los Angeles N/S: San Pedro Street E/W: Imperial Highway Weather: Clear

File Name : LACSPIMAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

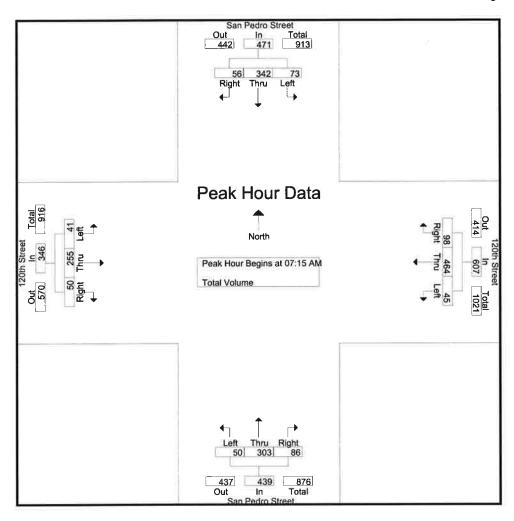

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

	07:30 AM				07:00 AM	A .			07:15 AN	A			07:15 AN	1		
+0 mins.	17	95	27	139	2	302	34	338	23	76	7	106	31	122	10	163
+15 mins.	30	93	26	149	8	324	28	360	22	80	1	103	53	128	22	203
+30 mins.	24	69	32	125	12	290	30	332	24	99	1	124	39	156	26	221
+45 mins.	12	51	23	86	12	260	42	314	23	85	2	110	32	128	15	175
Total Volume	83	308	108	499	34	1176	134	1344	92	340	11	443	155	534	73	762
% App. Total	16.6	61.7	21.6		2.5	87.5	10		20.8	76.7	2.5		20.3	70.1	9.6	
PHF	.692	.811	.844	.837	.708	.907	.798	.933	.958	.859	.393	.893	.731	.856	.702	.862

City of Los Angeles N/S: San Pedro Street E/W: Imperial Highway

Weather: Clear

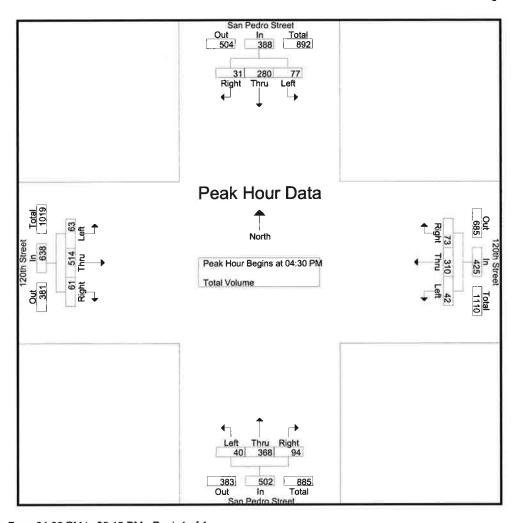
File Name : LACSPIMPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

reak riour ior	Lacii	phioaci	Degina	cit.												
	04:45 PM				05:00 PM	1			04:45 PN	1			05:00 PM	f		
+0 mins.	22	86	24	132	5	214	48	267	21	97	2	120	36	311	15	362
+15 mins.	27	75	41	143	11	213	26	250	22	91	3	116	33	293	24	350
+30 mins.	20	74	32	126	10	165	27	202	18	75	6	99	24	294	14	332
+45 mins.	12	60	28	100	12	175	36	223	18	88	7	113	28	327	17	372
Total Volume	81	295	125	501	38	767	137	942	79	351	18	448	121	1225	70	1416
% App. Total	16.2	58.9	25		4	81.4	14.5		17.6	78.3	4		8.5	86.5	4.9	
PHF	.750	.858	.762	.876	.792	.896	.714	.882	.898	.905	.643	.933	.840	.937	.729	.952

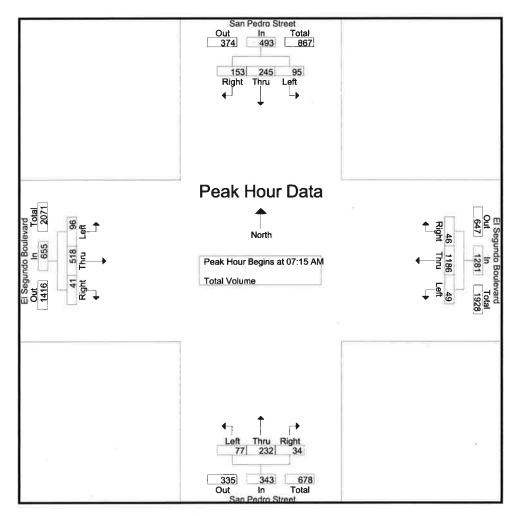
City of Los Angeles N/S: San Pedro Street E/W: 120th Street Weather: Clear File Name: LACSP120tAM Site Code: 12816682 Start Date: 12/7/2016


Page No : 2

Peak Hour for	Each A	оргоас	n Begins	at:												
	07:15 AM				07:15 AM	1			07:15 AM	4			07:15 AM	l		
+0 mins.	15	72	9	96	7	120	26	153	12	68	15	95	6	51	11	68
+15 mins.	19	96	15	130	8	118	16	142	11	76	23	110	12	74	13	99
+30 mins.	20	93	19	132	17	117	33	167	10	93	28	131	14	65	17	96
+45 mins.	19	81	13	113	13	109	23	145	17	66	20	103	9	65	9	83
Total Volume	73	342	56	471	45	464	98	607	50	303	86	439	41	255	50	346
% App. Total	15.5	72.6	11.9		7.4	76.4	16.1		11.4	69	19.6		11.8	73.7	14.5	
PHF	.913	.891	.737	.892	.662	.967	.742	.909	.735	.815	.768	.838	.732	.861	.735	.874

City of Los Angeles N/S: San Pedro Street E/W: 120th Street Weather: Clear File Name : LACSP120tPM Site Code : 12816682 Start Date : 12/7/2016

Page No 2

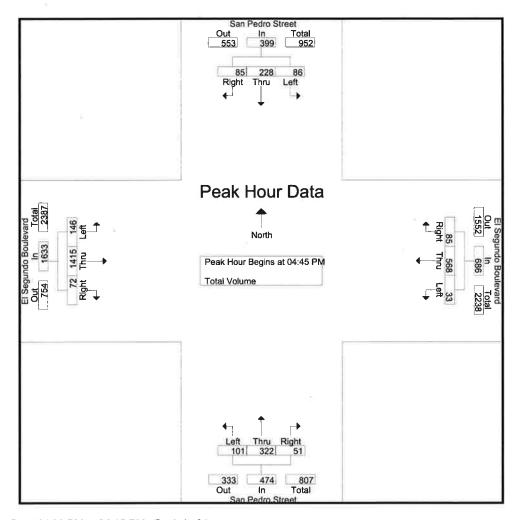


Peak Hour for	Each A	pproacl	n Begins	s at:												
	04:45 PM				04:30 PN	1			04:15 PM	1			04:30 PM	1		
+0 mins.	24	72	7	103	13	71	17	101	8	91	14	113	12	134	10	156
+15 mins.	15	62	11	88	11	72	15	98	15	107	27	149	20	128	15	163
+30 mins.	18	80	9	107	10	87	21	118	5	93	24	122	16	125	19	160
+45 mins.	23	59	9	91	8	80	20	108	14	85	21	120	15	127	17	159
Total Volume	80	273	36	389	42	310	73	425	42	376	86	504	63	514	61	638
% App. Total	20.6	70.2	9.3		9.9	72.9	17.2		8.3	74.6	17.1		9.9	80.6	9.6	
PHF	.833	.853	.818	.909	.808	.891	.869	.900	.700	.879	.796	.846	.788	.959	.803	.979

City of Los Angeles N/S: San Pedro Street E/W: El Segundo Boulevard

Weather: Clear

File Name : LACSPELAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

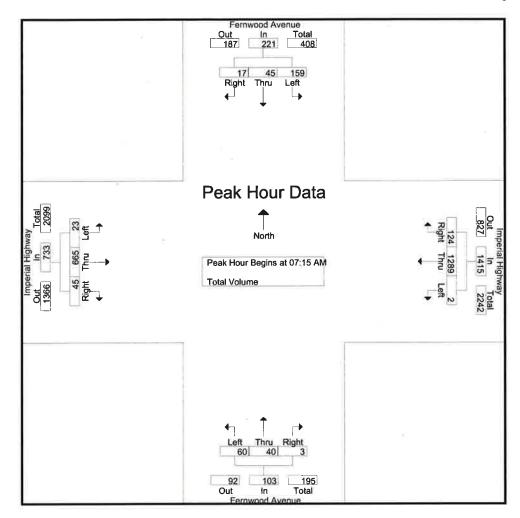


Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	07:15 AM				07:00 AN	Λ			07:15 AN	Α			07:15 AM	1		
+0 mins.	23	49	28	100	6	274	9	289	20	59	6	85	15	123	7	145
+15 mins.	20	57	50	127	5	327	11	343	26	50	8	84	24	143	10	177
+30 mins.	21	80	37	138	11	299	10	320	14	72	6	92	31	126	10	167
+45 mins.	31	59	38	128	19	301	12	332	17	51	14	82	26	126	14	166
Total Volume	95	245	153	493	41	1201	42	1284	77	232	34	343	96	518	41	655
% App. Total	19.3	49.7	31		3.2	93.5	3.3		22.4	67.6	9.9		14.7	79.1	6.3	
PHF	.766	.766	.765	.893	.539	.918	.875	.936	.740	.806	.607	.932	.774	.906	.732	.925

City of Los Angeles N/S: San Pedro Street E/W: El Segundo Boulevard Weather: Clear

File Name : LACSPELPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



Peak	Hour	for	Each	Approach	Begins	at:

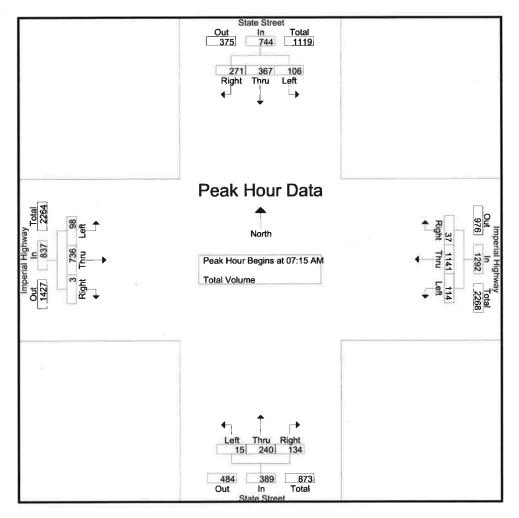
	04:45 PM				04:15 PM	1			04:45 PN	Λ			04:15 PN	А		
+0 mins.	22	53	18	93	11	136	18	165	18	77	9	104	43	331	25	399
+15 mins.	22	64	16	102	6	134	27	167	24	74	14	112	39	352	10	401
+30 mins.	21	61	27	109	5	151	20	176	30	79	14	123	44	366	17	427
+45 mins.	21	50	24	95	6	154	32	192	29	92	14	135	40	363	23	426
Total Volume	86	228	85	399	28	575	97	700	101	322	51	474	166	1412	75	1653
% App. Total	21.6	57.1	21.3		4	82.1	13.9		21.3	67.9	10.8		10	85.4	4.5	
PHF	.977	.891	.787	.915	.636	.933	.758	.911	.842	.875	.911	.878	.943	.964	.750	.968

City of Lynwood N/S: Fernwood Avenue E/W: Imperial Highway Weather: Clear

File Name : LWDFEIMAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

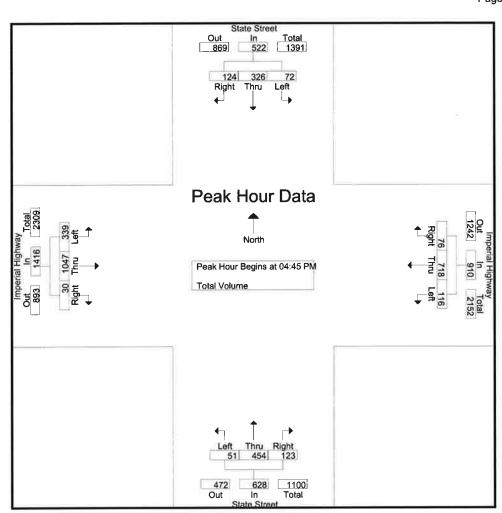
	07:15 AM				07:00 AN	A			07:30 AM	1			07:15 AM	l		
+0 mins.	30	13	7	50	0	344	23	367	15	10	0	25	7	163	7	177
+15 mins.	43	10	4	57	0	361	34	395	7	7	1	15	5	174	12	191
+30 mins.	39	13	3	55	1	310	28	339	21	15	0	36	4	179	13	196
+45 mins.	47	9	3	59	1	323	29	353	17	17	1	35	7	149	13	169
Total Volume	159	45	17	221	2	1338	114	1454	60	49	2	111	23	665	45	733
% App. Total	71.9	20.4	7.7		0.1	92	7.8		54.1	44.1	1.8		3.1	90.7	6.1	
PHF	.846	.865	.607	.936	.500	.927	.838	.920	.714	.721	.500	.771	.821	.929	.865	.935

City of Lynwood N/S: Fernwood Avenue E/W: Imperial Highway Weather: Clear


File Name LWDFEIMPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

	05:00 PM	l			04:00 PM				04:15 PM	4			04:45 PM	1		
+0 mins.	28	30	1	59	0	187	43	230	25	20	1	46	17	325	69	411
+15 mins.	24	20	2	46	2	207	29	238	27	20	4	51	7	302	69	378
+30 mins.	33	25	2	60	2	207	33	242	22	15	1	38	8	289	33	330
+45 mins.	32	23	1	56	3	188	38	229	25	14	2	41	10	384	56	450
Total Volume	117	98	6	221	7	789	143	939	99	69	8	176	42	1300	227	1569
% App. Total	52.9	44.3	2.7		0.7	84	15.2		56.2	39.2	4.5		2.7	82.9	14.5	
PHF	.886	.817	.750	.921	.583	.953	.831	.970	.917	.863	.500	.863	.618	.846	.822	.872

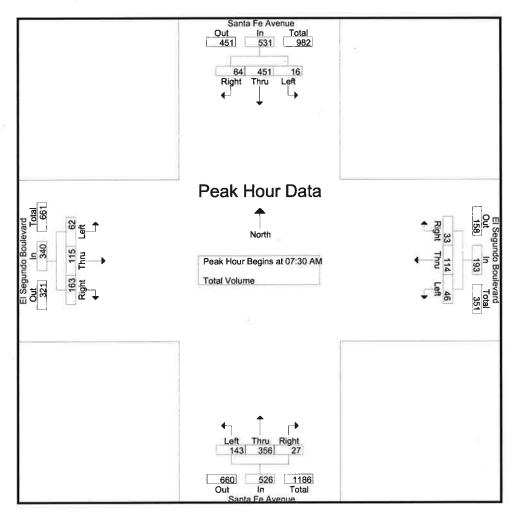
City of Lynwood N/S: State Street E/W: Imperial Highway Weather: Clear


File Name: LWDSTIMAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

Peak Hour for	Each	pproac	Degins	al.												
	07:15 AM				07:00 AM	1			07:00 AM	1			07:15 AM	i		
+0 mins.	20	91	66	177	19	322	4	345	7	58	33	98	22	169	0	191
+15 mins.	31	91	77	199	25	282	6	313	2	61	22	85	31	210	2	243
+30 mins.	29	101	71	201	20	302	4	326	1	80	42	123	21	178	0	199
+45 mins.	26	84	57	167	36	273	14	323	7	56	36	99	24	179	1	204
Total Volume	106	367	271	744	100	1179	28	1307	17	255	133	405	98	736	3	837
% App. Total	14.2	49.3	36.4		7.7	90.2	2.1		4.2	63	32.8		11.7	87.9	0.4	
PHF	.855	.908	.880	.925	.694	.915	.500	.947	.607	.797	.792	.823	.790	.876	.375	.861

City of Lynwood N/S: State Street E/W: Imperial Highway Weather: Clear File Name: LWDSTIMPM Site Code: 12816682 Start Date: 12/7/2016 Page No: 2

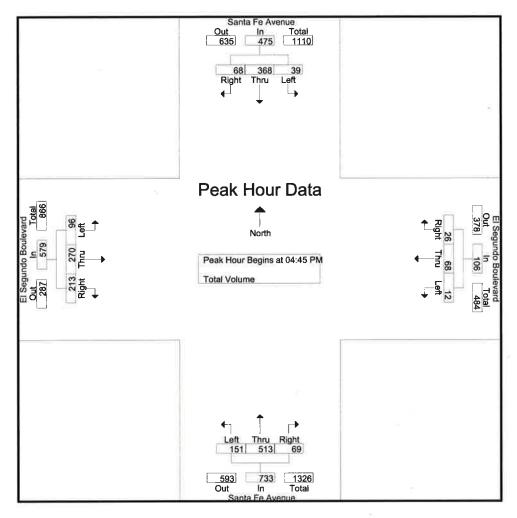


	04:15 PM				04:00 PM				04:45 PM	Л			04:45 PN	1		
+0 mins.	6	83	39	128	36	193	15	244	12	114	25	151	75	264	5	344
+15 mins.	20	91	35	146	35	202	20	257	11	126	22	159	73	246	11	330
+30 mins.	19	74	39	132	22	200	26	248	17	100	34	151	93	261	3	357
+45 mins.	20	98	26	144	25	185	21	231	11	114	42	167	98	276	11	385
Total Volume	65	346	139	550	118	780	82	980	51	454	123	628	339	1047	30	1416
% App. Total	11.8	62.9	25.3		12	79.6	8.4		8.1	72.3	19.6		23.9	73.9	2.1	
PHF	.813	.883	.891	.942	.819	.965	.788	.953	.750	.901	.732	.940	.865	.948	.682	.919

City of Compton N/S: Santa Fe Avenue E/W: El Segundo Boulevard

Weather: Clear

File Name : CPTSAELAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

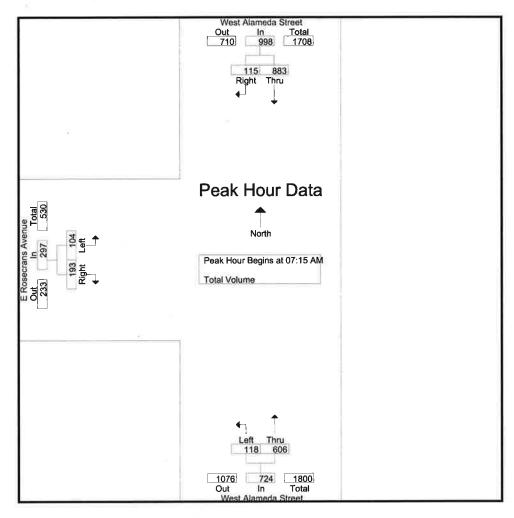


Peak	Hour	tor	Each	App	proacr	i begins	at.
			07:30	AM			

	07:30 AN	1			07:30 AM	1			07:30 AN	1			07:30 AM			
+0 mins.	4	138	15	157	17	26	7	50	37	76	5	118	18	33	31	82
+15 mins.	3	113	20	136	11	25	5	41	29	104	7	140	23	26	46	95
+30 mins.	3	107	15	125	6	28	8	42	41	87	8	136	14	33	47	94
+45 mins.	6	93	14	113	12	35	13	60	36	89	7	132	7	23	39	69
Total Volume	16	451	64	531	46	114	33	193	143	356	27	526	62	115	163	340
% App. Total	3	84.9	12.1		23.8	59.1	17.1		27.2	67.7	5.1		18.2	33.8	47.9	
PHF	.667	.817	.800	.846	.676	.814	.635	.804	.872	.856	.844	.939	.674	.871	.867	.895

City of Compton N/S: Santa Fe Avenue E/W: El Segundo Boulevard Weather: Clear

File Name ? CPTSAELPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

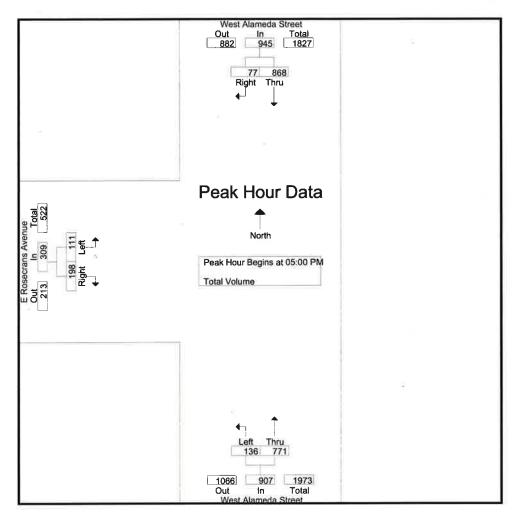

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 Peak Hour for Each Approach Begins at:

can i loui loi	Lacini	pprodo	ii bogiin	, uu.												
	04:15 PM	1			05:00 PN	Λ			04:45 PM	Л			04:45 PM	1		
+0 mins.	9	99	20	128	3	22	7	32	32	140	20	192	22	74	56	152
+15 mins.	4	96	21	121	6	18	8	32	32	120	17	169	25	66	54	145
+30 mins.	9	84	19	112	2	11	7	20	49	139	16	204	25	70	43	138
+45 mins.	9	105	21	135	6	27	8	41	38	114	16	168	24	60	60	144
Total Volume	31	384	81	496	17	78	30	125	151	513	69	733	96	270	213	579
% App. Total	6.2	77.4	16.3		13.6	62.4	24		20.6	70	9.4		16.6	46.6	36.8	
PHF	.861	.914	.964	.919	.708	.722	.938	.762	.770	.916	.863	.898	.960	.912	.888	.952

City of Compton N/S: West Alameda Street E/W: E Rosecrans Avenue

Weather: Clear

File Name CPTAL1ROAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



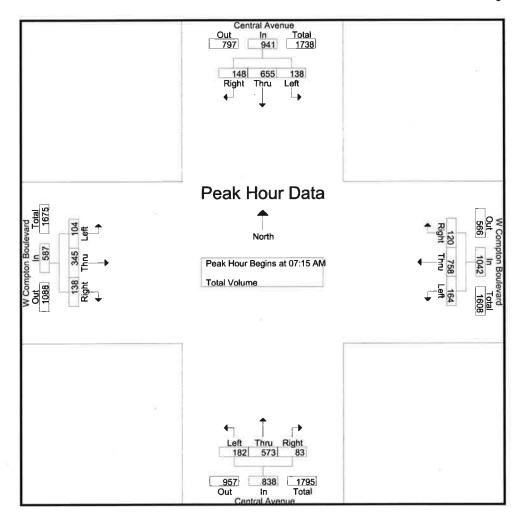
	07:15 AM			07:00 AM			07:30 AM		
+0 mins.	192	15	207	12	154	166	33	45	78
+15 mins.	256	36	292	20	175	195	31	56	87
+30 mins.	248	34	282	19	165	184	20	53	73
+45 mins.	187	30	217	45	137	182	23	45	68
Total Volume	883	115	998	96	631	727	107	199	306
% App. Total	88.5	11.5		13.2	86.8		35	65	
PHF	.862	.799	.854	.533	.901	.932	.811	.888	.879

City of Compton N/S: West Alameda Street E/W: E Rosecrans Avenue

Weather: Clear

File Name : CPTAL1ROPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak H	our for	Each A	Approach	Beg	ins at:

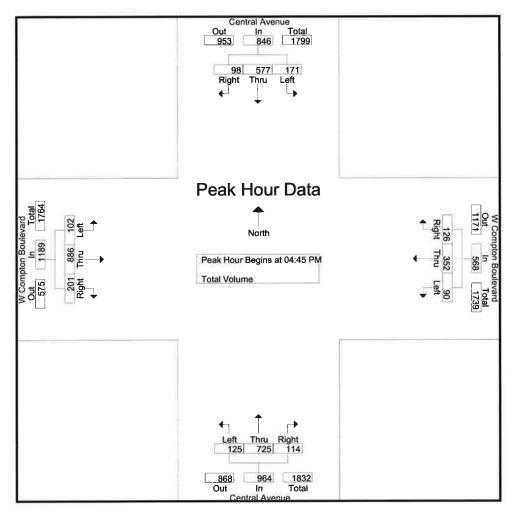

	05:00 PM			04:15 PM			05:00 PM		
+0 mins.	205	21	226	40	189	229	27	46	73
+15 mins.	238	18	256	38	210	248	33	41	74
+30 mins.	235	15	250	32	174	206	25	50	75
+45 mins.	190	23	213	33	203	236	26	61	87
Total Volume	868	77	945	143	776	919	111	198	309
% App. Total	91.9	8.1		15.6	84.4		35.9	64.1	
PHF	.912	.837	.923	.894	.924	.926	.841	.811	.888

City of Compton N/S: Central Avenue

E/W: W Compton Boulevard

Weather: Clear

File Name: CPTCEWCAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

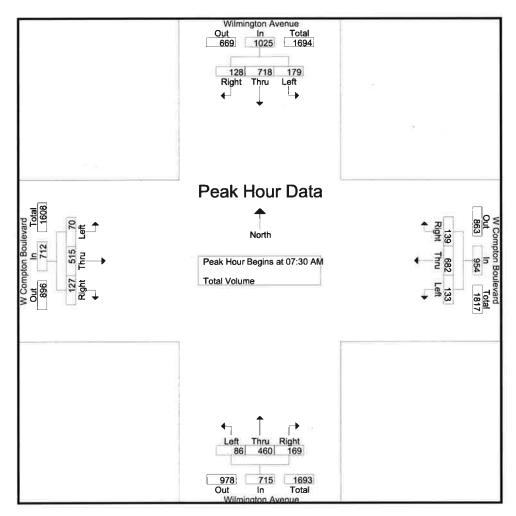

	07:15 AM				07:15 AM				07:15 AN	Λ			07:30 AM	1		
+0 mins.	29	131	30	190	21	200	21	242	38	126	12	176	25	72	39	136
+15 mins.	35	179	51	265	43	195	26	264	46	148	20	214	34	117	46	197
+30 mins.	37	210	39	286	59	219	31	309	53	151	23	227	25	107	29	161
+45 mins.	37	135	28	200	41	144	42	227	45	148	28	221	24	77	30	131
Total Volume	138	655	148	941	164	758	120	1042	182	573	83	838	108	373	144	625
% App. Total	14.7	69.6	15.7		15.7	72.7	11.5		21.7	68.4	9.9		17.3	59.7	23	
PHF	.932	.780	.725	.823	.695	.865	.714	.843	.858	.949	.741	.923	.794	.797	.783	.793

City of Compton N/S: Central Avenue

E/W: W Compton Boulevard

Weather: Clear

File Name : CPTCEWCPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

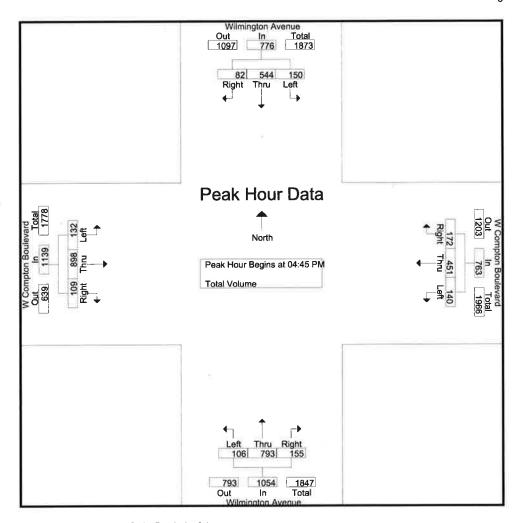


	05:00 PM				04:15 PM	1			04:45 PM	1			04:45 PM			
+0 mins.	44	118	23	185	30	96	49	175	35	156	33	224	27	220	52	299
+15 mins.	40	155	25	220	34	88	28	150	25	184	21	230	25	210	63	298
+30 mins.	41	175	22	238	14	72	36	122	39	188	32	259	23	224	44	291
+45 mins.	48	148	23	219	32	97	22	151	26	197	28	251	27	232	42	301
Total Volume	173	596	93	862	110	353	135	598	125	725	114	964	102	886	201	1189
% App. Total	20.1	69.1	10.8		18.4	59	22.6		13	75.2	11.8		8.6	74.5	16.9	
PHF	.901	.851	.930	.905	.809	.910	.689	.854	.801	.920	.864	.931	.944	.955	.798	.988

City of Compton N/S: Wilmington Avenue E/W: W Compton Boulevard

Weather: Clear

File Name : CPTWICOAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

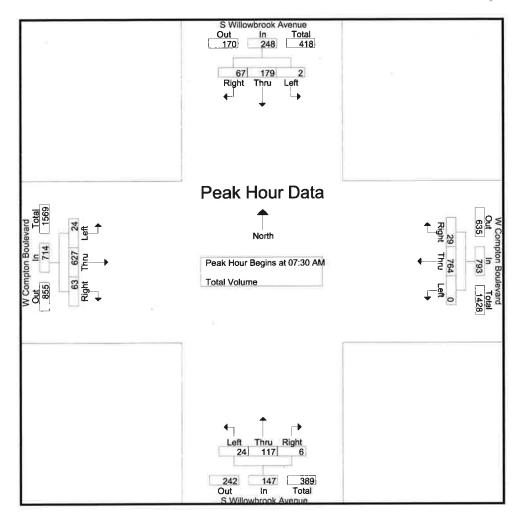

F	eak	(t	lour	for	Each	Approach	Be	gins a	at:

reak nour for	LacinA	pproaci	ii begins	s at.												
	07:30 AM				07:30 AN	1			07:30 AN	Л			07:30 AM	l		
+0 mins.	46	190	35	271	34	174	29	237	20	118	38	176	20	113	36	169
+15 mins.	40	205	43	288	36	211	39	286	23	118	49	190	21	131	41	193
+30 mins.	46	180	29	255	35	153	33	221	23	126	48	197	15	153	27	195
+45 mins.	47	143	21	211	28	144	38	210	20	98	34	152	14	118	23	155
Total Volume	179	718	128	1025	133	682	139	954	86	460	169	715	70	515	127	712
% App. Total	17.5	70	12.5		13.9	71.5	14.6		12	64.3	23.6		9.8	72.3	17.8	
PHF	.952	.876	.744	.890	.924	.808	.891	.834	.935	.913	.862	.907	.833	.842	.774	.913

City of Compton N/S: Wilmington Avenue E/W: W Compton Boulevard Weather: Clear

File Name : CPTWICOPM Site Code : 12816682 Start Date : 12/7/2016

Page No : 2

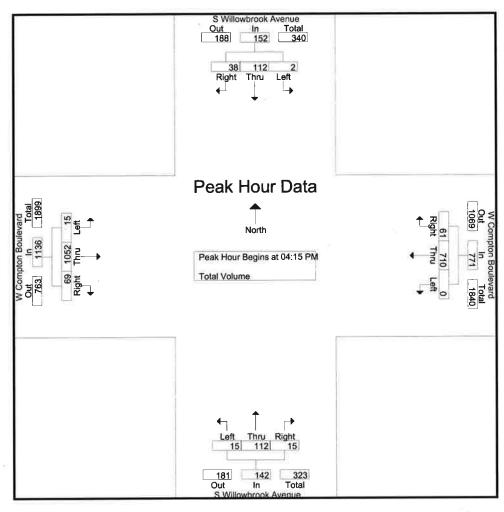


	05:00 PM				04:15 PM				04:45 PM	1			04:45 PM			
+0 mins.	33	154	26	213	44	143	41	228	29	185	24	238	35	226	32	293
+15 mins.	49	125	24	198	36	127	45	208	18	212	46	276	34	225	25	284
+30 mins.	32	153	19	204	31	85	38	154	34	193	44	271	21	222	26	269
+45 mins.	35	108	26	169	37	144	55	236	25	203	41	269	42	225	26	293
Total Volume	149	540	95	784	148	499	179	826	106	793	155	1054	132	898	109	1139
% App. Total	19	68.9	12.1		17.9	60.4	21.7		10.1	75.2	14.7		11.6	78.8	9.6	
PHF	.760	.877	.913	.920	.841	.866	.814	.875	.779	.935	.842	.955	.786	.993	.852	.972

City of Compton N/S: S Willowbrook Avenue E/W: W Compton Boulevard

Weather: Clear

File Name : CPTWB1COAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

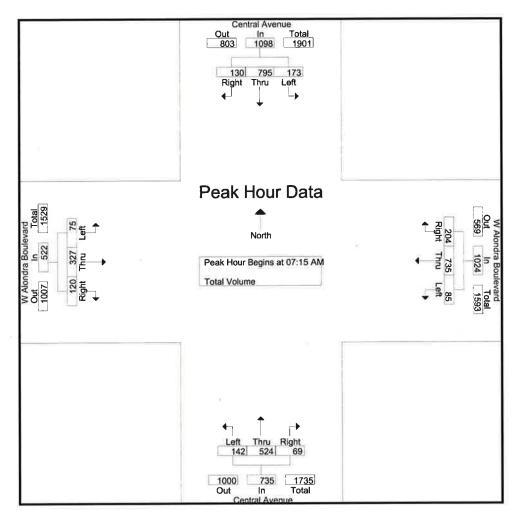


	07:15 AM				07:15 AN	1			07:30 AM	A			07:30 AM	1		
+0 mins.	0	39	13	52	0	189	5	194	3	13	0	16	3	145	13	161
+15 mins.	1	52	15	68	0	-189	5	194	3	45	1	49	13	153	17	183
+30 mins.	0	52	20	72	0	198	5	203	7	34	4	45	4	171	17	192
+45 mins.	1	45	23	69	0	203	11	214	11	25	1	37	4	158	16	178
Total Volume	2	188	71	261	0	779	26	805	24	117	6	147	24	627	63	714
% App. Total	0.8	72	27.2		0	96.8	3.2		16.3	79.6	4.1		3.4	87.8	8.8	
PHF	.500	.904	.772	.906	.000	.959	.591	.940	.545	.650	.375	.750	.462	.917	.926	.930

City of Compton N/S: S Willowbrook Avenue E/W: W Compton Boulevard

Weather: Clear

File Name 3 CPTWB1COPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

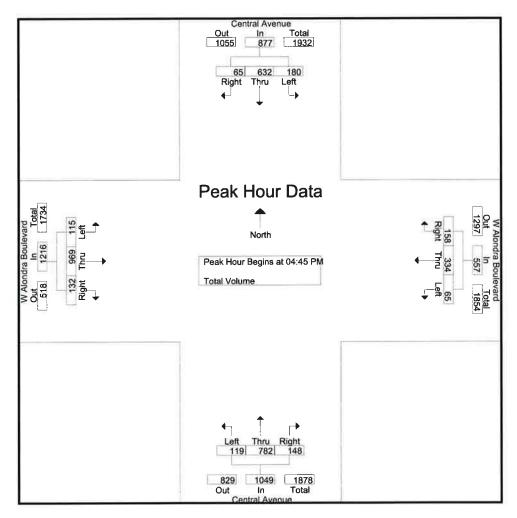


	04:00 PM				04:15 PM	1			05:00 PM				04:15 PM	Л		
+0 mins.	0	26	8	34	0	183	14	197	5	30	0	35	4	283	22	309
+15 mins.	0	27	12	39	0	183	16	199	6	29	2	37	2	250	19	271
+30 mins.	Ö	38	8	46	0	153	14	167	7	31	1	39	5	260	15	280
+45 mins.	2	24	8	34	0	191	17	208	8	34	4	46	4	259	13	276
Total Volume	2	115	36	153	0	710	61	771	26	124	7	157	15	1052	69	1136
% App. Total	1.3	75.2	23.5		0	92.1	7.9		16.6	79	4.5		1.3	92.6	6.1	
PHF	.250	.757	.750	.832	.000	.929	.897	.927	.813	.912	.438	.853	.750	.929	.784	.919

City of Compton N/S: Central Avenue E/W: W Alondra Boulevard

Weather: Clear

File Name : CPTCEALAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

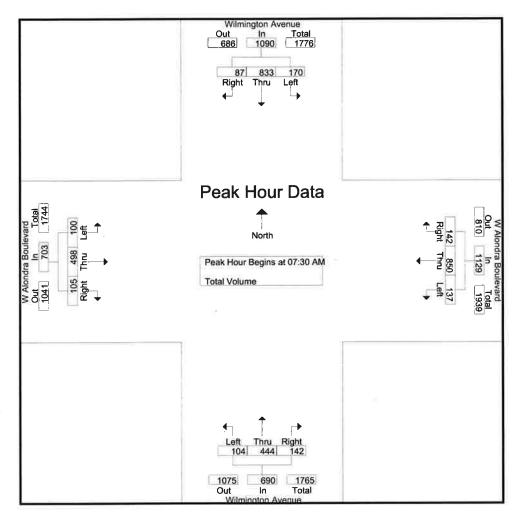


	07:15 AM				07:15 AM	l			07:15 AM	1			07:30 AM	1		
+0 mins.	33	154	20	207	16	146	40	202	33	112	11	156	20	69	25	114
+15 mins.	46	187	38	271	19	228	51	298	41	131	20	192	19	94	44	157
+30 mins.	52	275	39	366	26	180	61	267	29	151	20	200	21	96	32	149
+45 mins.	42	179	33	254	24	181	52	257	39	130	18	187	18	85	31	134
Total Volume	173	795	130	1098	85	735	204	1024	142	524	69	735	78	344	132	554
% App. Total	15.8	72.4	11.8		8.3	71.8	19.9		19.3	71.3	9.4		14.1	62.1	23.8	
PHF	.832	.723	.833	.750	.817	.806	.836	.859	.866	.868	.863	.919	.929	.896	.750	.882

City of Compton N/S: Central Avenue E/W: W Alondra Boulevard

Weather: Clear

File Name CPTCEALPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

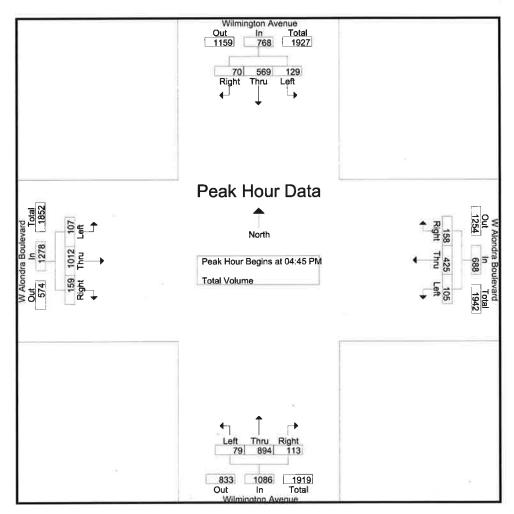


	05:00 PM				04:45 PM	l			04:45 PM	Λ			04:45 PM	1		
+0 mins.	43	149	15	207	17	96	31	144	23	188	47	258	25	265	25	315
+15 mins.	48	178	13	239	16	91	40	147	32	224	32	288	26	222	28	276
+30 mins.	50	160	18	228	17	71	37	125	28	208	30	266	34	244	48	326
+45 mins.	41	163	18	222	15	76	50	141	36	162	39	237	30	238	31	299
Total Volume	182	650	64	896	65	334	158	557	119	782	148	1049	115	969	132	1216
% App. Total	20.3	72.5	7.1		11.7	60	28.4		11.3	74.5	14.1		9.5	79.7	10.9	
PHF	.910	.913	.889	.937	.956	.870	.790	.947	.826	.873	.787	.911	.846	.914	.688	.933

City of Compton N/S: Wilmington Avenue E/W: W Alondra Boulevard

Weather: Clear

File Name : CPTWIALAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

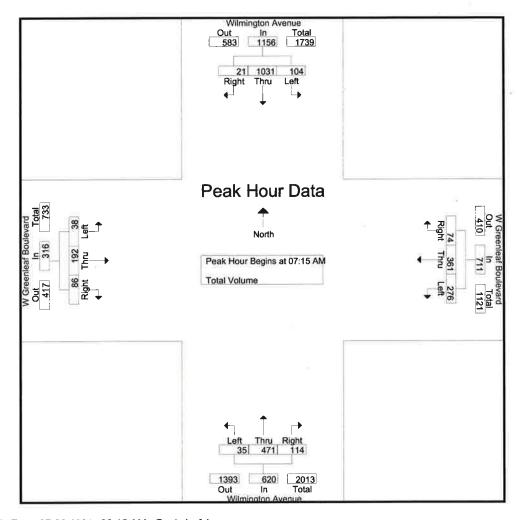


	07:15 AM				07:15 AN	l			07:30 AN	/			07:30 AN			
+0 mins.	19	211	20	250	25	154	25	204	25	114	27	166	22	119	25	166
+15 mins.	29	216	23	268	31	251	31	313	20	93	32	145	22	158	34	214
+30 mins.	54	260	26	340	37	249	48	334	27	128	42	197	33	134	20	187
+45 mins.	52	196	25	273	38	214	43	295	32	109	41	182	23	87	26	136
Total Volume	154	883	94	1131	131	868	147	1146	104	444	142	690	100	498	105	703
% App. Total	13.6	78.1	8.3		11.4	75.7	12.8		15.1	64.3	20.6		14.2	70.8	14.9	
PHF	.713	.849	.904	.832	.862	.865	.766	.858	.813	.867	.845	.876	.758	.788	.772	.821

City of Compton N/S: Wilmington Avenue E/W: W Alondra Boulevard

Weather: Clear

File Name : CPTWIALPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

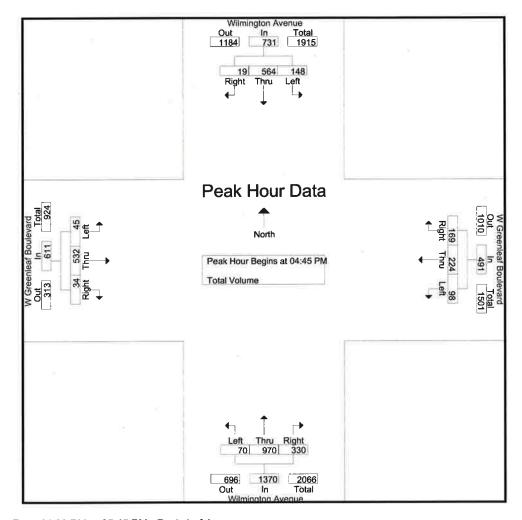


	04:15 PM				04:45 PM				04:30 PM	4			04:45 PN	1		
+0 mins.	43	135	19	197	26	98	28	152	19	210	37	266	24	281	28	333
+15 mins.	46	141	18	205	32	112	41	185	17	231	26	274	34	239	40	313
+30 mins.	30	131	22	183	17	96	51	164	29	219	31	279	16	249	45	310
+45 mins.	33	150	20	203	30	119	38	187	14	246	25	285	33	243	46	322
Total Volume	152	557	79	788	105	425	158	688	79	906	119	1104	107	1012	159	1278
% App. Total	19.3	70.7	10		15.3	61.8	23		7.2	82.1	10.8		8.4	79.2	12.4	
PHF	.826	.928	.898	.961	.820	.893	.775	.920	.681	.921	.804	.968	.787	.900	.864	.959

City of Compton N/S: Wilmington Avenue E/W: W Greenleaf Boulevard

Weather: Clear

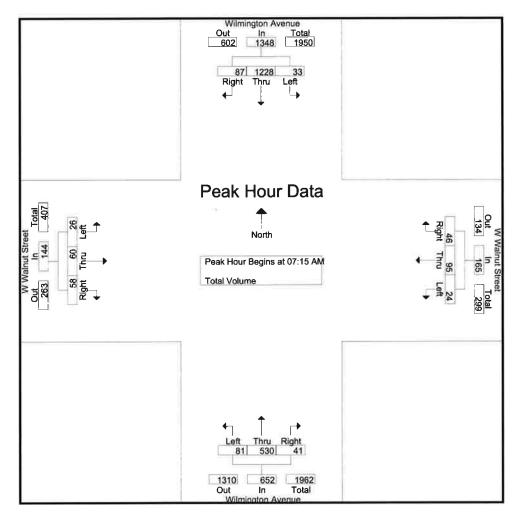
File Name : CPTWIGRAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



	07:15 AM				07:15 AM	1			07:30 AN	Λ			07:15 AM	1		
+0 mins.	19	236	7	262	60	65	11	136	17	127	34	178	5	29	19	53
+15 mins.	18	287	6	311	70	103	17	190	8	115	29	152	9	45	26	80
+30 mins.	35	302	4	341	78	109	22	209	7	128	30	165	16	64	27	107
+45 mins.	32	206	4	242	68	84	24	176	8	124	28	160	8	54	14	76
Total Volume	104	1031	21	1156	276	361	74	711	40	494	121	655	38	192	86	316
% App. Total	9	89.2	1.8		38.8	50.8	10.4		6.1	75.4	18.5		12	60.8	27.2	
PHF	.743	.853	.750	.848	.885	.828	.771	.850	.588	.965	.890	.920	.594	.750	.796	.738

City of Compton N/S: Wilmington Avenue E/W: W Greenleaf Boulevard

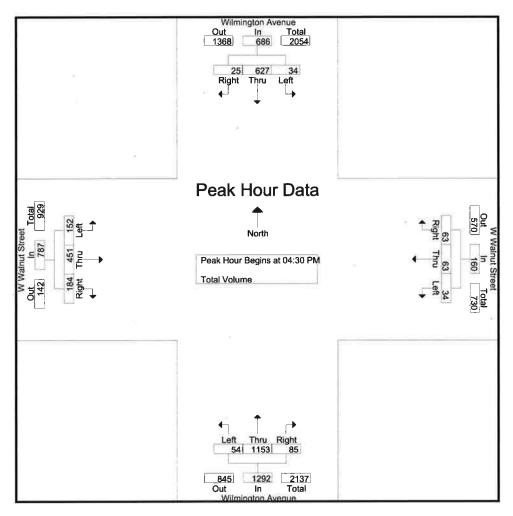
Weather: Clear


File Name : CPTWIGRPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

	04:45 PM			04:45 PM	1			04:45 PM	4			05:00 PM				
+0 mins.	39	135	6	180	31	60	43	134	20	263	70	353	13	134	9	156
+15 mins.	33	141	7	181	20	51	42	113	19	248	117	384	11	141	7	159
+30 mins.	36	146	2	184	19	59	41	119	21	246	77	344	13	132	8	153
+45 mins.	40	142	4	186	28	54	43	125	10	213	66	289	10	132	15	157
Total Volume	148	564	19	731	98	224	169	491	70	970	330	1370	47	539	39	625
% App. Total	20.2	77.2	2.6		20	45.6	34.4		5.1	70.8	24.1		7.5	86.2	6.2	
PHF	.925	.966	.679	.983	.790	.933	.983	.916	.833	.922	.705	.892	.904	.956	.650	.983

City of Compton N/S: Wilmington Avenue E/W: W Walnut Street Weather: Clear

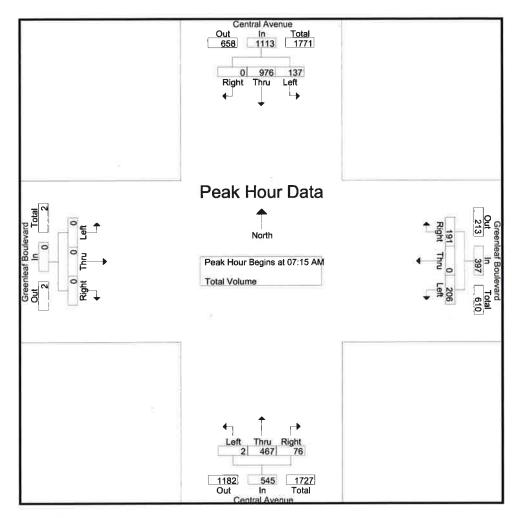
File Name : CPTWIWAAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



	07:15 AM				07:15 AM	1			07:30 AN	1			07:30 AM				
+0 mins.	10	268	9	287	4	22	10	36	17	156	9	182	7	14	13	34	
+15 mins.	5	360	18	383	11	17	13	41	31	131	12	174	11	20	22	53	
+30 mins.	10	330	41	381	8	38	6	52	25	130	9	164	6	17	17	40	
+45 mins.	8	270	19	297	1_	18	17	36	17	141	8	166	8	15	19	42	
Total Volume	33	1228	87	1348	24	95	46	165	90	558	38	686	32	66	71	169	
% App. Total	2.4	91.1	6.5		14.5	57.6	27.9		13.1	81.3	5.5		18.9	39.1	42		
PHF	.825	.853	.530	.880	.545	.625	.676	.793	.726	.894	.792	.942	.727	.825	.807	.797	

City of Compton N/S: Wilmington Avenue E/W: W Walnut Street

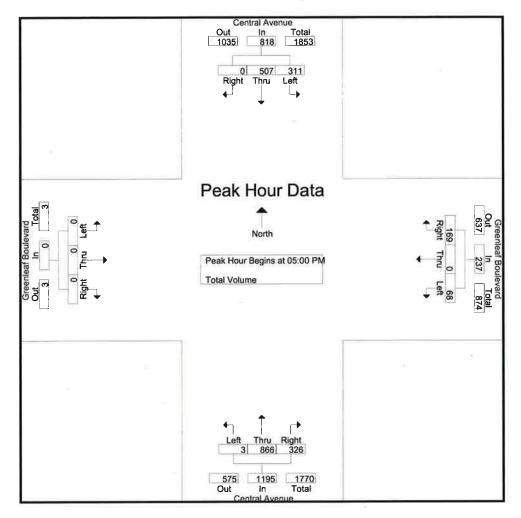
Weather: Clear


File Name : CPTWIWAPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

	05:00 PM				04:30 PM	1			04:30 PN	Λ			04:30 PM				
+0 mins.	9	162	6	177	9	12	24	45	15	263	14	292	39	108	52	199	
+15 mins.	6	175	4	185	6	14	6	26	13	288	21	322	25	117	34	176	
+30 mins.	9	161	6	176	7	15	20	42	11	319	28	358	53	108	57	218	
+45 mins.	13	159	8	180	12	22	13	47	15	283	22	320	35	118	41	194	
otal Volume	37	657	24	718	34	63	63	160	54	1153	85	1292	152	451	184	787	
% App. Total	5.2	91.5	3.3		21.2	39.4	39.4		4.2	89.2	6.6		19.3	57.3	23.4		
PHF	.712	.939	.750	.970	.708	.716	.656	.851	.900	.904	.759	.902	.717	.956	.807	.903	

City of Compton N/S: Central Avenue E/W: Greenleaf Boulevard Weather: Clear

File Name : CPTCEGRAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2


Peak Hour for	Each Approach Begins at:
	07:15 AM

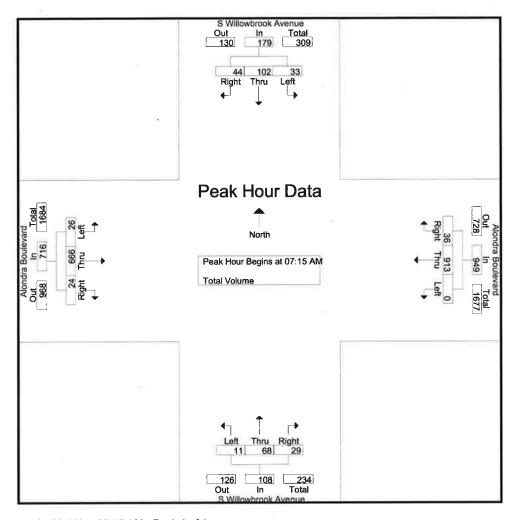
	07:15 AM				07:15 AM	1			07:45 AN	1			07:00 AM				
+0 mins.	22	210	0	232	42	0	40	82	0	106	30	136	0	0	0	0	
+15 mins.	27	237	0	264	65	0	50	115	2	125	13	140	0	0	0	0	
+30 mins.	47	306	0	353	55	0	53	108	0	96	27	123	0	0	0	0	
+45 mins.	41	223	0	264	44	0	48	92	4	131	19	154	0	0	0	0	
Total Volume	137	976	0	1113	206	0	191	397	6	458	89	553	0	0	0	0	
% App. Total	12.3	87.7	0		51.9	0	48.1		1.1	82.8	16.1		0	0	0		
PHF	.729	.797	.000	.788	.792	.000	.901	.863	.375	.874	.742	.898	.000	.000	.000	.000	

City of Compton N/S: Central Avenue E/W: Greenleaf Boulevard

Weather: Clear

File Name : CPTCEGRPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1

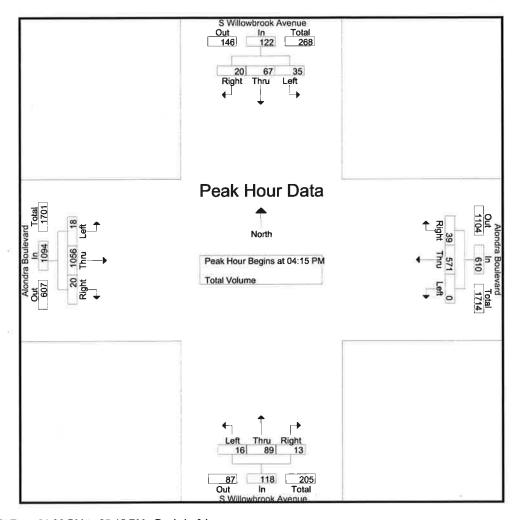

Peak Hour for	Each Approach	n Begins at:

	05:00 PM				04:30 PM				05:00 PM	1			04:00 PM			
+0 mins.	80	111	0	191	29	0	42	71	0	216	94	310	0	0	0	0
+15 mins.	87	128	0	215	21	0	44	65	2	219	76	297	0	0	0	0
+30 mins.	81	128	0	209	18	0	48	66	0	213	75	288	0	0	0	0
+45 mins.	63	140	0	203	22	0	44	66	1	218	81	300	0	0	0	0
Total Volume	311	507	0	818	90	0	178	268	3	866	326	1195	0	0	0	0
% App. Total	38	62	0		33.6	0	66.4		0.3	72.5	27.3		0	0	0	
PHF	.894	.905	.000	.951	.776	.000	.927	.944	.375	.989	.867	.964	.000	.000	.000	.000

City of Compton N/S: S Willowbrook Avenue E/W: Alondra Boulevard

Weather: Clear

File Name CPTWB1ALAM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2



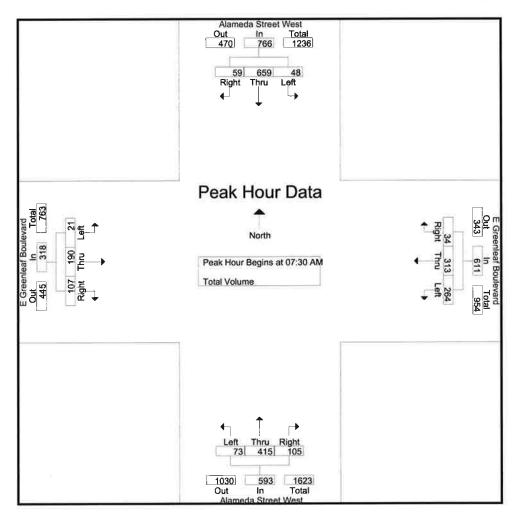
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

	07:15 AM				07:15 AM	1			07:30 AM	А			07:30 AM	1		22
+0 mins.	5	21	11	37	0	200	6	206	4	15	9	28	7	154	4	165
+15 mins.	13	26	4	43	0	242	7	249	2	19	. 8	29	8	212	7	227
+30 mins.	3	23	14	40	0	279	12	291	3	22	2	27	8	175	9	192
+45 mins.	12	32	15	59	0	192	11	203	3	23	4	30	9	134	4	147
Total Volume	33	102	44	179	0	913	36	949	12	79	23	114	32	675	24	731
% App. Total	18.4	57	24.6		0	96.2	3.8		10.5	69.3	20.2		4.4	92.3	3.3	
PHF	.635	.797	.733	.758	.000	.818	.750	.815	.750	.859	.639	.950	.889	.796	.667	.805

City of Compton N/S: S Willowbrook Avenue E/W: Alondra Boulevard Weather: Clear

File Name CPTWB1ALPM Site Code : 12816682 Start Date : 12/7/2016 Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1


	04:00 PM				04:00 PM	1			05:00 PN	1			04:45 PM	Л		
+0 mins.	12	19	9	40	0	144	17	161	2	22	2	26	5	266	6	277
+15 mins.	11	20	3	34	0	146	10	156	3	15	3	21	. 6	287	4	297
+30 mins.	5	25	6	36	0	131	12	143	3	29	6	38	9	183	5	197
+45 mins.	14	10	5	29	0	149	11	160	4	40	- 3	47	1	337	3	341
Total Volume	42	74	23	139	0	570	50	620	12	106	14	132	21	1073	18	1112
% App. Total	30.2	53.2	16.5		0	91.9	8.1		9.1	80.3	10.6		1.9	96.5	1.6	
PHF	.750	.740	.639	.869	.000	.956	.735	.963	.750	.663	.583	.702	.583	.796	.750	.815

City of Compton N/S: Alameda Street West E/W: E Greenleaf Boulevard

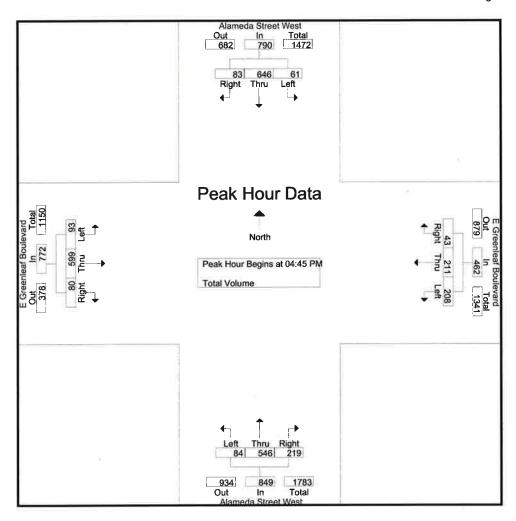
Weather: Clear

File Name: CPTWALGRAM Site Code : 12817055 Start Date : 2/2/2017

Page No : 2

Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1

Peak	Hour	for	Each	Approach	Begins at:


	07:30 AM				07:30 AM	1			07:45 AN	1			07:15 AM			
+0 mins.	18	165	11	194	72	86	4	162	19	107	33	159	3	38	36	77
+15 mins.	15	186	22	223	76	91	10	177	12	104	19	135	6	46	28	80
+30 mins.	7	159	10	176	64	72	7	143	27	115	29	171	3	50	36	89
+45 mins.	8	149	16	173	52	64	13	129	19	99	19	137	6	57	25	88
Total Volume	48	659	59	766	264	313	34	611	77	425	100	602	18	191	125	334
% App. Total	6.3	86	7.7		43.2	51.2	5.6		12.8	70.6	16.6		5.4	57.2	37.4	
PHF	.667	.886	.670	.859	.868	.860	.654	.863	.713	.924	.758	.880	.750	.838	.868	.938

City of Compton N/S: Alameda Street West E/W: E Greenleaf Boulevard

Weather: Clear

File Name : CPTWALGRPM Site Code : 12817055 Start Date : 2/2/2017

Page No : 2

Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1
Peak Hour for Each Approach Begins at:

	04:45 PM				04:30 PM	1			05:00 PM	A			04:45 PM	1		
+0 mins.	19	158	23	200	56	43	13	112	21	122	63	206	24	145	28	197
+15 mins.	20	149	22	191	51	56	10	117	17	145	68	230	23	138	14	175
+30 mins.	9	165	19	193	61	56	13	130	23	159	45	227	26	166	19	211
+45 mins.	13	174	19	206	46	52	12	110	16	141	49	206	20	150	19	189
Total Volume	61	646	83	790	214	207	48	469	77	567	225	869	93	599	80	772
% App. Total	7.7	81.8	10.5		45.6	44.1	10.2		8.9	65.2	25.9		12	77.6	10.4	
PHF	.763	.928	.902	.959	.877	.924	.923	.902	.837	.892	.827	.945	.894	.902	.714	.915

Appendix D Intersection Level of Service Analysis

Intersection LOS Analysis Sheets

County of Los Angeles
City of Compton
City of Lynwood

Intersections LOS Analysis Sheets

Existing Conditions

111 1007

255

______ Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *********************** Intersection #3 Avalon Blvd & El Segundo ************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 53 Average Delay (sec/veh): XXXXXX Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: 81 556 113 165 383 Base Vol: 76 514 93 69 110 997 PHF Volume: 77 519
Reduct Vol: 0 0
Reduced Vol: 77 519
 94
 82
 562
 114
 167
 387
 70

 0
 0
 0
 0
 0
 0

 94
 82
 562
 114
 167
 387
 70
 111 1007 0 0

FinalVolume: 77 519 94 82 562 114 167 387 70 111 1007 255 Saturation Flow Module: Lanes: 1.00 1.69 0.31 1.00 1.66 0.34 1.00 2.54 0.46 1.00 2.39 0.61

Final Sat.: 1600 2710 490 1600 2659 541 1600 4067 733 1600 3832 968

Capacity Analysis Module:

Vol/Sat: 0.05 0.19 0.19 0.05 0.21 0.21 0.10 0.10 0.10 0.07 0.26 0.26 Crit Moves: **** **** **** ******************

Thu Sep 29, 2016 15:43:39 2015 AM Peak Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #4 Avalon Blvd & Rosecrans Ave ****************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 45 Critical Vol./Cap.(X): Average Delay (sec/veh): XXXXXX Level Of Service: ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Volume Module: Base Vol: 103 470 58 160 470 99 48 392 63 113 1049 PHF Volume: 104 475 59 162 475 100 48 396 64 114 1059 161 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 104 475 59 162 475 100 48 396 64 114 1059 161 FinalVolume: 104 475 59 162 475 100 48 396 64 114 1059 161 Saturation Flow Module: Lanes: 1.00 1.78 0.22 1.00 1.65 0.35 1.00 2.58 0.42 1.00 2.61 0.39 Final Sat.: 1600 2848 352 1600 2643 557 1600 4135 665 1600 4168 632 Capacity Analysis Module:

Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #10 Central Ave & El Segundo Blvd ************ Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 100 Critical Vol./Cap.(X): Average Delay (sec/veh): xxxxxx Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ ______ Volume Module: Initial Bse: 206 666 PHF Volume: 206 666 196 126 694 211 90 404 77 172 975 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 206 666 196 126 694 211 90 404 77 172 975 86 FinalVolume: 206 666 196 126 694 211 90 404 77 172 975 86 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.27 0.27 0.08 0.28 0.28 0.06 0.13 0.05 0.11 0.33 0.33 Crit Moves: **** ****

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************** Intersection #11 Central Ave & Rosecrans Ave ****************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 72 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ____
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include< ______ Volume Module: Base Vol: 135 571 71 95 644 207 121 346 125 117 979 153 Reduced Vol: 136 577 72 96 650 209 122 349 126 118 989 FinalVolume: 136 577 72 96 650 209 122 349 126 118 989 155 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 2.20 0.80 1.00 1.73 0.27 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3526 1274 1600 2767 433 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.18 0.04 0.06 0.20 0.13 0.08 0.10 0.10 0.07 0.36 0.36 Crit Moves: **** ****

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #12 Slater Ave & 120th St ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): xxxxxx Loss Time (sec): 10 Optimal Cycle: 33 33 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 42 41 66 46 37 45 43 757 35 44 730 Initial Bse: 42 41 67 46 37 45 43 765 35 44 737 18 Saturation Flow Module: Lanes: 0.28 0.28 0.44 0.36 0.29 0.35 1.00 1.91 0.09 1.00 1.95 0.05 Final Sat.: 451 440 709 575 463 563 1600 3059 141 1600 3123 77 _____ Capacity Analysis Module: Vol/Sat: 0.03 0.09 0.09 0.03 0.08 0.08 0.03 0.25 0.25 0.03 0.24 0.24 Crit Moves: **** **** ****

2015 AM Peak Thu Sep 29, 2016 15:43:39 Wilowbrook TOD Specific Plan Run 3 - Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #17 Compton Ave & Imperial Hwy **************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 180 Level Of Service: Optimal Cycle: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0

Volume Module: 134 75 660 171 190 1489 161 Base Vol: 114 332 167 113 289 PHF Volume: 115 335 169 114 292 135 76 667 173 192 1504 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 115 335 169 114 292 135 76 667 173 192 1504 Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 0.68 0.32 1.00 2.38 0.62 1.00 1.80 0.20 Final Sat.: 1600 1600 1600 1600 1093 507 1600 3812 988 1600 2888 312 Capacity Analysis Module:

Vol/Sat: 0.07 0.21 0.11 0.07 0.27 0.27 0.05 0.17 0.17 0.12 0.52 0.52 Crit Moves: **** ****

2015 AM Peak Thu Sep 29, 2016 15:43:39 Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #18 Compton Ave & 118th St ***************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 30 Critical Vol./Cap.(X): Average Delay (sec/veh): 10 30 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 9 479 86 56 539 5 39 58 36 60 17 49

PHF Volume: 9 484 87 57 544 5 39 59 36 61 17 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 9 484 87 57 544 5 39 59 36 61 17 17 Saturation Flow Module:

Lanes: 0.03 1.67 0.30 0.19 1.79 0.02 0.29 0.44 0.27 0.48 0.13 0.39 Final Sat.: 50 2670 479 299 2875 27 469 698 433 762 216 622 _____

Capacity Analysis Module:

Vol/Sat: 0.01 0.18 0.18 0.04 0.19 0.19 0.02 0.08 0.08 0.04 0.08 0.08 Crit Moves: **** **** **** *******************

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #19 Compton Ave & 120th St ************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 38 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: _____ | |
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: 106 296 129 308 115 122 465 88 88 460 Base Vol: 85 86 130 311 116 123 470 89 89 465 Initial Bse: 107 299 PHF Adj: PHF Volume: 107 299 86 130 311 116 123 470 89 89 465 162 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 107 299 86 130 311 116 123 470 89 89 465 162 FinalVolume: 107 299 86 130 311 116 123 470 89 89 465 162 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.07 0.12 0.12 0.08 0.13 0.08 0.17 0.17 0.06 0.20 0.20 **** **** **** *** Crit Moves:

Run 3- Existing AM - 9-29-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************** Intersection #20 Compton Ave & 124th St *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.378 Optimal Cycle: 28 Average Delay (sec/veh): 28 Level Of Service: *************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - RWest Bound L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< Volume Module: 59 426 Base Vol: 1 360 25 7 5 12 3 36 40 Initial Bse: 1 364 25 60 430 7 5 12 3 36 40 109 PHF Volume: 1 364 25 60 430 7 5 12 3 36 40 109 0

FinalVolume: 1 364 25 60 430 7 5 12 3 36 40 109 Saturation Flow Module: Capacity Analysis Module:

Vol/Sat: 0.00 0.12 0.12 0.04 0.16 0.16 0.00 0.01 0.01 0.02 0.12 0.12 Crit Moves: **** **** ****

-----Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ********************* Intersection #26 Wilmington Ave & Imperial Hwy ********************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 45 Average Delay (sec/veh): Level Of Service: R ******************** Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R L - T - R **********
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 175 422 51 31 835 143 142 23 218 0 Ω Initial Bse: 177 426 52 31 843 144 143 23 220 0 0 0 PHF Adj: PHF Volume: 177 426 52 31 843 144 143 23 220 0 0 0 FinalVolume: 177 426 52 31 843 144 143 23 220 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.15 0.15 0.02 0.31 0.31 0.09 0.01 0.14 0.00 0.00 0.00

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 79 Average Delay (sec/veh): Level Of Service: D ************* Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R ______ Volume Module: Base Vol: 325 644 0 0 655 481 407 0 532 0 0 Initial Bse: 328 650 0 0 662 486 411 0 537 0 0 PHF Volume: 328 650 0 0 662 486 411 0 537 0 0 0 0 n 0 FinalVolume: 328 650 0 0 662 486 411 0 537 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.21 0.14 0.00 0.00 0.21 0.15 0.26 0.00 0.34 0.00 0.00 0.00 Crit Moves: **** ****

Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016

Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

Intersection #28 Wilmington Ave & 118th St

Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 44 Level Of Service: B

Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R
 Control:
 Protected
 Protected
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 80 Base Vol: 129 843 59 18 60 92 939 164 20 39 Initial Bse: 130 851 61 93 948 166 60 18 81 20 39 57 Saturation Flow Module: Lanes: 1.00 2.80 0.20 2.00 1.70 0.30 0.38 0.11 0.51 0.34 0.66 1.00 Final Sat.: 1600 4481 319 2880 2724 476 601 183 815 542 1058 1600 Capacity Analysis Module: Vol/Sat: 0.08 0.19 0.19 0.03 0.35 0.04 0.10 0.10 0.01 0.04 0.04 Crit Moves: **** **** **** ******************* _____

Wilowbrook TOD Specific Plan

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #29 Wilmington Ave & 120th St (West) ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 77 Average Delay (sec/veh): XXXXXX 77 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 35 713 141 111 619 143 148 109 65 308 184 314 Initial Bse: 35 720 142 112 625 317 144 149 110 66 311 186 Saturation Flow Module: Final Sat.: 1600 2672 528 1600 2123 1077 1600 1600 1600 1600 1002 598 Capacity Analysis Module: Vol/Sat: 0.02 0.27 0.27 0.07 0.29 0.29 0.09 0.09 0.07 0.04 0.31 0.31 Crit Moves: **** **** ****

Crit Moves:

Wilowbrook TOD Specific Plan

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #30 Wilmington Ave & 120th St (East) ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.424 Loss Time (sec): 10
Optimal Cycle: 30 Average Delay (sec/veh): Level Of Service: ************************ Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R _____ Control: Permitted Permitted Permitted Rights: Include Include Include Min. Green: 0 0 0 0 0 0 0 0 Permitted Include 0 0 Volume Module: 25 659 75 18 0 13 Base Vol: 26 823 7 3 Initial Bse: 26 831 7 25 666 76 18 0 3 13 3 PHF Volume: 26 831 Reduct Vol: 0 0 7 25 666 76 18 0 3 13 3 40 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 26 831 7 25 666 76 18 0 3 13 3 40 FinalVolume: 26 831 7 25 666 76 18 0 3 13 3 40 Saturation Flow Module: Final Sat.: 1600 3173 27 1600 2873 327 1600 0 1600 371 86 1143 Capacity Analysis Module: Vol/Sat: 0.02 0.26 0.26 0.02 0.23 0.23 0.01 0.00 0.00 0.01 0.04 0.04

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #31 Wilmington Ave & 124th St ************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): 10 Loss Time (sec): Optimal Cycle: 37 Level Of Service: Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R ______
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 0 0 1! 0 0 _____ Volume Module: 49 757 20 99 40 48 670 13 47 41 84 Base Vol: 20 47 41 85 100 75 Initial Bse: 49 765 48 677 13 40 PHF Volume: 49 765 40 48 677 13 20 47 41 85 100 75 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 49 765 40 48 677 13 20 47 41 85 100 75

FinalVolume: 49 765 40 48 677 13 20 47 41 85 100 75 _____ Saturation Flow Module:

_____ Capacity Analysis Module:

Vol/Sat: 0.03 0.25 0.25 0.03 0.22 0.22 0.01 0.07 0.07 0.05 0.16 0.16 Crit Moves: *******************

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******* Intersection #32 Wilmington Ave & El Segundo Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): 10 52 Loss Time (sec): Average Delay (sec/veh): Level Of Service: Optimal Cycle: **************** Approach: North Bound South Bound East Bound West Bound L - T - R L = T = R L - T - R Movement: L - T - R _____
 Control:
 Protected
 Protected
 Protected
 Prot+Permit
 Prot+Permit

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 173 744 54 123 640 135 92 393 258 56 557 89 Initial Bse: 175 751 55 124 646 136 93 397 261 57 563 90 PHF Volume: 175 751 55 124 646 136 93 397 261 57 563 90 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 Reduced Vol: 175 751 55 124 646 136 93 397 261 57 563 90 FinalVolume: 175 751 55 124 646 136 93 397 261 57 563 90 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.25 0.25 0.08 0.24 0.24 0.06 0.21 0.21 0.04 0.20 0.20

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************** Intersection #34 Willowbrook Ave W & 119th Street ************* Cycle (sec): 100 Critical Vol./Cap.(X): 10 31 Loss Time (sec): Average Delay (sec/veh): Level Of Service: Optimal Cycle: ******************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R ______
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____ Volume Module: Base Vol: 164 0 0 12 0 228 58 11 334 24 41 Initial Bse: 166 0 24 0 12 41 0 230 59 11 337 0 PHF Volume: 166 0 24 0 12 41 0 230 59 11 337 0 FinalVolume: 166 0 24 0 12 41 0 230 59 11 337 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.00 0.02 0.00 0.01 0.03 0.00 0.18 0.18 0.01 0.22 0.00 Crit Moves: **** **** ****

Run 3- Existing AM - 9-29-2016

_____ Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************

Intersection #35 Willowbrook Ave E & 119th Street *******************

Cycle (sec): 100 Critical Vol./Cap.(X): Optimal Cycle: 28 Average Delay (sec/veh): Level Of Service:

***************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R _____|

Volume Module:

Base Vol: 91 43 37 3 44 38 112 97 23 172 66 Initial Bse: 92 43 37 3 44 67 38 113 98 23 174 4 PHF Volume: 92 43 37 3 44 67 38 113 98 23 174 4 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 92 43 37 3 44 67 38 113 98 23 174 4 _____

Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.06 0.11 0.11 0.00 0.07 0.07 0.02 0.13 0.13 0.01 0.11 0.11

Run 3- Existing AM - 9-29-2016 ____ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #36 Imperial Hwy & I-105 w/b Ramps **************** Cycle (sec): 100 Critical Vol./Cap.(X): Optimal Cycle: 62 Average Delay (sec/veh): 62 Level Of Service: ****************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R _____
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Ovl
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 _____ Volume Module: 7 34 Base Vol: 534 11 50 1002 222 735 1333 136 67 Initial Bse: 539 11 137 7 34 68 51 1012 224 742 1346 1.3 PHF Volume: 539 11 137 7 34 68 51 1012 224 742 1346 13 FinalVolume: 539 11 137 7 34 68 51 1012 224 742 1346 13 0 OvlAdjVol: _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.09 0.07 0.07 0.07 0.03 0.16 0.14 0.26 0.28 0.28 OvlAdjV/S: 0.00 Crit Moves: **** ****

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #37 Willowbrook Ave W & El Segundo Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.416 Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 29 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: 45 444 60 0 565 Base Vol: 64 166 7 0 9 6 Initial Bse: 65 168 7 0 9 6 45 448 61 0 571 PHF Volume: 65 168 7 0 9 6 45 448 61 0 571
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 65 168 7 0 9 6 45 448 61 0 571 FinalVolume: 65 168 7 0 9 6 45 448 61 0 571 37 Saturation Flow Module: Lanes: 1.00 0.96 0.04 1.00 0.60 0.40 1.00 2.00 1.00 0.00 2.00 1.00 Final Sat.: 1600 1535 65 1600 960 640 1600 3200 1600 0 3200 1600 Capacity Analysis Module: Vol/Sat: 0.04 0.11 0.11 0.00 0.01 0.01 0.03 0.14 0.04 0.00 0.18 0.02 Crit Moves:

Level Of Service Computation Report

Run 3- Existing AM - 9-29-2016 ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #38 Willowbrook Ave E & El Segundo Blvd ************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.447 Loss Time (sec): 10
Optimal Cycle: 31 Average Delay (sec/veh): Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R _____|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< _____ Volume Module: 0 432 38 75 166 43 19 43 532 Base Vol: 42 96 0 436 19 43 537 Initial Bse: 42 97 38 76 168 43 38 76 168 43 0 436 19 43 537 66

PHF Volume: 42 97 FinalVolume: 42 97 38 76 168 43 0 436 19 43 537 66 _____ Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.03 0.08 0.08 0.05 0.13 0.13 0.00 0.14 0.01 0.03 0.19 0.19 Crit Moves: **************

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #39 Mona Blvd & Imperial Hwy ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 54 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L-T-R Movement: _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ Volume Module: 27 102 37 928 Base Vol: 139 49 155 92 176 189 1782 27 103 93 37 937 178 191 1800 Initial Bse: 140 49 157 PHF Adj: PHF Volume: 140 49 157 27 103 93 37 937 178 191 1800 21 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 140 49 157 27 103 93 37 937 178 191 1800 21 FinalVolume: 140 49 157 27 103 93 37 937 178 191 1800 21 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.09 0.12 0.10 0.02 0.14 0.14 0.02 0.23 0.23 0.12 0.38 0.38 Crit Moves: **** **** **** **************

	→	*	•	†	Ţ	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	4
Lane Configurations	W			414	ተኈ		
Volume (vph)	85	41	41	191	210	128	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95	
Frt	0.956				0.943		
FIt Protected	0.968	77.75		0.991			
Satd. Flow (prot)	1724	0	0	3507	3337	0	
FIt Permitted	0.968			0.991			
Satd. Flow (perm)	1724	0	0	3507	3337	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	266			283	255		
Travel Time (s)	6.0			6.4	5.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	92	45	45	208	228	139	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	137	0	0	253	367	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Stop			Free	Free		
Intersection Summary	77.80		W 18	6.3		E 4750	BU
71	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizat	tion 33.6%			iC	CU Level of	of Service	A
Analysis Period (min) 15							

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection Int Delay, s/veh	2.9							
int Delay, 3/Ven								
Movement	EBL		EBR	6 L C	NBL	NBT	SBT*	SBR
Vol, veh/h	85		41		41	191	210	128
Conflicting Peds, #/hr	0		0		0	0	0	0
Sign Control	Stop		Stop		Free	Free	Free	Free
RT Channelized	-		None		8.€8	None	553	None
Storage Length	0				(*)			-
Veh in Median Storage, #	0		8		(* €	0	0	
Grade, %	0		·			0	0	
Peak Hour Factor	92		92		92	92	92	92
Heavy Vehicles, %	2		2		2	2	2	2
Mvmt Flow	92		45		45	208	228	139
Major/Minor	Minor2	100	13/1		Major1		Major2	
Conflicting Flow All	491		184		367	0		0
Stage 1	298		×		000	(*)	341	
Stage 2	193		. Th. #1		1(4)			-
Critical Hdwy	6.84		6.94		4.14	-	res	- 3
Critical Hdwy Stg 1	5.84				(4)		The same and the	1
Critical Hdwy Stg 2	5.84		-				3	-
Follow-up Hdwy	3.52		3.32		2.22			15 6 3
Pot Cap-1 Maneuver	507		827		1188	(#X)	, - :	9
Stage 1	727				100			
Stage 2	821		-		1981	(4)	(#)	-
Platoon blocked, %								
Mov Cap-1 Maneuver	485		827		1188	-	120	34
Mov Cap-2 Maneuver	485		C 1 8			3		
Stage 1	727				1,100		,e.	
Stage 2	786				(2)			
Approach	EB	, 100 VE	off to	75 Sept.	NB		SB	
HCM Control Delay, s	13.5				1.5		0	
HCM LOS	В							
Minor Lang/Major Marsh	NO	MOT	COLed	COT	epp		STRUCK PROPERTY.	
Minor Lane/Major Mymt	NBL	NBT	EBLn1	SBT	SBR			
Capacity (veh/h)	1188	•	560	•				
HCM Lane V/C Ratio	0.038	-	0.245		-			
HCM Control Delay (s)	8.1	0.1	13.5	•	S#3			
HCM Lane LOS	A	Α	В	* .	3.61			
HCM 95th %tile Q(veh)	0.1	-	1	-	300			

Synchro 8 Report Page 2 9/14/2016 Baseline

Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #41 Mona Blvd & El Segundo Blvd ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 34 10 34 Level Of Service: ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 39 109 71 89 130 48 55 497 33 48 538 41 Initial Bse: 39 110 72 90 131 48 56 502 33 48 543 41 _____ Saturation Flow Module: Lanes: 0.18 0.50 0.32 0.41 0.59 1.00 1.00 1.88 0.12 1.00 1.86 0.14 Final Sat.: 285 796 519 650 950 1600 1600 3001 199 1600 2973 227 _____ Capacity Analysis Module:

Vol/Sat: 0.02 0.14 0.14 0.06 0.14 0.03 0.03 0.17 0.17 0.03 0.18 0.18 Crit Moves: **** **** **** ****************** Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

Intersection #43 Alameda St & 103rd St

************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 65 Average Delay (sec/veh):

Level Of Service: *************************

Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____| Volume Module: 178 809 Base Vol: 0 0 948 191 194 0 152 0 0 Initial Bse: 180 817 0 957 196 0 154 0 0 0 0 193 PHF Volume: 180 817 0 0 957 193 196 0 154 0 0 FinalVolume: 180 817 0 0 957 193 196 0 154 0 0 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.11 0.26 0.00 0.00 0.36 0.36 0.12 0.00 0.22 0.00 0.00 0.00 Crit Moves: ****

Wilowbrook TOD Specific Plan
Run 3- Existing AM - 9-29-2016

Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

Intersection #45 Alameda St & Imperial Hwy

Cycle (sec): 100 Critical Vol./Cap.(X): 0.772
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 61 Level Of Service: C

 Movement:
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 L - T - R
 <t

Volume Module:

Capacity Analysis Module:

Vol/Sat: 0.07 0.23 0.23 0.05 0.20 0.34 0.13 0.15 0.15 0.05 0.26 0.02

OvlAdjV/S: 0.22

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************** Intersection #46 Alameda St & El Segundo Blvd ************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 60 Average Delay (sec/veh): Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Volume Module: 78 759 105 417 Base Vol: 153 632 50 109 153 40 361 Initial Bse: 155 638 79 767 110 106 421 51 155 40 365 PHF Volume: 155 638 51 79 767 110 106 421 155 40 365 104 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 155 638 51 79 767 110 106 421 155 40 365 104 FinalVolume: 155 638 51 79 767 110 106 421 155 40 365 104 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.22 0.22 0.05 0.27 0.27 0.07 0.13 0.10 0.03 0.23 0.07 Crit Moves: **** **** ****

Wilowbrook TOD Specific Plan Existing AM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************** Intersection #52 El Segundo Blvd & San Pedro St **************** Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 39 Level Of Service: Critical Vol./Cap.(X): *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Volume Module: Base Vol: 77 232 34 95 245 153 96 518 41 49 1186 Initial Bse: 77 232 34 95 245 153 96 518 41 49 1186 46 PHF Volume: 77 232 34 95 245 153 96 518 41 49 1186 46 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 77 232 34 95 245 153 96 518 41 49 1186 46 FinalVolume: 77 232 34 95 245 153 96 518 41 49 1186 46 Saturation Flow Module:

 Sat/Lane:
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600 _____ Capacity Analysis Module: Vol/Sat: 0.05 0.08 0.08 0.06 0.12 0.12 0.06 0.12 0.12 0.03 0.26 0.26 Crit Moves: **** ****

Thu Sep 29, 2016 15:43:39 2015 AM Peak Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #13 Slater Ave & El Segundo Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 48 Average Delay (sec/veh): XXXXXX Level Of Service: В **************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R Volume Module: Base Vol: 0 0 0 34 0 177 62 869 0 0 1370 11 Initial Bse: 0 0 0 34 0 179 63 878 0 0 1384 11

**** ****

Crit Moves:

Crit Moves: ****

Wilowbrook TOD Specific Plan

Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #21 Compton Ave & El Segundo Blvd ************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement:
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: 148 594 172 102 27 136 69 276 93 12 927 Base Vol: Initial Bse: 174 103 137 70 279 149 600 94 12 936 27 112 PHF Adj: PHF Volume: 174 103 27 137 70 279 149 600 94 12 936 112 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 174 103 27 137 70 279 149 600 94 12 936 112 FinalVolume: 174 103 27 137 70 279 149 600 94 12 936 112 _____ Saturation Flow Module: Capacity Analysis Module:

Vol/Sat: 0.11 0.04 0.04 0.09 0.04 0.17 0.09 0.22 0.22 0.01 0.33 0.33

**** **** ****

Capacity Analysis Module:

Crit Moves:

Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #33 Wilmington Ave & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 81 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: -----|----|-----|
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: 95 614 119 138 813 99 462 Base Vol: 189 103 124 900 139 821 191 100 467 104 125 909 Initial Bse: 96 620 120 PHF Volume: 96 620 120 139 821 191 100 467 104 125 909 Reduct Vol: Reduced Vol: 96 620 120 139 821 191 100 467 104 125 909 99 MLF Adi: FinalVolume: 96 620 120 139 821 191 100 467 104 125 909 99 ______ Saturation Flow Module:

Vol/Sat: 0.06 0.23 0.23 0.09 0.32 0.32 0.06 0.15 0.07 0.08 0.31 0.31

Wilowbrook TOD Specific Plan Run 3- Existing AM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #42 Willowbrook Ave & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 49 Level Of Service: B ******************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: _____|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t 4.0 _____ Volume Module: 6 906 18 98 19 145 83 35 29 35 1157 Base Vol: 19 146 84 35 6 915 29 35 1169 Initial Bse: 18 99 PHF Adj: PHF Volume: 18 99 19 146 84 35 6 915 29 35 1169 149 FinalVolume: 18 99 19 146 84 35 6 915 29 35 1169 149 _____| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.09 0.09 0.09 0.17 0.17 0.00 0.30 0.30 0.02 0.41 0.41

Wilowbrook TOD Specific Plan Existing AM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************* Intersection #55 El Segundo Blvd & Santa Fe Ave ************************ Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 39 Average Delay (sec/veh): Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t _____ Volume Module: 27 16 451 64 62 115 163 46 114 0 0 0 0 0 0 0 0 0 0 PHF Volume: 143 356 Reduct Vol: 0 0 Ω Reduced Vol: 143 356 27 16 451 64 62 115 163 46 114 33 FinalVolume: 143 356 27 16 451 64 62 115 163 46 114 33 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.09 0.12 0.12 0.01 0.16 0.16 0.04 0.21 0.21 0.03 0.12 0.12 Crit Moves: **** *** *** *************************

Wilowbrook TOD Specific Plan Existing AM - 2-9-17 Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #56 Alameda St & Rosecrans Ave ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 41 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include< Volume Module: Base Vol: 118 606 0 0 883 115 104 0 193 0 0 Initial Bse: 118 606 0 0 883 115 104 0 193 0 0 PHF Volume: 118 606 0 0 883 115 104 0 193 0 0 0 Reduct Vol: 0 0 0 0 883 115 104 0 193 0 0 0 Reduced Vol: 118 606 0 0 883 115 104 0 193 0 0 FinalVolume: 118 606 0 0 883 115 104 0 193 0 0 0 Saturation Flow Module:

 Sat/Lane:
 1600 1600
 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 Capacity Analysis Module: Vol/Sat: 0.07 0.19 0.00 0.00 0.31 0.31 0.07 0.00 0.12 0.00 0.00 0.00 *** Crit Moves: ****

Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #57 Central Ave & W Compton Bvld **************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 58 Average Delay (sec/veh): Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 182 573 83 138 655 148 104 345 138 164 758 Initial Bse: 182 573 83 138 655 148 104 345 138 164 758 PHF Volume: 182 573 83 138 655 148 104 345 138 164 758 120 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 182 573 83 138 655 148 104 345 138 164 758 120 FinalVolume: 182 573 83 138 655 148 104 345 138 164 758 120 ______ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.21 0.20 0.09 0.20 0.09 0.07 0.11 0.09 0.10 0.27 0.27 Crit Moves: **** ****

Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************* Intersection #58 Wilmington Ave & W Compton Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 50 Average Delay (sec/veh): Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 86 460 169 179 718 128 70 515 127 133 682 169 179 718 128 70 515 127 133 682 Initial Bse: 86 460 PHF Volume: 86 460 169 179 718 128 70 515 127 133 682 139 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 86 460 169 179 718 128 70 515 127 133 682 139 FinalVolume: 86 460 169 179 718 128 70 515 127 133 682 139 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.14 0.11 0.11 0.26 0.26 0.04 0.20 0.20 0.08 0.21 0.09 Crit Moves: **** **** ****

Wilowbrook TOD Specific Plan Existing AM - 2-9-17

______ Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************* Intersection #59 Willowbrook Ave & W Compton Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 35 Average Delay (sec/veh): Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

********** | *********** | | -------| Volume Module: Base Vol: 24 117 6 0 179 67 24 627 63 0 764 29 Initial Bse: 24 117 6 0 179 67 24 627 63 0 764 29 FinalVolume: 24 117 6 0 179 67 24 627 63 0 764 29

Saturation Flow Module:

 Sat/Lane:
 1600 1600
 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600

Capacity Analysis Module:

Vol/Sat: 0.02 0.09 0.09 0.00 0.15 0.15 0.02 0.14 0.14 0.00 0.25 0.25 Crit Moves: **** ****

Crit Moves: ****

Wilowbrook TOD Specific Plan

Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #60 Central Ave & Alondra Blvd *************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 58 Level Of Service: *************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R L - T - R West Bound L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ Volume Module: Base Vol: 142 524 69 173 795 130 75 327 120 85 735 204 Initial Bse: 142 524 69 173 795 130 75 327 120 85 735 204 PHF Volume: 142 524 69 173 795 130 75 327 120 85 735 204 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 142 524 69 173 795 130 75 327 120 85 735 204 173 795 130 75 327 120 FinalVolume: 142 524 69 85 735 204 _____ Saturation Flow Module: Lanes: 1.00 1.77 0.23 1.00 1.72 0.28 1.00 1.46 0.54 1.00 2.00 1.00 Final Sat.: 1600 2828 372 1600 2750 450 1600 2341 859 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.09 0.19 0.19 0.11 0.29 0.29 0.05 0.14 0.14 0.05 0.23 0.13

2015 AM Peak Thu Mar 2, 2017 15:28:28 Wilowbrook TOD Specific Plan Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************************* Intersection #61 Wilmington Ave & Alondra Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 73 Average Delay (sec/veh): XXXXXX Level Of Service: ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 104 444 142 170 833 87 100 498 105 137 850 142 170 833 87 100 498 105 137 850 Initial Bse: 104 444 PHF Volume: 104 444 142 170 833 87 100 498 105 137 850 142 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 104 444 142 170 833 87 100 498 105 137 850 142 FinalVolume: 104 444 142 170 833 87 100 498 105 137 850 142 Saturation Flow Module:

Vol/Sat: 0.07 0.18 0.18 0.11 0.29 0.29 0.06 0.16 0.07 0.09 0.31 0.31

Capacity Analysis Module:

Crit Moves: ****

2015 AM Feak ING Mai 2, 2017 13.20.20 Fage 04-1

Crit Moves: ****

Wilowbrook TOD Specific Plan Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************** Intersection #62 Wilmington Ave & Greenleaf Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10
Optimal Cycle: 66 ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 35 471 114 104 1031 21 38 192 86 276 361 Initial Bse: 35 471 114 104 1031 21 38 192 86 276 361 74 PHF Volume: 35 471 114 104 1031 21 38 192 86 276 361 74 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 35 471 114 104 1031 21 38 192 86 276 361 FinalVolume: 35 471 114 104 1031 21 38 192 86 276 361 74 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.07 0.07 0.33 0.33 0.02 0.17 0.17 0.17 0.27 0.27

Existing AM - 2-9-17													
						Computa					,		
1CU 1									e Alter				
							****	****		***		*****	
Intersection #63 Wilmington Ave & Walnut St													

Cycle (sec): 100 Critical Vol./Cap.(X): 0.595 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx													
										A			
Optimal Cycle: 40 Level Of Service: A													
Approach: North Bound South Bound East Bound West Bound													
Movement:		- T				- R			- R		· T		
	_	_		_	_		_	_					
Control: Protected Protected Permitted Permitted											50		
Rights:								Inclu	ıde		Include		
Min. Green:	Ö	0	0	0	0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lanes:		2		1 (2	0 1	1 () 1	0 1	1 (1	1 0	
								 -					
Volume Module	≘:												
Base Vol:	81	530	41	33	1228	87	26	60	58	24	95	46	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	81	530	41		1228	87	26	60	58	24	95	46	
User Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Adj:	1.00		1.00		1.00	1.00	- 50	1.00	1.00	1.00		1.00	
PHF Volume:	81	530	41		1228	87	26	60	58	24	95	46	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	81	530	41		1228	87	26	60	58	24	95	46	
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00	
MLF Adj:	1.00		1.00	1.00		1.00		1.00	1.00	1.00		1.00	
FinalVolume:	81		41		1228	87	26	60	58	24	95	46	
Saturation Flow Module:													
				7.600	7.000	7.600	1.000	1.000	1.000	1.000	1.000	1.000	
Sat/Lane:		1600	1600		1600	1600 1.00		1600	1600 1.00	1.00	1600	1600 1.00	
Adjustment:	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00		0.65	
Lanes: Final Sat.:	1.00		1.00 1600		3200	1600		1600	1600	1600		1044	
									1600	1	2130	1044	
Capacity Analysis Module:													
Vol/Sat:	_		0.03	0.02	0.38	0.05	0.02	0.04	0.04	0.02	0.04	0.04	
Crit Moves:	****	J. 1	0.05	0.02	****	0.05	****			3.00	****		
*******	****	****	*****	****	****	*****	*****	****	*****	*****	****	*****	

Wilowbrook TOD Specific Plan Existing AM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #64 Central Ave & Greenleaf Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 48 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Volume Module: Base Vol: 0 467 76 137 976 0 0 0 0 206 0 191 PHF Volume: 0 467 76 137 976 0 0 0 0 206 0 191 Reduct Vol: 0 0 467 76 137 976 0 0 0 0 206 0 191 FinalVolume: 0 467 76 137 976 0 0 0 206 0 191 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.15 0.05 0.09 0.31 0.00 0.00 0.00 0.00 0.13 0.00 0.12 **** Crit Moves:

Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #65 Willowbrook Ave & Alondra Blvd ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 35 Average Delay (sec/veh): Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 11 68 29 33 102 44 26 666 24 0 913 Initial Bse: 11 68 29 33 102 44 26 666 24 0 913 36 PHF Volume: 11 68 29 33 102 44 26 666 24 0 913 36 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 Reduced Vol: 11 68 29 33 102 44 26 666 24 0 913 36 FinalVolume: 11 68 29 33 102 44 26 666 24 0 913 36 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.07 0.07 0.02 0.11 0.11 0.02 0.21 0.02 0.00 0.30 0.30 Crit Moves: **** ****

Wilowbrook TOD Specific Plan Existing AM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #66 Alameda St. West & Greenleaf Blvd. ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.628 Loss Time (sec): 10
Optimal Cycle: 42 Average Delay (sec/veh): xxxxxx Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Include

Min. Green	1: 0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1	0 1	1 0	1 (0 1	1 0	1 (0 1	1 0	1 0	1	0 1
				:								
Volume Mod	lule:											
Base Vol:	73	415	105	48	659	59	21	190	107	264	313	34
Growth Adj	: 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bs	se: 73	415	105	48	659	59	21	190	107	264	313	34
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume	2: 73	415	105	48	659	59	21	190	107	264	313	34
Reduct Vol	.: 0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vo	1: 73	415	105	48	659	59	21	190	107	264	313	34
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolum	ne: 73	415	105	48	659	59	21	190	107	264	313	34
0-2		- J 7 -										

Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.05 0.16 0.16 0.03 0.22 0.22 0.01 0.09 0.09 0.17 0.20 0.02 Crit Moves: **** **** **** ***

Run 3- Existing AM - 9-29-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #44 Alameda St & Abbott Rd **************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 45 Level Of Service: Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: _____
 Control:
 Permitted
 Permitted
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1< Volume Module: 0 745 218 149 931 Base Vol: 1 2 2 2 465 1 220 150 940 1 2 2 2 470 1 Initial Bse: 0 752 PHF Volume: 0 752 220 150 940 1 2 2 2 470 1 254 FinalVolume: 0 752 220 150 940 1 2 2 2 470 1 254 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.00 0.30 0.30 0.09 0.29 0.29 0.00 0.00 0.00 0.15 0.15 0.16 Crit Moves: **** ****

Existing AM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #53 Imperial Hway & Fernwood Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 54 Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Include System Sys Volume Module: Base Vol: 60 40 3 159 45 17 23 665 45 2 1289 Initial Bse: 60 40 3 159 45 17 23 665 45 2 1289 124 PHF Volume: 60 40 3 159 45 17 23 665 45 2 1289 124 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 60 40 3 159 45 17 23 665 45 2 1289 124 FinalVolume: 60 40 3 159 45 17 23 665 45 2 1289 124 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.06 0.06 0.10 0.14 0.14 0.01 0.22 0.22 0.00 0.44 0.44 Crit Moves: **** ****

Loss Time (s	ec):	10			Averag	e Dela	y (se	ec/veh)	:	XXX	xxx
Loss Time (s Optimal Cycl	e:	55			Level	Of Ser	vice:				C
******	*****	*****	****	***	*****	*****	****	****	****	****	*****
Approach:	North :	Bound	Sout	th Bo	ound	Ea	st Bo	ound	We	est Bo	ound
Movement:											
		-									
Control:	Perm	itted	Pe	ermit	ted	P	ermit	ted	1	Permi	tted
Rights:	Inc	lude		Incl	ıde		Inclu	ıde		Incl	ude
Min. Green: Y+R: Lanes:	0	0 0	0	0	0	0	0	0	0	0	0
Y+R:	4.0 4.	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 0 1	1 0	1 0	1	1 0	1 0	1	1 0	1 (1	1 0
			1								
Volume Module:											
Base Vol:	15 24	134	106	367	271	98	736	3	114	1141	37
Growth Adj:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	15 24	134	106	367	271	98	736	3	114	1141	37
User Adj:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:			106	367	271	98	736	3	114	1141	37
Reduct Vol:			0	_	0	0		0			
Reduced Vol:	15 24	134	106	367	271	98	736	3	114	1141	37
PCE Adj:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:			106				736	3			37
Saturation F	low Modul	e:							551		
Sat/Lane:	1600 160	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00 1.0	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00 1.2	3 0.72	1.00	1.15	0.85	1.00	1.99	0.01	1.00	1.94	0.06
Final Sat.:	1600 205	3 1147	1600	1841	1359	1600	3187	13	1600	3099	101
								[
Capacity Ana	lysis Mod	ıle:	05%			101			10		
Vol/Sat:	0.01 0.1	2 0.12	0.07	0.20	0.20	0.06	0.23	0.23	0.07	0.37	0.37
m 1. se	also also also also			to the death		all alle de de					

Crit Moves: ****

Thu Sep 29, 2016 16:36:44 Page 5-1 Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************** Intersection #3 Avalon Blvd & El Segundo

Cycle (sec): 100 Critical Vol./Cap.(X): 0.844 Average Delay (sec/veh): xxxxxx Loss Time (sec): 10
Optimal Cycle: 78 Level Of Service: ****************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 121 704 170 148 531 93 134 1370 104 102 461 112 Initial Bse: 122 711 172 149 536 94 135 1384 105 103 466 113 Saturation Flow Module: Lanes: 1.00 1.61 0.39 1.00 1.70 0.30 1.00 2.79 0.21 1.00 2.41 0.59 Final Sat.: 1600 2578 622 1600 2723 477 1600 4461 339 1600 3862 938 Capacity Analysis Module: Vol/Sat: 0.08 0.28 0.28 0.09 0.20 0.20 0.08 0.31 0.31 0.06 0.12 0.12 Crit Moves: **** **** **** ******************** ______ Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #4 Avalon Blvd & Rosecrans Ave ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 67 Average Delay (sec/veh): 67 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R *********

 Control:
 Prot+Permit
 Prot+Permit
 Prot+Permit
 Prot+Permit
 Prot+Permit
 Prot+Permit

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 < Volume Module: Base Vol: 132 625 158 217 484 124 1148 86 469 119 59 112

Initial Bse: 133 631 160 219 489 60 125 1159 113 87 474 120 Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.08 0.25 0.25 0.14 0.17 0.17 0.08 0.27 0.27 0.05 0.12 0.12 Crit Moves: **** **** ****

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************** Intersection #10 Central Ave & El Segundo Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Level Of Service: Optimal Cycle: ****************** South Bound East Bound Approach: North Bound West Bound L-T-R L-T-R L-T-R L - T - R _____ _____ Volume Module: 178 655 153 195 1238 145 86 483 Base Vol: 82 634 213 180 662 155 197 1250 146 87 488 80 Initial Bse: 83 640 215 PHF Adj: PHF Volume: 83 640 215 180 662 155 197 1250 146 87 488 80 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 83 640 215 180 662 155 197 1250 146 87 488 80 FinalVolume: 83 640 215 180 662 155 197 1250 146 87 488 80 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.27 0.27 0.11 0.26 0.26 0.12 0.39 0.09 0.05 0.18 0.18 Crit Moves: **** **** ****

Crit Moves:

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 __________ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #11 Central Ave & Rosecrans Ave ************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 59 Average Delay (sec/veh): Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R ______|____|
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: 138 567 111 181 706 107 148 1164 177 109 466 Base Vol: 183 713 110 471 Initial Bse: 139 573 112 108 149 1176 179 115 PHF Volume: 139 573 112 183 713 108 149 1176 179 110 471 115 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 139 573 112 183 713 108 149 1176 179 110 471 115 MLF Adi: FinalVolume: 139 573 112 183 713 108 149 1176 179 110 471 115 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.09 0.18 0.07 0.11 0.22 0.07 0.09 0.28 0.28 0.07 0.18 0.18

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #12 Slater Ave & 120th St *************** Cycle (sec): 100 Critical Vol./Cap.(X): Optimal Cycle: 27 Average Delay (sec/veh): 27 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: 15 7 9 397 21 23 680 Base Vol: 31 12 6 16 31 12 6 16 9 401 21 23 687 Initial Bse: 15 7

PHF Volume: 15 7 31 12 6 16 9 401 21 23 687 19 FinalVolume: 15 7 31 12 6 16 9 401 21 23 687 19 Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.01 0.03 0.03 0.01 0.02 0.02 0.01 0.13 0.13 0.01 0.22 0.22 Crit Moves: **** **** ****

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #17 Compton Ave & Imperial Hwy ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Level Of Service: C Optimal Cycle: ***************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t _____ Volume Module: Base Vol: 98 304 214 257 78 1434 63 735 167 101 86 Initial Bse: 99 307 216 260 102 79 1448 87 64 742 234 169 PHF Volume: 99 307 169 216 260 102 79 1448 87 64 742 234 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 99 307 169 216 260 102 79 1448 87 64 742 234 FinalVolume: 99 307 169 216 260 102 79 1448 87 64 742 234 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.19 0.11 0.14 0.23 0.23 0.05 0.32 0.32 0.04 0.31 0.31 Crit Moves: **** **** ****

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #18 Compton Ave & 118th St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 27 Average Delay (sec/veh): Level Of Service: ****************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< Volume Module: Base Vol: 7 477 44 311 7 9 7 49 13 44 14 Initial Bse: 7 482 49 44 314 7 9 13 7 44 14 46

PHF Volume: 7 482 49 44 314 7 9 13 7 44 14 46 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 7 482 49 44 314 7 9 13 7 44 14 46 FinalVolume: 7 482 49 44 314 7 9 13 7 44 14 46 Saturation Flow Module:

______ Capacity Analysis Module:

Vol/Sat: 0.00 0.17 0.17 0.03 0.11 0.11 0.01 0.02 0.02 0.03 0.07 0.07 Crit Moves: **** **** ****

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Run 3- Existing PM - 9-29-2016										
Level Of Service Computation Report										
ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)										

Intersection #19 Compton Ave & 120th St		*****								
Cycle (sec): 100 Critical Vol./Cap.(X): 0.448										
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx										
Optimal Cycle: 31	Level Of Service:	A								

Approach: North Bound South F		West Bound								
Movement: L - T - R L - T		- T - R								
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include										
Rights: Include Incl Min. Green: 0 0 0 0		Include 0 0 0								
Y+R: 4.0 4.0 4.0 4.0 4.0										
		0 1 1 0								
Lanes: 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0										
Volume Module:										
Base Vol: 65 241 70 78 281	69 45 273 89 1	36 416 111								
Growth Adj: 1.01 1.01 1.01 1.01 1.01	1.01 1.01 1.01 1.01 1.	01 1.01 1.01								
Initial Bse: 66 243 71 79 284	90 45 276 90 1	37 420 112								
User Adj: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.	00 1.00 1.00								
PHF Adj: 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.	00 1.00 1.00								
PHF Volume: 66 243 71 79 284		37 420 112								
Reduct Vol: 0 0 0 0		0 0 0								
Reduced Vol: 66 243 71 79 284		37 420 112								
PCE Adj: 1.00 1.00 1.00 1.00 1.00		00 1.00 1.00								
MLF Adj: 1.00 1.00 1.00 1.00 1.00		00 1.00 1.00								
FinalVolume: 66 243 71 79 284		37 420 112								
Saturation Flow Module:										
Sat/Lane: 1600 1600 1600 1600 1600	1600 1600 1600 1600 16	00 1600 1600								
Adjustment: 1.00 1.00 1.00 1.00 1.00		00 1.00 1.00								
Lanes: 1.00 1.55 0.45 1.00 1.61		00 1.58 0.42								
Final Sat.: 1600 2480 720 1600 2569		00 2526 674								
Capacity Analysis Module:										
Vol/Sat: 0.04 0.10 0.10 0.05 0.11	0.11 0.03 0.11 0.11 0.	09 0.17 0.17								
Crit Moves: **** ****	***									

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #20 Compton Ave & 124th St ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 25 Average Delay (sec/veh): Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: ______ Volume Module: 0 349 Base Vol: 25 46 302 1 4 3 17 3 46 305 4 1 4 3 17 3 Initial Bse: 0 352 25 PHF Volume: 0 352 25 46 305 4 1 4 3 17 3 42 FinalVolume: 0 352 25 46 305 4 1 4 3 17 3 42 _____ Saturation Flow Module: Capacity Analysis Module: Crit Moves:

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #26 Wilmington Ave & Imperial Hwy *************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 45 Average Delay (sec/veh): Level Of Service: P ***************** Approach: North Bound South Bound East Bound Movement: L-T-R L-T-R L-T-RWest Bound L - T - R _____ _____ Volume Module: 70 Base Vol: 159 451 47 30 618 137 15 375 0 0 Initial Bse: 161 456 47 30 624 71 138 15 379 0 0 PHF Adj: FinalVolume: 161 456 47 30 624 71 138 15 379 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.16 0.16 0.02 0.22 0.22 0.09 0.01 0.24 0.00 0.00

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 48 Average Delay (sec/veh): XXXXXX Level Of Service: В ****************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R Volume Module: 179 Base Vol: 326 902 0 0 529 421 328 0 0 Initial Bse: 329 911 0 0 534 425 331 0 181 0 0 PHF Volume: 329 911 0 0 534 425 331 0 181 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.21 0.19 0.00 0.00 0.17 0.13 0.21 0.00 0.11 0.00 0.00 0.00 Crit Moves: **** ****

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #28 Wilmington Ave & 118th St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.527 Loss Time (sec): 10
Optimal Cycle: 35 Average Delay (sec/veh): XXXXXX 35 Level Of Service: ********************* Approach: North Bound South Bound East Bound Movement: L - T - R L - T - RWest Bound L - T - R
 Control:
 Protected
 Protected
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Base Vol: 28 992 108 50 50 84 132 547 32 37 44 Initial Bse: 28 1002 85 133 552 32 109 51 51 37 44 138 Saturation Flow Module: Final Sat.: 1600 4425 375 2880 3023 177 831 385 385 731 869 1600 Capacity Analysis Module: Vol/Sat: 0.02 0.23 0.23 0.05 0.18 0.18 0.07 0.13 0.13 0.02 0.05 0.09 Crit Moves: **** ****

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #29 Wilmington Ave & 120th St (West) ************* Cycle (sec): 100 Critical Vol./Cap.(X): 10 Loss Time (sec): Average Delay (sec/veh): Level Of Service: Optimal Cycle: 60 ***************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: Base Vol: 74 718 79 485 295 298 184 91 146 136 80 45 Initial Bse: 75 725 81 80 490 45 298 301 186 92 147 137 PHF Volume: 75 725 81 80 490 45 298 301 186 92 147 137 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 75 725 81 80 490 45 298 301 186 92 147 137 FinalVolume: 75 725 81 80 490 45 298 301 186 92 147 137 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.25 0.25 0.05 0.17 0.17 0.19 0.19 0.12 0.06 0.18 0.18 Crit Moves: **** **** **** ****

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report

ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx Optimal Cycle: 30 Level Of Service: A

*************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 8 807 17 35 707 16 53 2 14 2 0 Initial Bse: 8 815 17 35 714 16 54 2 14 2 0 15 Saturation Flow Module: Lanes: 1.00 1.96 0.04 1.00 1.96 0.04 0.96 0.04 1.00 0.12 0.00 0.88 Final Sat.: 1600 3134 66 1600 3129 71 1542 58 1600 188 0 1412 Capacity Analysis Module: Vol/Sat: 0.01 0.26 0.26 0.02 0.23 0.23 0.03 0.03 0.01 0.00 0.00 0.01 Crit Moves: **** ****

Page 33-1

2015 PM Peak

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *********** Intersection #31 Wilmington Ave & 124th St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 33 Average Delay (sec/veh): Level Of Service: ************************ Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ Volume Module: Base Vol: 21 757 46 64 615 18 13 43 20 35 47 Initial Bse: 21 765 46 65 621 18 13 43 20 35 47 49

FinalVolume: 21 765 46 65 621 18 13 43 20 35 47 Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.01 0.25 0.25 0.04 0.20 0.20 0.01 0.05 0.05 0.02 0.08 0.08 Crit Moves: **** ****

Wilowbrook TOD Specific Plan
Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report

Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 65 Level Of Service: C

Approach: North Bound South Bound East Bound L-T-R L-T-R L-T-R Control: Protected Protected Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 101 480 182 927 326 44 296 Base Vol: 144 579 83 86 184 936 Initial Bse: 145 585 84 102 485 87 329 44 299 PHF Volume: 145 585 Reduct Vol: 0 0 84 102 485 87 184 936 329 44 299 69 0 0 0 0 0 0 0 0 0 Reduced Vol: 145 585 84 102 485 87 184 936 329 44 299 69 MLF Adi: FinalVolume: 145 585 84 102 485 87 184 936 329 44 299 69 Saturation Flow Module:

Lanes: 1.00 1.75 0.25 1.00 1.70 0.30 1.00 1.48 0.52 1.00 1.63 0.37 Final Sat.: 1600 2799 401 1600 2714 486 1600 2367 833 1600 2602 598

Capacity Analysis Module:

Vol/Sat: 0.09 0.21 0.21 0.06 0.18 0.18 0.11 0.40 0.40 0.03 0.11 0.11 Crit Moves: **** **** ****

-----Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 -----Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *****************

***************** Cycle (sec): 100 Critical Vol./Cap.(X): Optimal Cycle: 30 Average Delay (sec/veh):

Intersection #34 Willowbrook Ave W & 119th Street

Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L ~ T - R ______
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 50 0 17 0 28 56 0 323 93 11 163 Initial Bse: 51 0 17 0 28 57 0 326 94 11 165 0 PHF Volume: 51 0 17 0 28 57 0 326 94 11 165 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 51 0 17 0 28 57 0 326 94 11 165 0 FinalVolume: 51 0 17 0 28 57 0 326 94 11 165 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.00 0.01 0.00 0.02 0.04 0.00 0.26 0.26 0.01 0.11 0.00 Crit Moves: **** **** ****

_____ Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #35 Willowbrook Ave E & 119th Street ********* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 27 Average Delay (sec/veh): Level Of Service: ****************** Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Base Vol: 50 14 27 7 12 42 70 201 90 9 85 Initial Bse: 51 14 27 7 12 42 71 203 91 9 86 5 PHF Adi: PHF Volume: 51 14 27 7 12 42 71 203 91 9 86 5 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 51 14 27 7 12 42 71 203 91 9 86 0 5 FinalVolume: 51 14 27 7 12 42 71 203 91 9 86 5 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.06 0.06 0.00 0.04 0.04 0.04 0.18 0.18 0.01 0.06 0.06 Crit Moves: **** **** ****

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 _____ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #36 Imperial Hwy & I-105 w/b Ramps ************* Cycle (sec): 100 Critical Vol./Cap.(X): 10 Average Delay (sec/veh): Loss Time (sec): Level Of Service: C Optimal Cycle: ********************** Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R L - T - R Volume Module: 544 8 271 9 22 47 1612 339 596 812 25 Base Vol: Initial Bse: 549 8 274 9 22 25 47 1628 342 602 820 1 PHF Adj: PHF Volume: 549 8 274 9 22 25 47 1628 342 602 820 1 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 549 8 274 9 22 25 47 1628 342 602 820 1 FinalVolume: 549 8 274 9 22 25 47 1628 342 602 820 1 33 OvlAdjVol: Saturation Flow Module: ------Capacity Analysis Module: Vol/Sat: 0.19 0.19 0.17 0.04 0.04 0.04 0.03 0.25 0.21 0.21 0.17 0.17 OvlAdjV/S: 0.02 Crit Moves: **** ****

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #37 Willowbrook Ave W & El Segundo Blvd ************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 34 Average Delay (sec/veh): Level Of Service: Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: _____ Volume Module: 24 100 34 113 14 986 0 358 Base Vol: 9 16 68 Initial Bse: 24 101 9 34 114 16 14 996 69 0 362 34 PHF Adj: PHF Volume: 24 101 9 34 114 16 14 996 69 0 362 34 0 0 FinalVolume: 24 101 9 34 114 16 14 996 69 0 362 34 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.02 0.07 0.07 0.02 0.08 0.08 0.01 0.31 0.04 0.00 0.11 0.02

Crit Moves:

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ***************** Intersection #38 Willowbrook Ave E & El Segundo Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 34 Average Delay (sec/veh): Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Volume Module: 0 981 34 372 12 55 33 32 80 14 44 Base Vol: 14 0 991 44 34 376 39 Initial Bse: 12 56 33 32 81 PHF Volume: 12 56 33 32 81 14 0 991 44 34 376 39 FinalVolume: 12 56 33 32 81 14 0 991 44 34 376 39 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.06 0.06 0.02 0.06 0.06 0.00 0.31 0.03 0.02 0.13 0.13

2015 PM Peak Thu Sep 29, 2016 16:36:44 _____ Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #39 Mona Blvd & Imperial Hwy ********************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 73 Level Of Service: XXXXXX *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 72 94 1615 240 152 1110 Base Vol: 184 67 247 54 68 PHF Volume: 186 68 249 55 69 73 95 1631 242 154 1121 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 186 68 249 55 69 73 95 1631 242 154 1121 Reduced Vol: 0 0
Reduced Vol: 186 68
PCF Add 0 43 FinalVolume: 186 68 249 55 69 73 95 1631 242 154 1121 43 ______ Saturation Flow Module: Lanes: 0.73 0.27 1.00 0.28 0.35 0.37 1.00 2.61 0.39 1.00 2.89 0.11 Final Sat.: 1173 427 1600 445 561 594 1600 4179 621 1600 4621 179 Capacity Analysis Module: Vol/Sat: 0.12 0.16 0.16 0.03 0.12 0.12 0.06 0.39 0.39 0.10 0.24 0.24

Crit Moves: **** **** ****

	≯	*	4	†	↓	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	W			414	↑ }		
Volume (vph)	142	74	27	210	314	64	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	0.95	0.95	0.95	0.95	
Frt	0.954				0.974		
Flt Protected	0.968			0.994			
Satd. Flow (prot)	1720	0	0	3518	3447	0	
Flt Permitted	0.968			0.994			
Satd. Flow (perm)	1720	0	0	3518	3447	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	266			283	255		
Travel Time (s)	6.0			6.4	5.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	154	80	29	228	341	70	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	234	0	0	257	411	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12	_		0	0		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Stop			Free	Free		
Intersection Summary	gran.	185	i Al-P	BH.	. K W W	Tuj	
Area Type:	Other						
Control Type: Unsignalized							
Intersection Capacity Utilizati	on 39.7%			IC	CU Level o	of Service	Α
Analysis Period (min) 15							

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection	4.7							
Int Delay, s/veh	4.7							
Movement	EBL		EBR	1. H.E.	NBL	NBT	SBT	SBF
Vol, veh/h	142	N III	74		27	210	314	64
Conflicting Peds, #/hr	0		0		0	0	0	C
Sign Control	Stop		Stop		Free	Free	Free	Free
RT Channelized			None		200	None	90	None
Storage Length	0					1 200		
Veh in Median Storage, #	0		¥		32	0	0	-
Grade, %	0				A PROPERTY	0	0	
Peak Hour Factor	92		92		92	92	92	92
Heavy Vehicles, %	2		2		2	2	2	2
Mvmt Flow	154		80		29	228	341	70
Major/Minor	Minor2	100			Major1		Major2	
Conflicting Flow All	549		205		411	0		0
Stage 1	376		2		849	(4)	(*)	-
Stage 2	173				- 16			
Critical Hdwy	6.84		6.94		4.14	*	120	
Critical Hdwy Stg 1	5.84						to be a second to	
Critical Hdwy Stg 2	5.84				· 0.00	350		
Follow-up Hdwy	3.52		3.32		2.22	100		
Pot Cap-1 Maneuver	466		802		1144	£€0;	350	
Stage 1	664					(4)	ويدنيه بغايدك كعابا	
Stage 2	840		-		350	*4	:=:	-
Platoon blocked, %						1 1 1 1 1 1		
Mov Cap-1 Maneuver	452		802		1144		9	
Mov Cap-2 Maneuver	452				1.50			
Stage 1	664		Ť		(·			
Stage 2	816				7.			
N. Carrier and A. Car	-	-			6 IPV		00	-
Approach	EB	Evel			NB	-11	SB	
HCM Control Delay, s	17				1		0	
HCM LOS	С						milke transmission and state of	
Minor Lane/Major Mymt	NBL	NBT	EBLn1	SBT	SBR	nii kuz'r		15 E
Capacity (veh/h)	1144	-	531	-	CONT			
HCM Lane V/C Ratio	0.026		0.442		1.01			
HCM Control Delay (s)	8.2	0.1	17		0*0			
HCM Lane LOS	0.2 A	Α	C	- 20	5 50			
HCM 95th %tile Q(veh)	0.1		2.2					

Synchro 8 Report Page 2 9/14/2016 Baseline

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report
ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

Cycle (sec): 100 Critical Vol./Cap.(X): 0.609
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 41 Level Of Service: B

**************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 82 112 62 18 88 38 351 54 47 957 40 Initial Bse: 83 113 63 18 89 40 38 355 55 47 967 32 Saturation Flow Module: Lanes: 0.32 0.44 0.24 0.17 0.83 1.00 1.00 1.73 0.27 1.00 1.94 0.06 Final Sat.: 513 700 388 272 1328 1600 1600 2773 427 1600 3096 104 Capacity Analysis Module:

Vol/Sat: 0.05 0.16 0.16 0.01 0.07 0.03 0.02 0.13 0.13 0.03 0.31 0.31 Crit Moves: **** ****

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report

Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R L - T - R Movement: _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< Volume Module: 0 1222 190 0 115 736 235 158 0 Base Vol: 0 0 0 1234 237 192 0 160 0 0 Initial Bse: 116 743 0 PHF Adj: PHF Volume: 116 743 0 0 1234 237 192 0 160 0 0 FinalVolume: 116 743 0 0 1234 237 192 0 160 0 0 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.07 0.23 0.00 0.00 0.46 0.46 0.12 0.00 0.22 0.00 0.00 0.00 Crit Moves: **** ****

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #45 Alameda St & Imperial Hwv ************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 66 Level Of Service: Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: L - T - R Volume Module: 214 682 138 101 693 199 449 409 1282 102 653 Base Vol: 139 102 700 453 413 1295 201 103 660 66 Initial Bse: 216 689 PHF Adj: PHF Volume: 216 689 139 102 700 453 413 1295 201 103 660 66 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 216 689 139 102 700 453 413 1295 201 103 660 66 FinalVolume: 216 689 139 102 700 453 413 1295 201 103 660 66 224 OvlAdjVol: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.26 0.26 0.06 0.22 0.28 0.14 0.31 0.31 0.06 0.14 0.04 OvlAdjV/S: 0.14 Crit Moves:

Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #46 Alameda St & El Segundo Blvd ******************* Cycle (sec): Critical Vol./Cap.(X): 100 Loss Time (sec): 10
Optimal Cycle: 99 Average Delay (sec/veh): Level Of Service: Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R ______|___|___|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: 50 258 102 717 107 699 43 95 182 699 Base Vol: 98 108 706 51 261 96 184 706 Initial Bse: 103 724 99 43 99 108 706 43 51 261 96 184 706 192 0 0 0 0 0 0 0 0 0 0 0 0

PHF Volume: 103 724 Reduct Vol: Reduced Vol: 103 724 99 108 706 43 51 261 96 184 706 192 MLF Adj: FinalVolume: 103 724 99 108 706 43 51 261 96 184 706 192 _____| Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.06 0.26 0.26 0.07 0.23 0.23 0.03 0.08 0.06 0.11 0.44 0.12 Crit Moves: **** ****

2015 PM Peak Thu Mar 2, 2017 15:29:03 Page 54-1 Wilowbrook TOD Specific Plan Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************************ Intersection #52 El Segundo Blvd & San Pedro St ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 40 Average Delay (sec/veh): Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Volume Module: Base Vol: 101 322 51 86 228 85 146 1415 72 33 568 Initial Bse: 101 322 51 86 228 85 146 1415 72 33 568 PHF Volume: 101 322 51 86 228 85 146 1415 72 33 568 Reduct Vol: 0 0 0 0 0 0 0 0 0 Ω Reduced Vol: 101 322 51 86 228 85 146 1415 72 33 568 85 FinalVolume: 101 322 51 86 228 85 146 1415 72 33 568 85 Saturation Flow Module:

Vol/Sat: 0.06 0.12 0.12 0.05 0.10 0.10 0.09 0.31 0.31 0.02 0.14 0.14

Capacity Analysis Module:

Crit Moves: **** ****

_____ Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Intersection #13 Slater Ave & El Segundo Blvd

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************

******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh):

Optimal Cycle: 44 44 Level Of Service: ******************

Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R Movement: L - T - R L - T - R _____| Volume Module: Base Vol: 0 0 0 10 0 46 1643 0 692 48 0 Initial Bse: 0 0 0 10 0 48 46 1659 0 0 699 16 PHF Adi: PHF Volume: 0 0 0 10 0 48 46 1659 0 0 699 16
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 0 0 0 10 0 48 46 1659 0 0 699 16 FinalVolume: 0 0 0 10 0 48 46 1659 0 0 699 16 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.01 0.00 0.03 0.03 0.52 0.00 0.00 0.22 0.22 Crit Moves: **** **** **** ************************

Approach:	No	rth Bo	ound	Soi	uth Bo	ound	E	ast B	ound	₩e	est Bo	ound
Movement:	L	- T	- R	L	- T	- R	L	- T	- R	L -	- T	- R
Control:		Permit	ted]	Permit	ted		Permi	tted	I	Permit	ted
Rights: Min. Green:		Inclu	ıde		Inclu	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1	0 1	1 0	1 (0 1	1 0	1	0 1	1 0	1 (1	1 0
	0.00											
Volume Module	e:											
Base Vol:	67	31	16	111	64	152	235	1347	103	16	449	74
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01			1.01	
Initial Bse:			16	112	65	154	237				453	75
User Adj:	1.00	1.00	1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	1.00
PHF Volume:			16	112	65	154	237	1360	104	16		75
Reduct Vol:				0	_	_	0		0	0	-	0
Reduced Vol:				112	65	154						
PCE Adj:				1.00		1.00		1.00			1.00	
MLF Adj:				1.00		1.00		1.00		1.00		1.00
FinalVolume:				112					104			75
			,									
Saturation F												
Sat/Lane:	1600	1600	1600					1600			1600	
Adjustment:				1.00		1.00		1.00			1.00	1.00
Lanes:				1.00		1.00			0.14		1.72	0.28
Final Sat.:				1600		1600			227		2747	
Capacity Ana:												
Vol/Sat:		0.01	0.01	0.07	0.04		0.15		0.46		0.17	0.17
CIIC MOVOD.	****					****		****		***		
*****	****	****	*****	****	****	*****	****	****	*****	*****	*****	*****

______ Wilowbrook TOD Specific Plan

Run 3- Existing PM - 9-29-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************** Intersection #33 Wilmington Ave & Rosecrans Ave ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 79 Average Delay (sec/veh): xxxxxx Level Of Service: D **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 153 674 153 147 475 114 1059 163 93 468 135 Initial Bse: 155 681 155 148 480 136 115 1070 165 94 473 115 PHF Volume: 155 681 155 148 480 136 115 1070 165 94 473 115

Saturation Flow Module:

Lanes: 1.00 1.63 0.37 1.00 1.56 0.44 1.00 2.00 1.00 1.61 0.39 Final Sat.: 1600 2608 592 1600 2492 708 1600 3200 1600 1600 2573 627 Capacity Analysis Module:

Vol/Sat: 0.10 0.26 0.26 0.09 0.19 0.19 0.07 0.33 0.10 0.06 0.18 0.18 Crit Moves: **** **** ****

Thu Sep 29, 2016 16:36:44 2015 PM Peak Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #42 Willowbrook Ave & Rosecrans Ave ****************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 52 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 30 107 16 132 79 27 15 1314 19 29 796 123 Initial Bse: 30 108 16 133 80 27 15 1327 19 29 804

Saturation Flow Module:

Wilowbrook TOD Specific Plan

Existing PM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

****************** Intersection #55 El Segundo Blvd & Santa Fe Ave

Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 50 Level Of Service: ***************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______

Volume Module:

Base Vol: 151 513 69 39 368 68 96 270 213 12 68

Initial Bse: 151 513 69 39 368 68 96 270 213 12 68 26 PHF Volume: 151 513 69 39 368 68 96 270 213 12 68 26 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0

Reduced Vol: 151 513 69 39 368 68 96 270 213 12 68 26 FinalVolume: 151 513 69 39 368 68 96 270 213 12 68 26

______ Saturation Flow Module:

Capacity Analysis Module: Vol/Sat: 0.09 0.18 0.18 0.02 0.14 0.14 0.06 0.36 0.36 0.01 0.07 0.07

Crit Moves: **** *** **** _______

Wilowbrook TOD Specific Plan Existing PM - 2-9-17

Existing PM - 2-9-17													
Level Of Service Computation Report													
ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)													

Intersection #56 Alameda St & Rosecrans Ave													
Cycle (sec): 100 Critical Vol./Cap.(X): 0.604													
Loss Time (se	٠ ()		10								xxxxxx		
Optimal Cycle			10 40			Level				•	1000	В	
******		****	*****	****	****	_				*****	****	*****	
Approach:	Nor	rth Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	W∈	est Bo	ound	
Movement:	L -	- T	- R	L ·	- T	- R	L -	- T	- R	L -	· T	- R	
Control:	Pr	cotect	ted	Pi	rotect	ted	Pı	rotect	ced	Pı	rotect	ed	
Rights:		Incl	ude		Incl	ıde		Inclu	ıde		Incl	ıde	
Min. Green:	0	0			0	0		0	0	0	0	0	
Y+R:	4.0			4.0			4.0			4.0		4.0	
Lanes:			0 0			1 0			0 1		0		
Volume Module													
Base Vol:	136			0		77	111	0	198	0	0	0	
Growth Adj:	1.00		1.00		1.00	1.00		1.00		1.00		1.00	
Initial Bse:		771	0	0	868	77	111	0	198	0	0	0	
User Adj:	1.00		1.00		1.00	1,00		1.00	1.00	1.00		1.00	
PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
	136	771	0	0	868 0	77 0	111	0	198 0	0	0	0	
Reduct Vol: Reduced Vol:	126	0 771	0	_ 0	868	77	111	0	198	0	0	0	
PCE Adj:	1.00	–	1.00		1.00	1.00		1.00	1.00	1.00	-	1.00	
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00	
FinalVolume:		771		0.00	868	77	111	0	198	0	0	1.00	
				Ū				•			. .	٠.	
Saturation Fl				E-1-1E-0-EA			1			1		1	
Sat/Lane:	1600		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:			1.00		1.00	1.00		1.00	1.00	1.00		1.00	
Lanes:	1.00		0.00		1.84	0.16		0.00	1.00	0.00		0.00	
Final Sat.:					2939	261		0	1600		0	0	
Capacity Anal	lysis	Modu:	le:	1071		,				-		•	
Vol/Sat:	0.09	0.24	0.00	0.00	0.30	0.30	0.07	0.00	0.12	0.00	0.00	0.00	
Crit Moves:	****				****				****				
*******	*****			****	****	*****	****	****	*****	*****	****	*****	

Control: Permitted Permitted Permitted Include Include

Vol/Sat: 0.08 0.26 0.26 0.11 0.18 0.06 0.06 0.28 0.13 0.06 0.15 0.15 Crit Moves: **** **** ****

2015 PM Peak Thu Mar 2, 2017 15:29:03 Page 60-1 Wilowbrook TOD Specific Plan Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************************ Intersection #58 Wilmington Ave & W Compton Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 78 Average Delay (sec/veh): Level Of Service: *************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 106 793 155 150 544 82 132 898 109 140 451 Initial Bse: 106 793 155 150 544 82 132 898 109 140 451 PHF Volume: 106 793 155 150 544 82 132 898 109 140 451 172 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 106 793 155 150 544 82 132 898 109 140 451 172 FinalVolume: 106 793 155 150 544 82 132 898 109 140 451 172

Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.07 0.25 0.10 0.09 0.20 0.20 0.08 0.31 0.31 0.09 0.14 0.11 Crit Moves: **** ****

Crit Moves: ****

Wilowbrook TOD Specific Plan Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************* Intersection #59 Willowbrook Ave & W Compton Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 31 Average Delay (sec/veh): Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 15 112 15 0 112 38 15 1052 0 710 69 61 Initial Bse: 15 112 15 0 112 38 15 1052 69 0 710 61 PHF Volume: 15 112 15 0 112 38 15 1052 69 0 710 61 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 15 112 15 0 112 38 15 1052 69 0 710 61 FinalVolume: 15 112 15 0 112 38 15 1052 69 0 710 61 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.09 0.09 0.00 0.09 0.09 0.01 0.23 0.23 0.00 0.24 0.24

Wilowbrook TOD Specific Plan

Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ************ Intersection #60 Central Ave & Alondra Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 94 Average Delay (sec/veh): Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 119 782 148 180 632 65 115 969 132 65 334 Initial Bse: 119 782 148 180 632 65 115 969 132 65 334 PHF Volume: 119 782 148 180 632 65 115 969 132 65 334 158 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 119 782 148 180 632 65 115 969 132 65 334 158 FinalVolume: 119 782 148 180 632 65 115 969 132 65 334 158 Saturation Flow Module:

 Sat/Lane:
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600 Capacity Analysis Module: Vol/Sat: 0.07 0.29 0.29 0.11 0.22 0.22 0.07 0.34 0.34 0.04 0.10 0.10 Crit Moves: **** **** ***

2015 PM Peak Thu Mar 2, 2017 15:29:03 Page 63-1 Wilowbrook TOD Specific Plan Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) **************** Intersection #61 Wilmington Ave & Alondra Blvd

****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 90 Level Of Service:

****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 79 894 113 129 569 70 107 1012 159 105 425 Initial Bse: 79 894 113 129 569 70 107 1012 159 105 425 158 PHF Volume: 79 894 113 129 569 70 107 1012 159 105 425 158 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 79 894 113 129 569 70 107 1012 159 105 425 158 FinalVolume: 79 894 113 129 569 70 107 1012 159 105 425 158 Saturation Flow Module:

 Sat/Lane:
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600
 1600 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.31 0.31 0.08 0.20 0.20 0.07 0.32 0.10 0.07 0.18 0.18

Crit Moves: **** ****

2015 PM Peak Thu Mar 2, 2017 15:29:03 Page 64-1

Wilowbrook TOD Specific Plan

	7122	Existing PM	M - 2 - 9 - 17	2011					
	Level C	of Service (Computation	Report					
ICU 1(Lo	ss as Cycle I				native)				

Intersection #62	: Wilmington A	Ave & Green	leaf Blvd						
*******	******	******	*****	*****	******	****			
Cycle (sec):	100		Critical V	ol./Cap.(X):	0.911	L			
Loss Time (sec):	10		Average De	ol./Cap.(X): lay (sec/veh)	: XXXXXX	2			
Optimal Cycle:	106		Level Of S		E	-			
******	*****	******	******	*****	*****	****			
Approach: N	orth Bound	South Bo			West Bour	ıd			
	- T - R	L - T		- T - R	L - T -				
Control:				Permitted	Permitte	ed.			
Rights:	Include	Inclu		Include	Include	3			
Min. Green:	0 0 0	0 0	*	0 0 0	0 0	0			
			4.0 4.		4.0 4.0	4.0			
Lanes: 1	0 2 0 1	1 0 1	1 0 1	0 0 1 0	1 0 0 1	0			
Volume Module:									
Base Vol: 7	0 970 330	148 564		5 532 34	98 224	169			
	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	1.00 1.00 1	L.00			
Initial Bse: 7	0 970 330	148 564	19 4	5 532 34	98 224	169			
-	0 1.00 1.00	1.00 1.00		0 1.00 1.00		L.00			
3	0 1.00 1.00	1.00 1.00	1.00 1.0	0 1.00 1.00	5%	L.00			
	0 970 330	148 564	19 4		98 224	169			
Reduct Vol:		0 0	0	0 0 0		0			
Reduced Vol: 7		148 564	19 4		98 224	169			
_	0 1.00 1.00	1.00 1.00		0 1.00 1.00		L.00			
-	0 1.00 1.00	1.00 1.00		0 1.00 1.00		1.00			
	0 970 330	148 564	19 4		98 224	169			
	,								
Saturation Flow									
	0 1600 1600	1600 1600		0 1600 1600		L600			
Adjustment: 1.0		1.00 1.00		0 1.00 1.00		L.00			
	0 2.00 1.00	1.00 1.93		0 0.94 0.06).43			
Final Sat.: 160		1600 3096		0 1504 96	1600 912	688			
Capacity Analysi									
'	4 0.30 0.21		0.18 0.0	3 0.35 0.35		0.25			
Crit Moves:	***	***		***	***				

Wilowbrook TOD Specific Plan Existing PM - 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) *************** Intersection #63 Wilmington Ave & Walnut St ************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 63 Critical Vol./Cap.(X): Average Delay (sec/veh): xxxxxx Level Of Service: C ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 34 627 25 152 451 184 Base Vol: 54 1153 85 34 63 PHF Volume: 54 1153
Reduct Vol: 0 0 85 34 627 25 152 451 184 34 63 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 54 1153 85 34 627 25 152 451 184 34 63 63 FinalVolume: 54 1153 85 34 627 25 152 451 184 34 63 63 ------Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.36 0.05 0.02 0.20 0.02 0.10 0.28 0.12 0.02 0.04 0.04 Crit Moves: **** **** ****

Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10
Optimal Cycle: 47 Level Of Service: *********************** _____ Volume Module: FinalVolume: 0 866 326 311 507 0 0 0 68 0 169 Saturation Flow Module: Final Sat.: 0 3200 1600 1600 3200 0 0 0 1600 0 1600 Capacity Analysis Module:

Vol/Sat: 0.00 0.27 0.20 0.19 0.16 0.00 0.00 0.00 0.00 0.04 0.00 0.11

Crit Moves: ****

Wilowhrook TOD Specific Dlan

Wilowbrook TOD Specific Plan Existing PM - 2-9-17

				EXISC	ing Fr							
Total Of Complete Departs												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)												
	Intersection #65 Willowbrook Ave & Alondra Blvd											
		1(Critic						
Cycle (sec):	\					Averag						
Loss Time (se			10			Level				:	XXXX	A
Optimal Cycle			52									
Approach:								ast Bo			est Bo	
Movement:			- R			- R			- R		- Т	
										•		4.0
Control:			ted			ted	Pi			ŀ	ermit? Inclu	
Rights:		Inclu			Inclu			Inclu		0		
Min. Green:		0	0	_	0	0	-	0	0	0		0
Y+R:	4.0					4.0				4.0		
Lanes:			0 0			0 0			0 1) 1	2.1
Volume Module				2.5			1.0	1056	0.0	0		2.0
Base Vol:	16		13	35		20		1056	20	0		39
Growth Adj:		1,00	1,00		1.00	1,00		1.00	1.00		1.00	1.00
Initial Bse:		89	13	35	67	20		1056	20	0	571	39
User Adj:		1.00	1.00	5.7	1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:			1.00		1.00	1, 00		1.00	1.00		1.00	1.00
PHF Volume:	16	89	13	35	67	20		1056	20	0	571	39
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		89	13	35	67	20		1056	20	0	571	39
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:		89	13	. 35	67	20		1056	20	0	571	39
	1		,									
Saturation F	low M	odule	:									
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600
Adjustment:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
Lanes:			0.11		0.55	0.16		2.00	1.00		1.87	0.13
Final Sat.:			176		879	262		3200	1600		2995	205
	**											
Capacity Ana	-		le:									
Vol/Sat:	0.01		0.07		0.08	0.08	0.01	0.33	0.01	0.00	0.19	0.19
Crit Moves:		****		***				****				

Wilowbrook TOD Specific Plan

Existing PM - 2-9-17 __________ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************* Intersection #66 Alameda St. West & Greenleaf Blvd. ************** Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 53 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|___|___|___| Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 _____| Volume Module: 83 80 Base Vol: 84 546 219 61 646 93 599 208 211 43 43 93 599 80 208 211 0 0 0 0 0 PHF Volume: 84 546
Reduct Vol: 0 0 219 0 61 646 83 0 0 0 Ω Reduced Vol: 84 546 219 61 646 83 93 599 80 208 211 43 FinalVolume: 84 546 219 61 646 83 93 599 80 208 211 43 ______ Saturation Flow Module: Lanes: 1.00 1.43 0.57 1.00 1.77 0.23 1.00 1.76 0.24 1.00 1.00 1.00 Final Sat.: 1600 2284 916 1600 2836 364 1600 2823 377 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.24 0.24 0.04 0.23 0.23 0.06 0.21 0.21 0.13 0.13 0.03 Crit Moves: **** **** *** *************

Wilowbrook TOD Specific Plan Run 3- Existing PM - 9-29-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative)

****************** Intersection #44 Alameda St & Abbott Rd **************

Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh):

Loss Time (sec): 10
Optimal Cycle: 42 Level Of Service: *************************

Approach: North Bound South Bound East Bound Movement: L - T - R L - T - R West Bound L - T - R
 Control:
 Permitted
 Permitted
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1< Volume Module: Base Vol: 0 687 236 201 1116 0 6 24 2 229 1 136 Initial Bse: 0 694 238 203 1127 0 6 24 2 231 1 137 PHF Volume: 0 694 238 203 1127 0 6 24 2 231 1 137 FinalVolume: 0 694 238 203 1127 0 6 24 2 231 1 137 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.29 0.29 0.13 0.35 0.00 0.02 0.02 0.02 0.07 0.07 0.09 Crit Moves: **** **** *************

Wilowbrook TOD Specific Plan Existing PM - 2-9-17

...... Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #53 Imperial Hway & Fernwood Ave ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 58 Level Of Service: ******************** _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 95 70 7 104 90 9 44 1264 221 7 789 143 Initial Bse: 95 70 7 104 90 9 44 1264 221 7 789 143 PHF Volume: 95 70 7 104 90 9 44 1264 221 7 789 143
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 95 70 7 104 90 9 44 1264 221 7 789 143 FinalVolume: 95 70 7 104 90 9 44 1264 221 7 789 143 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.11 0.11 0.07 0.13 0.13 0.03 0.46 0.46 0.00 0.29 0.29 Crit Moves: **** **** ****

______ Wilowbrook TOD Specific Plan

.....

Existing PM - 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************** Intersection #54 Imperial Hwy & State St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.785 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 64 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< Volume Module: Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Initial Bse: 51 454 123 72 326 124 339 1047 30 116 718 76 PHF Volume: 51 454 123 72 326 124 339 1047 30 116 718 76 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 FinalVolume: 51 454 123 72 326 124 339 1047 30 116 718 76 -----Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.18 0.18 0.05 0.14 0.14 0.21 0.34 0.34 0.07 0.25 0.25 *** **** Crit Moves: ****

Intersections LOS Analysis Sheets

Existing + Project Conditions

Willowbrook Existing+Project Conditions - AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #3 Avalon Blvd & El Segundo ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10
Optimal Cycle: 55 Level Of Service: C ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 76 514 93 81 556 113 165 383 69 110 997 252 Initial Bse: 77 519 94 82 562 114 167 387 70 111 1007 255 PHF Volume: 77 541 112 82 573 114 167 467 70 122 1053 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 77 541 112 82 573 114 167 467 70 122 1053 0 FinalVolume: 77 541 112 82 573 114 167 467 70 122 1053 255 Saturation Flow Module: Lanes: 1.00 1.66 0.34 1.00 1.67 0.33 1.00 2.61 0.39 1.00 2.42 0.58 Final Sat.: 1600 2652 548 1600 2668 532 1600 4177 623 1600 3866 934 Capacity Analysis Module: Vol/Sat: 0.05 0.20 0.20 0.05 0.21 0.21 0.10 0.11 0.11 0.08 0.27 0.27 *** *** Crit Moves: ****

Existing+Project Conditions - AM Peak 11-1-2016

_______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #4 Avalon Blvd & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 46 Average Delay (sec/veh): Level Of Service: *********************** Control:Prot+PermitProt+PermitProt+PermitProt+PermitRights:IncludeIncludeIncludeIncludeMin. Green:0000000 Volume Module: Base Vol: 103 470 58 160 470 99 48 392 63 113 1049 159 Initial Bse: 104 475 59 162 475 100 48 396 64 114 1059 161 Added Vol: 0 22 0 0 15 2 4 18 0 0 13 PasserByVol: 0 8 0 0 4 0 0 8 0 0 3 0 0 FinalVolume: 104 505 59 162 494 102 52 422 64 114 1075 161 Saturation Flow Module: Lanes: 1.00 1.79 0.21 1.00 1.66 0.34 1.00 2.61 0.39 1.00 2.61 0.39 Final Sat.: 1600 2867 333 1600 2652 548 1600 4171 629 1600 4176 624 Capacity Analysis Module: Vol/Sat: 0.07 0.18 0.18 0.10 0.19 0.19 0.03 0.10 0.10 0.07 0.26 0.26 Crit Moves: **** **** **** ***************

Existing+Project Conditions - AM Peak 11-1-2016

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #10 Central Ave & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 120 Average Delay (sec/veh): Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Prot+Permit
 Prot+Permit
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< ______ Volume Module: Base Vol: 204 659 194 125 687 209 89 400 76 170 965 Initial Bse: 206 666 196 126 694 211 90 404 77 172 975 86 PHF Volume: 206 705 230 126 713 214 106 485 77 193 1030 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 206 705 230 126 713 214 106 485 77 0 0 193 1030 ------Saturation Flow Module: Lanes: 1.00 1.51 0.49 1.00 1.54 0.46 1.00 2.00 1.00 1.00 1.85 0.15 Final Sat.: 1600 2413 787 1600 2461 739 1600 3200 1600 1600 2954 246 _____ Capacity Analysis Module: Vol/Sat: 0.13 0.29 0.29 0.08 0.29 0.29 0.07 0.15 0.05 0.12 0.35 0.35 Crit Moves: **** **** **** ******************

Existing+Project Conditions - AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #11 Central Ave & Rosecrans Ave ************ Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10
Optimal Cycle: 78 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - F L - T - R Volume Module: Base Vol: 135 571 71 95 644 207 121 346 125 117 979 153 Initial Bse: 136 577 72 96 650 209 122 349 126 118 989 155 Added Vol: 0 33 0 0 22 6 10 7 0 0 7 0 PasserByVol: 0 20 0 0 8 2 5 5 0 0 2 0 Initial Fut: 136 630 72 96 680 217 137 361 126 118 998 155 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 2.22 0.78 1.00 1.73 0.27 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3557 1243 1600 2771 429 Capacity Analysis Module: Vol/Sat: 0.09 0.20 0.04 0.06 0.21 0.14 0.09 0.10 0.10 0.07 0.36 0.36 Crit Moves: **** **** **** ***************

Willowbrook Existing+Project Conditions - AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #12 Slater Ave & 120th St ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 40 Average Delay (sec/veh): Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 42 41 66 46 37 43 757 35 44 730 18 45 Initial Bse: 42 41 67 46 37 45 43 765 35 44 737 18 Added Vol: 0 0 0 0 0 0 0 52 PasserByVol: 0 0 18 9 0 0 0 209 0 0 43 0 8 83 4 Initial Fut: 42 41 85 55 37 45 43 1026 35 52 863 22 Saturation Flow Module: Lanes: 0.25 0.25 0.50 0.40 0.27 0.33 1.00 1.93 0.07 1.00 1.95 0.05 Final Sat.: 403 393 804 642 432 526 1600 3093 107 1600 3120 80 Capacity Analysis Module: Vol/Sat: 0.03 0.11 0.11 0.03 0.09 0.09 0.03 0.33 0.33 0.03 0.28 0.28 Crit Moves: **** ****

Existing+Project Conditions - AM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************** Intersection #17 Compton Ave & Imperial Hwy ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.120 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: Average Delay (sec/veh): XXXXXX ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 114 332 167 Initial Bse: 115 335 169 114 292 135 76 667 173 Added Vol: 92 25 37 5 39 0 0 40 166 PasserByVol: 2 14 0 0 34 0 0 17 3 Initial Bse: 115 335 169 114 292 173 192 1504 163 86 19 0 7 1 3 Initial Fut: 209 374 206 119 365 135 76 724 342 278 1530 164 PHF Volume: 209 374 206 119 365 135 76 724 342 278 1530 164 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 209 374 206 119 365 135 76 724 342 278 1530 164 FinalVolume: 209 374 206 119 365 135 76 724 342 278 1530 164 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.23 0.13 0.07 0.31 0.31 0.05 0.22 0.22 0.17 0.53 0.53 Crit Moves: **** **** ***********************

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************************** Intersection #19 Compton Ave & 120th St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 1.0 XXXXXX Optimal Cycle: 110 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 106 296 85 115 122 465 129 308 88 88 460 Initial Bse: 107 299 86 130 311 116 123 470 89 465 89 162 Added Vol: 0 115 10 4 68 13 22 30 0 3 30 PasserByVol: 0 0 34 48 0 0 0 247 0 17 98 20 Initial Fut: 107 414 130 182 379 129 145 747 89 109 593 PHF Volume: 107 414 130 182 379 129 145 747 89 109 593 184 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 107 414 130 182 379 129 145 747 89 109 593 184 FinalVolume: 107 414 130 182 379 129 145 747 89 109 593 184 Saturation Flow Module: Lanes: 1.00 1.52 0.48 1.00 1.49 0.51 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 1600 2436 764 1600 2387 813 1600 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.07 0.17 0.17 0.11 0.16 0.16 0.09 0.47 0.06 0.07 0.37 0.11 Crit Moves: **** **** **** **************

Existing+Project Conditions - AM Peak 11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *********************************** Intersection #20 Compton Ave & 124th St ***************** Critical Vol./Cap.(X): 0.428 Cycle (sec): 100 Loss Time (sec): 10
Optimal Cycle: 30 Average Delay (sec/veh): XXXXXX Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include</t Volume Module: Base Vol: 1 360 59 426 25 7 5 12 3 36 40 Initial Bse: 1 364 Added Vol: 0 126 25 60 430 7 5 12 3 36 40 0 0 71 0 0 0 0 0 109 Added Vol: 0 126 0 0 71 0 0 0 0 0 0 0 0 PasserByVol: 0 33 0 0 17 0 0 0 0 0 0 0 0 10 11 11 11 12 1 523 25 60 518 7 5 12 3 36 40 109 PHF Volume: 1 523 25 60 518 7 5 12 3 36 40 109 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 1 523 25 60 518 7 5 12 3 36 40 109 FinalVolume: 1 523 25 60 518 7 5 12 3 36 40 109 Saturation Flow Module: Lanes: 0.01 1.90 0.09 0.20 1.78 0.02 0.25 0.60 0.15 0.19 0.22 0.59 Final Sat.: 6 3047 147 326 2835 39 400 960 240 313 348 939 0.01 1.90 0.09 0.20 1.78 0.02 0.25 0.60 0.15 0.19 0.22 0.59 Capacity Analysis Module: Vol/Sat: 0.00 0.17 0.17 0.04 0.18 0.18 0.00 0.01 0.01 0.02 0.12 0.12 Crit Moves: **** ****

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to THE MOBILITY GROUP

Level Of Service Computation Report														
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)														
Intersection #26 Wilmington Ave & Imperial Hwy														

Cycle (sec):		10	00			Critic	al Vo	l./Car	o.(X):		0.8	320		
Loss Time (se	c):	:	10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	cxx		
Optimal Cycle			71			Level						D		
******************************												*****		
Approach:												ound		
Movement:			- R	L -		- R	L ·		- R	_		- R		
				,						•		1.7		
Control: Protected Protected Protected Protected														
Rights:		Incl		_	Inclu		_	Incl		_	Include			
Min. Green:	0	0	0	0		0	0	0	0	0	0	0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4 0		4.0		
Lanes:		0 1	1 0	D -) 1	1 0	1 (0 1	0 (0 0		
Volume Module							10000			3755				
Base Vol:	175	422	51	31	835	143	142	23	218	0	0	0		
		1.01	1.01		1.01	1.01		1.01	1.01	_	1.01	1.01		
Initial Bse:	177	426	52	31	843	144	143	23	220	0	0	0		
Added Vol:	13	24	0	0	183	4	10	0	29	0	0	0		
PasserByVol:	7	16	0	0	203	0	0	0	17	0	0	0		
Initial Fut:	197	466	52	-	1229	148	153	23	266	0	0	0		
		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00		
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Volume:	197	466	52	31	1229	148	153	23	266	0	0	0		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	197	466	52	31	1229	148	153	23	266	0	0	0		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
FinalVolume:	197	466	52		1229	148	153	23	266	0	0	0		
Saturation Flo														
- · · · · · · · · · · · · · · · · · · ·		1600	1600		1600	1600		1600	1600		1600	1600		
3		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00		
		1.80	0.20		1.78	0.22		1.00	1.00	0.00		0.00		
Final Sat.:		2882	318	V	2855	345		1600	1600 l	0	0	0		
Capacity Anal														
	_	0.16	0.16	0 03	0.43	0.43	0 10	0.01	0.17	0.00	0 00	0.00		
	****	0.10	0.10	0.02	****	0.45	0.10	5.01	****	0.00	3.00	0.00		
********		****	*****	****	****	*****	****	****	*****	****	****	*****		

11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 328 650 0 0 662 486 411 0 537 0 0 Added Vol: 98 180 0 0 185 27 4 0 125 0 0 PasserByVol: 53 73 0 0 219 0 0 0 79 0 0 Initial Fut: 479 903 0 0 1066 513 415 0 741 0 0 PHF Volume: 479 903 0 0 1066 513 415 0 741 0 0 Ω FinalVolume: 479 903 0 0 1066 513 415 0 741 0 0 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.30 0.19 0.00 0.00 0.33 0.16 0.26 0.00 0.46 0.00 0.00 0.00 Crit Moves: **** ***

Existing+Project Conditions - AM Peak 11-1-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #28 Wilmington Ave & 118th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): 10 Loss Time (sec): Optimal Cycle: 180 Level Of Service: ************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 60 59 18 129 843 92 939 164 80 20 39 56 Base Vol: 60 18 93 948 81 20 39 Initial Bse: 130 851 61 166 Added Vol: 185 31 8 17 10 283 199 1 129 PasserByVol: 0 125 0 0 298 0 0 0 22 2 49 0 0 Initial Fut: 315 1007 69 110 1256 449 259 19 210 42 41 106 PHF Volume: 315 1007 69 110 1256 449 259 19 210 42 41 106 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 315 1007 69 110 1256 449 259 19 210 42 41 106 FinalVolume: 315 1007 69 110 1256 449 259 19 210 42 41 106 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.20 0.22 0.22 0.04 0.53 0.53 0.16 0.30 0.30 0.03 0.05 0.07 Crit Moves: **** *** ****

Willowbrook Existing+Project Conditions - AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #29 Wilmington Ave & 120th St (West) ************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Doss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 103 Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 142 112 625 317 144 149 1 1 151 9 10 6 0 0 140 171 33 6 66 311 Initial Bse: 35 720 110 186 Added Vol: 19 212 PasserByVol: 0 95 6 3 16 0 11 15 2 Initial Fut: 54 1027 143 113 916 497 187 161 116 80 342 188 PHF Volume: 54 1027 143 113 916 497 187 161 116 80 342 188 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 54 1027 143 113 916 497 187 161 116 80 342 188 FinalVolume: 54 1027 143 113 916 497 187 161 116 80 342 188 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.03 0.37 0.37 0.07 0.44 0.44 0.12 0.10 0.07 0.05 0.21 0.12 Crit Moves: **** **** ********************

Existing+Project Conditions - AM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #30 Wilmington Ave & 120th St (East) ************* Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 48 Level Of Service: Average Delay (sec/veh): XXXXXX ********************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 26 831 7 25 666 76 18 0 3 13 3 40 Added Vol: 0 227 1 5 155 0 0 0 0 1 0 4 PasserByVol: 170 0 0 0 0 151 95 14 72 0 35 0 Initial Fut: 196 1058 8 30 821 227 113 14 75 14 38 44 PHF Volume: 196 1058 8 30 821 227 113 14 75 14 38 44 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 196 1058 8 30 821 227 113 14 75 14 38 44 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.12 0.33 0.33 0.02 0.33 0.33 0.07 0.08 0.05 0.01 0.06 0.06 Crit Moves: **** ****

Existing+Project Conditions - AM Peak

11-1-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #31 Wilmington Ave & 124th St *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.697 Loss Time (sec): 10
Optimal Cycle: 50 Average Delay (sec/veh): Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: 13 40 Base Vol: 49 757 48 670 20 47 41 84 Initial Bse: 49 765 40 48 677 Added Vol: 0 229 0 0 156 PasserByVol: 0 133 0 13 55 13 20 47 41 85 0 0 0 0 0 0 0 0 0 85 100 0 31 PHF Volume: 49 1127 40 61 888 13 20 47 41 85 100 106 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 49 1127 40 61 888 13 20 47 41 85 100 106 FinalVolume: 49 1127 40 61 888 13 20 47 41 85 100 106 ______ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.36 0.36 0.04 0.28 0.28 0.01 0.07 0.07 0.05 0.18 0.18 Crit Moves: **** **** ****

Existing+Project Conditions - AM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #32 Wilmington Ave & El Segundo Blvd *************** Critical Vol./Cap.(X): 0.834 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 75 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 57 563 Initial Bse: 175 751 55 124 646 136 93 397 261 15 Added Vol: 26 172 0 32 113 11 6 3 15 0 8 51 PasserByVol: 0 102 0 11 42 0 0 0 0 0 0 0 26 Initial Fut: 201 1025 55 167 801 147 99 400 276 57 571 167 11 51 Reduced Vol: 201 1025 55 167 801 147 99 400 276 57 571 167 FinalVolume: 201 1025 55 167 801 147 99 400 276 57 571 167 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.34 0.34 0.10 0.30 0.30 0.06 0.21 0.21 0.04 0.23 0.23 Crit Moves: **** **** ******************

Existing+Project Conditions - AM Peak 11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #34 Willowbrook Ave W & 119th Street **************** Critical Vol./Cap.(X): 0.478 Cycle (sec): 100 Loss Time (sec): 10 Optimal Cycle: 32 Average Delay (sec/veh): XXXXXX Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 59 11 337 Initial Bse: 166 0 24 0 12 41 0 230 0 0 0 0 0 7 9 0 8 0 0 0 0 0 6 0 0 26 24 0 12 41 0 243 68 11 371 Added Vol: 3 0 0
PasserByVol: 0 0 0
Initial Fut: 169 0 24 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 169 0 24 0 12 41 0 243 68 11 371 0 FinalVolume: 169 0 24 0 12 41 0 243 68 11 371 0 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.00 0.02 0.00 0.03 0.03 0.00 0.19 0.19 0.01 0.24 0.00 Crit Moves: **** ****

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #35 Willowbrook Ave E & 119th Street ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 28 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____| Volume Module: 38 112 97 23 172 Base Vol: 91 43 37 3 44 66 Initial Bse: 92 43 37 3 44 Added Vol: 0 0 0 0 1 4 Initial Bse: 92 43 37 3 44 67 38 113 98 23 174 PHF Volume: 92 43 37 3 45 71 40 124 98 23 205
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 92 43 37 3 45 71 40 124 98 23 205 40 124 98 23 205 4 FinalVolume: 92 43 37 3 45 71 40 124 98 23 205 4 _____ Saturation Flow Module: Lanes: 0.53 0.25 0.22 0.03 0.38 0.59 1.00 0.56 0.44 1.00 0.98 0.02 Final Sat.: 851 402 346 41 610 949 1600 894 706 1600 1569 31 -----| Capacity Analysis Module: Vol/Sat: 0.06 0.11 0.11 0.00 0.07 0.07 0.03 0.14 0.14 0.01 0.13 0.13 Crit Moves: **** **** *****************

11-1-2016

11-1-2016												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #36 Imperial Hwy & I-105 w/b Ramps ************************************												
Cycle (sec): 100 Critical Vol./Cap.(X): 0.906												
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx												
Optimal Cycle: 103 Level Of Service: E												

Approach: North Bound South Bound East Bound West Bound												
Movement:										L -		
Movement:	- بلا	- 1	- K	т -	- 1	- K	ь.	- т	- 1			
				0-1	1.2 =		D-			D	oboat	- 0 d
Control:	ontrol: Split Phase Split Phase Protected Protected											
Rights:		Tucli	ude		Incli	ıae		OAT			THET	ide
Min. Green:	_	0	0		0	0			0	-	0	0
Y+R:		4.0		4.0			4.0			4.0		4.0
Lanes:			0 1			0 0			1 1	. 2 0) 2	1 0
Volume Module	∋:											
Base Vol:	534	11	136	7	34	67	50	1002	222	735	1333	13
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	539	11	137	7	34	68	51	1012	224	742	1346	13
Added Vol:	178	9	1	0	0	0	7	70	107	2	100	4
PasserByVol:	116	0	11	0	0	0	0	19	32	0	42	0
Initial Fut:	833		149	7	34	68	58	1101	363	744	1488	17
User Adi:		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	833	20	149	7	34	68		1101	363		1488	17
Reduct Vol:	033	0	0	0	0	0	0	0	0	0	0	0
	833	20	149	7	34	68		1101			1488	17
Reduced Vol:					1.00	1.00		1.00	1.00	1.00		1.00
PCE Adj:		1.00	1.00					1.00	1.00	1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00						1.00
FinalVolume:	833	20	149	7	34	68	58	1101	363	744	1488	Ι,
OvlAdjVol:				Y					0	1		1
Saturation Fl												
Sat/Lane:		1600	1600		1600	1600		1600		1600		1600
Adjustment:	0.90	0.90	1.00	1.00	1.00	1.00		1.00		1.00		1.00
Lanes:	1.95	0.05	1.00	0.06	0.31	0.63		3.76	1.24	2.00		0.03
Final Sat.:			1600	104		993		6016	1984	2880		55
Capacity Anal	lysis	Modu.	le:									
Vol/Sat:	0.30	0.30	0.09	0.07	0.07	0.07	0.04	0.18	0.18	0.26	0.31	0.31
OvlAdjV/S:									0.00		×	
Crit Moves:		****		****				****		***		
******	****	****	*****	****	****	*****	****	****	*****	*****	****	*****

Existing+Project Conditions - AM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #37 Willowbrook Ave W & El Segundo Blvd ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 31 Level Of Service: XXXXXX ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 64 166 7 0 9 6 45 444 60 0 565 FinalVolume: 65 176 7 5 15 6 45 490 61 0 647 39 _____ Saturation Flow Module: Lanes: 1.00 0.96 0.04 1.00 0.71 0.29 1.00 2.00 1.00 0.00 2.00 1.00 Final Sat.: 1600 1538 62 1600 1142 458 1600 3200 1600 0 3200 1600 Capacity Analysis Module: Vol/Sat: 0.04 0.11 0.11 0.00 0.01 0.01 0.03 0.15 0.04 0.00 0.20 0.02 Crit Moves: **** **** *** ****************

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #38 Willowbrook Ave E & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 32 Level Of Service: xxxxxx **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 42 96 38 75 166 43 0 432 19 43 532 65 Initial Bse: 42 97 38 76 168 43 0 436 19 43 537 PHF Volume: 42 102 38 76 170 44 0 483 19 43 614
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 42 102 38 76 170 44 0 483 19 43 614 Ω 66 FinalVolume: 42 102 38 76 170 44 0 483 19 43 614 66 Saturation Flow Module: Lanes: 1.00 0.73 0.27 1.00 0.79 0.21 0.00 2.00 1.00 1.00 1.81 0.19 Final Sat.: 1600 1162 438 1600 1268 332 0 3200 1600 1600 2891 309 _____ Capacity Analysis Module: Vol/Sat: 0.03 0.09 0.09 0.05 0.13 0.13 0.00 0.15 0.01 0.03 0.21 0.21 Crit Moves: **** **** ********************* EWP AM Peak Tue Nov 1, 2016 13:28:46

Willowbrook

Existing+Project Conditions - AM Peak

Existing+Project Conditions - AM Peak 11-1-2016												
11-1-2016												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #39 Mona Blvd & Imperial Hwy												
Cycle (sec): 100												
Logg Time (sec): 10 Average Delay (sec/yeh): xxxxxx												
Optimal Cycle		- F	0			-		-		•	^^^	C
Optimal Cycle: 60 Level Of Service: C												
Approach: North Bound South Bound East Bound West Bound												
Movement:	L -	${f T}$	- R	ь -	- T	- R	L -	- T	- R	L -	T	- R
Control:												
Rights:	Rights: Include Include Include Include											
Min. Green:	0		0		0	0			0	-	0	0
Y+R:	4.0			4.0			4.0			4.0		4.0
Lanes:	0 1		0 1			0 0			1 0	1 0		
Volume Medule												
Volume Module Base Vol:	139	49	155	127	102	92	37	928	176	180	1782	21
Growth Adj:	1.01 1		1.01		1.01	1.01	-	1.01	1.01	1.01		1.01
Initial Bse:		49	157	27	103	93	37		178		1800	21
Added Vol:	4	0	5	0	0	0	0	65	6		102	0
PasserByVol:	0	2	0	0	5	0	0	19	11	0	42	0
Initial Fut:	144	51	162	27	108	93	37	1021	195	193	1944	21
User Adj:	1.00 1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00 1	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	144	51	162	27	108	93		1021	195		1944	21
Reduct Vol:	0	0	0	0	0	0	0	-	0	-	0	0
Reduced Vol:	144	51	162	27	108	93		1021	195		1944	21
PCE Adj:	1.00 1		1.00		1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj: FinalVolume:	1.00 1		1.00 162	27	1.00	1.00		1.00	1.00 195	1.00	1944	1.00 21
rinalvolume:		51		- ·		93			195			1180
Saturation Fl			175	V			25-11-21-52		======			
Sat/Lane:	1600 1		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00		1.00	1.00		1.00		1.00		1.00
-	0.74		1.00		0.47	0.41		2.52		1.00		0.03
Final Sat.:	1179		1600	191		651			769	1600		52

Capacity Anal	ysis M	Iodul	e:									
Vol/Sat:	0.09	12	0.10	0.02	0.14	0.14		0.25	0.25	0.12		0.41
Crit Moves:	****				****		****				***	
******	*****	****	*****	****	*****	*****	*****	*****	*****	****	****	*****

	→	7		1	Ţ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		75	†	ß	
Volume (vph)	90	41	50	195	218	144
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.958				0.946	
Flt Protected	0.967		0.950	. 1	27.72	Sparte.
Satd. Flow (prot)	1726	0	1770	1863	1762	0
Flt Permitted	0.967		0.950	5 750		1000
Satd. Flow (perm)	1726	0	1770	1863	1762	0
Link Speed (mph)	30	A SHARE		30	30	
Link Distance (ft)	266			283	255	
Travel Time (s)	6.0	7 7	7	6.4	5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	98	45	54	212	237	157
Shared Lane Traffic (%)						
Lane Group Flow (vph)	143	0	54	212	394	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0	1 Page	4. 3	0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	5 (- 1) X	S (2)		DI III		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15	4		9
Sign Control	Stop			Free	Free	
Intersection Summary	254 ° a	0.7 N	58 S.J.	l with	W2 15	111 75
	Other					

Area Type:

Control Type: Unsignalized

Intersection Capacity Utilization 41.1%

Analysis Period (min) 15

ICU Level of Service A

Intersection Int Delay, s/veh	3.3							
iiit Delay, S/Veii	ALCO TO THE STATE OF THE STATE				1315			
Movement	EBL	Jan 111	EBR		NBL	NBT	SBT	SBF
Vol, veh/h	90		41	HIA.	50	195	218	144
Conflicting Peds, #/hr	0		0		0	0	0	(
Sign Control	Stop		Stop		Free	Free	Free	Free
RT Channelized	: * :		None			None	S#3	None
Storage Length	0				0	A Company		
Veh in Median Storage, #	0		561		-	0	0	
Grade, %	0			W. ALT	700	0	0	
Peak Hour Factor	92		92		92	92	92	92
Heavy Vehicles, %	2	110	2		2	2	2	2
Mvmt Flow	98		45		54	212	237	157
				13 - 6		A 5 740		1500
Major/Minor	Minor2	11/4/15	100	17 3	Major1	71 100	Major2	4.17
Conflicting Flow All	636		315	-44	393	0		
Stage 1	315		(a)		*	: : :::		
Stage 2	321		-			N - N		. 4.5
Critical Hdwy	6.42		6.22		4.12	-	11E:	
Critical Hdwy Stg 1	5.42	11/25	7.4.5	F 151.79		- N/S-	The Paris of the P	
Critical Hdwy Stg 2	5.42		:=::			100		
Follow-up Hdwy	3.518		3.318		2.218		Maria State Special Control of the State of	100
Pot Cap-1 Maneuver	442		725		1166	396		
Stage 1	740		- AV		T K	i ileji		
Stage 2	735		:•1		2	848	(*	
Platoon blocked, %				E			and a morning the second	
Mov Cap-1 Maneuver	422		725		1166	(£	V .	9
Mov Cap-2 Maneuver	422		Tomas and		aveng.	EU ST		
Stage 1	740				-		12	
Stage 2	701	14.1	-		* 1	*		
Approach	EB			100	NB	81.0	Market Annual School Service S	
HCM Control Delay, s	15.4				1.7		0	
HCM LOS	C							
Minor Lane/Major Mymt	NBL	NBT	EBLn1	SBT	SBR	Virginia (C		45
Capacity (veh/h)	1166	INDI	486	- 100	abn -			-
HCM Lane V/C Ratio	0.047	1	0.000	L. Bridge	- 0.00			
HCM Control Delay (s)	8.2	(**I	15.4					
HCM Lane LOS	A		C		100			
HCM 95th %tile Q(veh)	0.1		1.2	2	*			

Synchro 8 Report Page 2 9/14/2016 Baseline

Willowbrook Existing+Project Conditions - AM Peak 11-1-2016

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #41 Mona Blvd & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 36 Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 39 110 72 90 131 48 56 502 33 48 543 91 137 49 56 549 33 48 620 43 0 0 0 0 0 0 0 0 0 PHF Volume: 39 121 Reduct Vol: 0 0 72 0 Reduced Vol: 39 121 72 91 137 49 56 549 33 48 620 43 FinalVolume: 39 121 72 91 137 49 56 549 33 48 620 43 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.15 0.06 0.14 0.03 0.03 0.18 0.18 0.03 0.21 0.21 Crit Moves: **** **** *************

11-1-2016													
	Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #43 Alameda St & 103rd St													
Cycle (sec): 100 Critical Vol./Cap.(X): 0.812													
Cycle (sec): 100 Critical Vol./Cap.(x): 0.812 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx													
Loss Time (sec): 10 Average Delay (sec/ven): xxxxxx Optimal Cycle: 69 Level Of Service: D													
Optimal Cycle: 69 Level OI Service: D ************************************													
Approach: North Bound South Bound East Bound West Bound													
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R													
										_	_		
Control: Permitted Permitted Permitted Permitted													
Rights: Include Include Include Include													
Min. Green:	0	0	- 0	Λ	0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	-	4.0		4.0	-	4.0	4.0	-	4.0	
Lanes:		2) 1				0 0	0 0			
Lanes:		_	1	909	_	_							
Volume Module			Ţ				ı					1	
Base Vol:	178	809	0	0	948	191	194	0	152	0	0	0	
			_	_	1.01	1.01		1.01	1.01	1.01	-	1.01	
Growth Adj:	180	1.01	1,01	0	957	193	196	0	154	0	0	0	
Initial Bse:			_	0	957 44	193	196	0	154	0	0	0	
Added Vol:	0	30	0			•	-	•	-	0	0	0	
PasserByVol:	0	5	0	0	6	14	3	0	0	0	0	0	
Initial Fut:	180	852	0	-	1007	207	199	0	154		0	•	
User Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Volume:	180	852	0	-	1007	207	199	0	154	0	0	0	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	180	852	0	_	1007	207	199	0	154	0	0	0	
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
MLF Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00	1 , 00		1.00	
FinalVolume:	180	852	0		1007	207	199	0	154	0	0	0	
				1									
Saturation Fl	Low Mo	odule	:										
Sat/Lane:	1600	1600	1600		1600	1600		1600	1600	1600		1600	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00	
Lanes:	1.00	2.00	0.00	0.00	1.66	0.34	0.56	0.01	0.43	0.00	0.00	0.00	
Final Sat.:	1600	3200	0	0	2655	545	903	0	697	0	0	0	

Capacity Anal	Lysis	Modu.	le:										
Vol/Sat:	0.11	0.27	0.00	0.00	0.38	0.38	0.12	0.00	0.22	0.00	0.00	0.00	
Crit Moves:	***				****				***				
******	****	*****	*****	****	****	*****	****	*****	*****	*****	****	*****	

Crit Moves: ****

Willowbrook Existing+Project Conditions - AM Peak

.....

Willowbrook Existing+Project Conditions - AM Peak

					11-1-	-2016						

Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
*****	***	****	*****	****	* * * * * 1	******	****	****	*****	*****	****	*****
Intersection #46 Alameda St & El Segundo Blvd												
	****										0.8	
Cycle (sec):			00			Critic			-			
Loss Time (se			10			Level			ec/veh)	:	XXXX	D.
Optimal Cycle			70						-			_

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R												
Movement:										_	_	
			,	•			•		,	•		•
Control:		Permit				ted	1	Permit			ermit	
Rights:	_	Incl			Inclu			Inclu			Inclu	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0		4.0			4.0	4.0		4.0
Lanes:			1 0) 1		1 (0 1		1	0 1
Volume Module												
Base Vol:	153	632	50	78	759	109	105	417	153	40	361	103
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	155	638	51	79	767	110	106	421	155	40	365	104
Added Vol:	41	6	0	0	4	0	0	14	28	0	20	0
PasserByVol:	12	0	0	0	0	0	Ò	2	5	0	5	0
Initial Fut:	208	644	51	79	771	110	106	437	188	40	390	104
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	208	644	51	79	771	110	106	437	188	40	390	104
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	208	644	51	79	771	110	106	437	188	40	390	104
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	208	644	51	79	771	110	106	437	188	40	390	104
							TETT.					
Saturation Flo						'	'			·		5
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
· ·	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-		1.85	0.15	1.00	1.75	0.25	1.00	2.00	1.00	1.00	1.00	1.00
		2967	233		2800	400		3200	1600	1600		1600
	Capacity Analysis Module:											
	_	0.22	0.22	0.05	0.28	0.28	0.07	0.14	0.12	0.03	0.24	0.07
· · ·	****	·			****		****				****	
********		****	*****	*****	****	*****	****	****	*****	*****	****	*****

Existing+Project Conditions AM Peak
2-9-17

Existing+Project Conditions R AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #13 Slater Ave & El Segundo Blvd ************* Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 51 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 62 869 Base Vol: 0 0 0 34 0 177 0 0 1370 Initial Bse: 0 0 0 34 0 179 63 878 0 0 1384 Added Vol: 0 0 0 0 0 0 0 99 0 0 66
PasserByVol: 0 0 0 0 0 0 0 15 0 0 10
Initial Fut: 0 0 0 34 0 179 63 992 0 0 1460 0 11 PHF Volume: 0 0 0 34 0 179 63 992 0 0 1460 11 Reduct Vol: 0 0 0 0 34 0 179 63 992 0 0 1460 11 Reduced Vol: 0 0 0 34 0 179 63 992 0 0 1460 11 FinalVolume: 0 0 0 34 0 179 63 992 0 0 1460 11 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.02 0.00 0.11 0.04 0.31 0.00 0.00 0.46 0.46 **** **** Crit Moves: *******************

11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #21 Compton Ave & El Segundo Blvd												
Cycle (sec): 100 Critical Vol./Cap.(X): 0.925												
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx												
Optimal Cycle	l Cycle: 114 Level Of Service: E											

Approach:	North Bound South Bound East Bound West Bound											
Movement:	L ·	_	- R	_		- R		- T		-	- Т	
						17						
Control:	Permitted Permitted Permitted Permitted											
Rights:	Include Include Include Include											
Min. Green:	0	0	0		0	0	-	0	0	0		0
Y+R:	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0
Lanes:	1 (_				1 0	1 (-	1 0	1 () 1	1 0
77-1 M-2-1	1									E. T. C. C.		
Volume Module		100	27	136	69	276	148	594	93	12	927	111
Base Vol: Growth Adj:	172	102	1.01		1:01	1.01		1.01	1.01	1.01		1.01
Initial Bse:	174	103	27	137	70	279	149	600	94	1.01	936	112
Added Vol:	1/4	103	0	18	0	53	93	6	0	0	13	32
PasserByVol:	0	18	0	0	8	10	15	0	0	0	0	0
Initial Fut:	174	121	27	155	78	342	257	606	94	12	949	144
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00	-	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	174	121	27	155	78	342	257	606	94	12	949	144
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	174	121	27	155	78	342	257	606	94	12	949	144
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	174	121	27	155	78	342	257	606	94	12	949	144
Saturation F												
Sat/Lane:	1600	1600	1600	1600	1600	1600		1600	1600	1600		1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00		1.00
Lanes:		1.63	0.37		1.00	1.00		1.73	0.27	1.00		0.26
Final Sat.:		2612	588	W	1600	1600	77.9	2771	429	1600	2778	422
Capacity Ana.	-											
Vol/Sat:		0.05	0.05	0.10	0.05	0.21	0.16	0.22	0.22	0.01	0.34	0.34
Crit Moves:	****					***						
*****	****	****	*,*****	****	****	****	***	****		****		

Crit Moves: ****

Willowbrook Existing+Project Conditions - AM Peak 11-1-2016

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************

Intersection #33 Wilmington Ave & Rosecrans Ave ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh):

10 Loss Time (sec): Optimal Cycle: 116 Level Of Service:

************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: 95 614 99 462 119 138 813 189 103 124 900 Base Vol: Initial Bse: 96 620 Added Vol: 0 141 PasserByVol: 0 61 191 100 467 104 125 909 120 139 821 0 30 92 6 7 0 0 0 50 0 9 26 5 11 0 0 0 0 21 Initial Fut: 96 822 120 178 939 202 118 467 104 125 909 170 PHF Volume: 96 822 120 178 939 202 118 467 104 125 909 170 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 96 822 120 178 939 202 118 467 104 125 909 170 FinalVolume: 96 822 120 178 939 202 118 467 104 125 909 170 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.29 0.29 0.11 0.36 0.36 0.07 0.15 0.07 0.08 0.34 0.34

**** *****************

Existing+Project Conditions - AM Peak 11-1-2016

-----Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #42 Willowbrook Ave & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 18 98 6 906 19 145 83 35 29 35 1157 Initial Bse: 18 99 19 146 84 35 6 915 29 35 1169 149
Added Vol: 0 0 0 4 0 0 0 30 0 0 50 2
PasserByVol: 0 2 0 2 1 0 0 7 0 0 17 5
Initial Fut: 18 101 19 152 85 35 6 952 29 35 1236 156 PHF Volume: 18 101 19 152 85 35 6 952 29 35 1236 156 FinalVolume: 18 101 19 152 85 35 6 952 29 35 1236 156 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.09 0.09 0.10 0.17 0.17 0.00 0.31 0.31 0.02 0.44 0.44 Crit Moves: **** **** *****************

Willowbrook Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************** Intersection #55 El Segundo Blvd & Santa Fe Ave ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 40 Average Low, Level Of Service: Average Delay (sec/veh): ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 143 356 27 16 451 64 62 115 163 46 114 33 Initial Bse: 143 356 27 16 451 64 62 115 163 46 114 33 Reduced Vol: 143 356 27 16 451 64 62 131 163 46 139 33 FinalVolume: 143 356 27 16 451 64 62 131 163 46 139 33 _____ Saturation Flow Module: Lanes: 1.00 1.86 0.14 1.00 1.75 0.25 0.17 0.37 0.46 0.21 0.64 0.15 Final Sat.: 1600 2974 226 1600 2802 398 279 589 733 338 1020 Capacity Analysis Module: Vol/Sat: 0.09 0.12 0.12 0.01 0.16 0.16 0.04 0.22 0.22 0.03 0.14 0.14 Crit Moves: **** **** ******************

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #56 Alameda St & Rosecrans Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 43 *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include</t _____| Volume Module: PHF Volume: 130 662 0 0 918 115 104 0 208 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 130 662 0 0 918 115 104 0 208 0 0 FinalVolume: 130 662 0 0 918 115 104 0 208 0 0 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.21 0.00 0.00 0.32 0.32 0.07 0.00 0.13 0.00 0.00 0.00 Crit Moves: **** **** **** ************************

Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #57 Central Ave & W Compton Bvld ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 60 Average Delay (sec/veh): Level Of Service: 60 ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Inclu Volume Module: Initial Bse: 182 573 83 138 655 148 104 345 138 164 758 Added Vol: 0 33 0 0 22 0 0 0 0 0 0 PasserByVol: 0 12 0 0 5 0 1 1 0 0 0 Initial Fut: 182 618 83 138 682 148 105 346 138 164 758 120 164 758 120 Reduced Vol: 182 618 83 138 682 148 105 346 138 164 758 120 FinalVolume: 182 618 83 138 682 148 105 346 138 164 758 120 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.22 0.22 0.09 0.21 0.09 0.07 0.11 0.09 0.10 0.27 0.27 Crit Moves: **** **** *** *******************

Willowbrook Existing+Project Conditions - AM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #58 Wilmington Ave & W Compton Blvd ************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.737 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 55 **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 86 460 169 179 718 128 70 515 127 133 682 Added Vol: 0 141 PasserByVol: 0 48 0 92 3 20 0 0 0 1 0 0 0 0 0 0 0 0 7 48 Initial Fut: 86 649 169 182 830 128 71 515 127 133 682 Reduced Vol: 86 649 169 182 830 128 71 515 127 133 682 146 FinalVolume: 86 649 169 182 830 128 71 515 127 133 682 146 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.73 0.27 1.00 1.60 0.40 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 2772 428 1600 2567 633 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.20 0.11 0.11 0.30 0.30 0.04 0.20 0.20 0.08 0.21 0.09 Crit Moves: **** **** *** ***********

Willowbrook Existing+Project Conditions - AM Peak

2-9-17

7			Level O	f Car	rice (omnuta	tion I	enort	-			
TCII 1	(Togg		vcle Le			_		_		rnatio	ر م ا	
*******		-		_	-							*****
Intersection												
*******						-		****	*****	****	****	*****
Cycle (sec):			00			Critic						536
Loss Time (se	٠. (ع		10					, ,	ec/veh)			
Optimal Cycle			35			Level		_		•	101313	A
******				****	****				-	****	****	
Approach:		rth Bo			ith Bo			ast Bo			est Bo	
Movement:			- R			- R			- R		- T	
Control:		Permit			Permit		P			•	ermit	,
Rights:		Incl		•	Incli			Incl			Incl	
Min. Green:	0		0	0		0	0	0	0	0	0	0
Y+R:	4.0	-	4.0	4.0		4.0			4.0	4.0		4.0
Lanes:		0 1!			0 0) 1	1 0
											-	
Volume Module				1		,	1		'	1		1
Base Vol:	24	117	6	0	179	67	24	627	63	0	764	29
Growth Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	24	117	6	0	179	67	24	627	63	0	764	29
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0
PasserByVol:	5	2	0	0	1	0	0	1	2	0	2	0
Initial Fut:	29	119	6	0	180	67	24	628	65	0	766	29
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	29	119	6	0	180	67	24	628	65	0	766	29
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	29	119	6	0	180	67	24	628	65	0	766	29
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	29	119	6	0	180	67	24	628	65	0	766	29
Saturation F	low Mo	odule	:			8						181
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.19	0.77	0.04	0.00	0.73	0.27	1.00	2.72	0.28	0.00	1.93	0.07
	301		62	-	1166	434	1600	4350	450	0	3083	117
Capacity Anal	lysis	Modu:	le:									
Vol/Sat:	0.02	0.10	0.10	0.00	0.15	0.15		0.14	0.14	0.00	0.25	0.25
Crit Moves:	****				****		***				***	
*****	****	****	*****	****	*****	*****	****	****	*****	****	****	*****

Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #60 Central Ave & Alondra Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 59 *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Incl Volume Module: Initial Bse: 142 524 69 173 795 130 75 327 120 85 735 Added Vol: 0 33 0 0 22 0 0 0 0 0 0 PasserByVol: 0 5 0 0 2 0 1 1 0 0 0 PHF Volume: 142 562 69 173 819 130 76 328 120 85 735 204 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 142 562 69 173 819 130 76 328 120 85 735 204 FinalVolume: 142 562 69 173 819 130 76 328 120 85 735 204 ********** Saturation Flow Module: Lanes: 1.00 1.78 0.22 1.00 1.73 0.27 1.00 1.46 0.54 1.00 2.00 1.00 Final Sat.: 1600 2850 350 1600 2762 438 1600 2343 857 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.09 0.20 0.20 0.11 0.30 0.30 0.05 0.14 0.14 0.05 0.23 0.13 Crit Moves: **** **** **** ******************

Willowbrook Existing+Project Conditions - AM Peak

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #61 Wilmington Ave & Alondra Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 84 Average Doll, Level Of Service: Average Delay (sec/veh): ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 104 444 142 170 833 87 100 498 105 137 850 142 Initial Bse: 104 444 142 170 833 87 100 498 105 137 850 142 Reduced Vol: 104 623 142 172 940 87 101 498 105 137 850 FinalVolume: 104 623 142 172 940 87 101 498 105 137 850 147 _____ Saturation Flow Module: Lanes: 1.00 1.63 0.37 1.00 1.83 0.17 1.00 2.00 1.00 1.00 1.71 0.29 Final Sat.: 1600 2606 594 1600 2929 271 1600 3200 1600 1600 2728 Capacity Analysis Module: Vol/Sat: 0.07 0.24 0.24 0.11 0.32 0.32 0.06 0.16 0.07 0.09 0.31 0.31 Crit Moves: **** **** Crit Moves: **** ******************** Willowbrook Existing+Project Conditions - AM Peak

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************

Intersection #62 Wilmington Ave & Greenleaf Blvd ********************

Cycle (sec): 100
Loss Time (sec): 10
Optimal Cycle: 74 Critical Vol./Cap.(X): 0.829 Average Delay (sec/veh): xxxxxx Level Of Service: D

******	***	****	*****	****	*****	*****	****	****	*****	*****	****	*****
Approach:	No	rth Bo	ound	Sou	ith Bo	ound	Εá	ast B	ound	We	est Bo	ound
Movement:	L	- T	- R	L ·	- Т	- R	L ·	- T	- R	L -	- T	- R
Control:	9	Permit	ted	· 1	Permit	ted]	Permi	tted	I	Permit	ted
Rights:		Inclu	ıde		Inclu	ıde		Incl	ude		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Min. Green: Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1	0 2	0 1	1 () 1	1 0	1 (0 0	1 0	1 (0 0	1 0
Lanes:												
Volume Module												
Base Vol:				104	1031	21	38	192	86			
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			1.00	1.00
Initial Bse:				104		21				276		74
Added Vol:	0	141	0	0	92	0	0	0	0	0		
PasserByVol:	0	30	0					0	0	0	0	
Initial Fut:	35	642	114	105	1135	21	38	192	86	276	361	76
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00			1.00	1.00
PHF Adj:	1.00	1.00	1.00		1.00	1.00		1.00			1.00	1.00
PHF Volume:	35	642	114	105	1135	21	38	192	86	276	361	76
Reduct Vol:	0	0			0	0	0	0	0	0	0	0
Reduced Vol:	35	642	114			21						
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	
MLF Adj:						1.00					1.00	
FinalVolume:												
Saturation Fl												
Sat/Lane:						1600					1600	
Adjustment:						1.00					1.00	
Lanes:	1.00	2.00	1.00			0.04					0.83	
Final Sat.:	1600	3200	1600						495			278
	N. C.											
Capacity Anal												
Vol/Sat:	0.02	0.20	0.07	0.07	0.36						0.27	0.27
Crit Moves:										****		
*****	***	****	*****	****	****	*****	****	****	*****	*****	*****	****

Willowbrook Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #63 Wilmington Ave & Walnut St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.627 Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 42 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 81 530 41 33 1228 87 26 60 58 24 95 46 Initial Bse: 81 530 41 33 1228 87 26 60 58 24 95 46 41 41 33 1332 87 26 60 0 0 0 0 0 0 PHF Volume: 81 701 Reduct Vol: 0 0 24 95 58 0 0 0 0 Ω 0 Reduced Vol: 81 701 41 33 1332 87 26 60 58 24 95 FinalVolume: 81 701 41 33 1332 87 26 60 58 24 95 46 Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 1600 1600 1600 2156 1044 _____ Capacity Analysis Module: Vol/Sat: 0.05 0.22 0.03 0.02 0.42 0.05 0.02 0.04 0.04 0.02 0.04 0.04 Crit Moves: **** **** **** **************

Mil 7 aukusala

Willowbrook Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #64 Central Ave & Greenleaf Blvd ************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 50 Average Delay (sec/veh): Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 0 467 76 137 976 0 0 0 206 0 191 FinalVolume: 0 505 76 137 1000 0 0 0 206 0 191 Saturation Flow Module: Final Sat.: 0 3200 1600 1600 3200 0 0 0 1600 0 1600 _____ Capacity Analysis Module: Vol/Sat: 0.00 0.16 0.05 0.09 0.31 0.00 0.00 0.00 0.00 0.13 0.00 0.12 Crit Moves: *** *********************

Crit Moves: ****

Willowbrook Existing+Project Conditions - AM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #65 Willowbrook Ave & Alondra Blvd *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.535 Loss Time (sec): 10 Optimal Cycle: 35 Average Delay (sec/veh): Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R -----Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 1! 0 0 0 0 1! 0 0 1 0 2 0 1 0 0 1 1 0 Volume Module: Base Vol: 11 68 29 33 102 44 26 666 24 0 913 36 Initial Bse: 11 68 29 33 102 44 26 666 24 0 913 36 FinalVolume: 11 75 29 33 105 44 26 669 24 0 918 36 ______ Saturation Flow Module: Lanes: 0.10 0.65 0.25 0.18 0.58 0.24 1.00 2.00 1.00 0.00 1.92 0.08 Final Sat.: 153 1043 403 290 923 387 1600 3200 1600 0 3079 121 Capacity Analysis Module: Vol/Sat: 0.01 0.07 0.07 0.02 0.11 0.11 0.02 0.21 0.02 0.00 0.30 0.30

Willowbrook Existing+Project Conditions - AM Peak 2-9-17

Cycle (sec): 100 Critical Vol./Cap.(X): 0.641
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 44 Level Of Service: B

***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 73 415 105 48 659 59 21 190 107 264 313 34 Growth Auj.
Initial Bse: 73 415
Added Vol: 0 44 0
77 483 105 Initial Bse: 73 415 105 48 659 59 21 190 107 264 313 0 30 0 0 10 0 48 699 59 0 0 0 1 21 191 0 0 0 0 0 2 264 315 107 PHF Volume: 73 483 105
Reduct Vol: 0 0 0 48 699 59 21 191 107 264 315 0 0 0 0 0 0 0 0 0 Reduced Vol: 73 483 105 48 699 59 21 191 107 264 315 FinalVolume: 73 483 105 48 699 59 21 191 107 264 315 34 Saturation Flow Module: Lanes: 1.00 1.64 0.36 1.00 1.84 0.16 1.00 1.28 0.72 1.00 1.00 1.00 Final Sat.: 1600 2629 571 1600 2951 249 1600 2051 1149 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.18 0.18 0.03 0.24 0.24 0.01 0.09 0.09 0.17 0.20 0.02 Crit Moves: **** *** ****

EWP AN FEAR INC NOV 1, 2010 13.20.40 Fage 47 1

Willowbrook

Existing+Project Conditions - AM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #44 Alameda St & Abbott Rd **************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 47 Level Of Service: Average Delay (sec/veh): ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 0 752 220 150 940 1 2 2 2
Added Vol: 0 30 0 0 44 0 0 0
PasserByVol: 0 5 7 0 6 0 0 0
Initial Fut: 0 787 227 150 990 1 2 2 470 1 0 13 · 0 0 483 1 PHF Volume: 0 787 227 150 990 1 2 2 2 483 1 254 Reduct Vol: 0 787 227 150 990 1 2 2 2 483 1 254 FinalVolume: 0 787 227 150 990 1 2 2 483 1 254 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.32 0.09 0.31 0.31 0.00 0.00 0.00 0.15 0.15 0.16 Crit Moves: **** **** ******************

Willowbrook Existing+Project Conditions - AM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #53 Imperial Hway & Fernwood Ave ******************* Critical Vol./Cap.(X): Cycle (sec): 100 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10
Optimal Cycle: 58 ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 60 40 3 159 45 17 23 665 45 2 1289 124 Initial Bse: 60 40 3 159 45 17 23 665 45 2 1289
Added Vol: 0 0 0 0 0 0 0 37 0 0 55
PasserByVol: 0 0 0 0 0 0 0 8 0 0 23
Initial Fut: 60 40 3 159 45 17 23 710 45 2 1367 124 Reduced Vol: 60 40 3 159 45 17 23 710 45 2 1367 FinalVolume: 60 40 3 159 45 17 23 710 45 2 1367 124 Saturation Flow Module: ______ Capacity Analysis Module: *******************

Willowbrook Existing+Project Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #54 Imperial Hwy & State St ******************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delw,
Level Of Service: Loss Time (sec): 10
Optimal Cycle: 60 Average Delay (sec/veh): ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Inclu Volume Module: Base Vol: 15 240 134 106 367 271 98 736 3 114 1141 37 Initial Bse: 15 240 134 106 367 271 98 736 3 114 1141 37 Added Vol: 0 0 0 0 0 0 0 37 0 0 55 0 PasserByVol: 0 0 0 0 0 2 3 0 5 0 21 0 Initial Fut: 15 240 134 106 367 273 101 773 8 114 1217 37 PHF Volume: 15 240 134 106 367 273 101 773 8 114 1217 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 15 240 134 106 367 273 101 773 8 114 1217 37 FinalVolume: 15 240 134 106 367 273 101 773 8 114 1217 37 Saturation Flow Module: Lanes: 1.00 1.28 0.72 1.00 1.15 0.85 1.00 1.98 0.02 1.00 1.94 0.06 Final Sat.: 1600 2053 1147 1600 1835 1365 1600 3167 33 1600 3106 94 _____ Capacity Analysis Module: Vol/Sat: 0.01 0.12 0.12 0.07 0.20 0.20 0.06 0.24 0.24 0.07 0.39 0.39 Crit Moves: **** *** ******************

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #3 Avalon Blvd & El Segundo ****************** Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 90 Level Of Service: XXXXXX *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1 0 2 1 0 1 0 2 1 0 1 0 2 1 0 _____ Volume Module:

93 134 1370 104 102 461 112 121 704 170 148 531 Initial Bse: 122 711 172 149 536 94 135 1384 105 103 466 113 0 19 54 Added Vol: 0 8 13 0 10 0 0 40 PasserByVol: 0 8 0 0 16 0 0 20 0 727 185 149 562 94 135 1444 105 122 558 0 0 0 0 0 0 0 0 0 0 0 PHF Volume: 122 727 Reduct Vol: 0 0 113 Reduced Vol: 122 727 185 149 562 94 135 1444 105 122 558 113 FinalVolume: 122 727 185 149 562 94 135 1444 105 122 558 113 ______|___| Saturation Flow Module:

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #4 Avalon Blvd & Rosecrans Ave ************ Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 132 625 158 217 484 59 124 1148 112 86 469 Initial Bse: 133 631 160 219 489 60 125 1159 113 87 474 0 FinalVolume: 133 654 160 219 523 64 128 1180 113 87 505 120 Saturation Flow Module: Lanes: 1.00 1.61 0.39 1.00 1.78 0.22 1.00 2.74 0.26 1.00 2.42 0.58 Final Sat.: 1600 2573 627 1600 2853 347 1600 4380 420 1600 3877 923 Capacity Analysis Module: Vol/Sat: 0.08 0.25 0.25 0.14 0.18 0.18 0.08 0.27 0.27 0.05 0.13 0.13 Crit Moves: **** **** **** **************

Existing+Project Conditions - PM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #10 Central Ave & El Segundo Blvd ****************** Cycle (sec): Critical Vol./Cap.(X): 100 Loss Time (sec): 10
Optimal Cycle: 172 Average Delay (sec/veh): XXXXXX Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Permitted Permitted
Rights: Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 ______ Volume Module: Base Vol: 82 634 213 178 655 153 195 1238 145 86 483 79 180 662 155 0 12 0 0 53 0 36 11 11 10 ---- 166 208 1313 Initial Bse: 83 640 215 180 662 155 197 1250 146 87 488 36 25 Added Vol: 0 9 0 73 0 0 0 29 PasserByVol: 19 0 0 240 Reduced Vol: 83 668 240 180 710 166 208 1313 146 123 590 FinalVolume: 83 668 240 180 710 166 208 1313 146 123 590 80 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.28 0.28 0.11 0.27 0.27 0.13 0.41 0.09 0.08 0.21 0.21 Crit Moves: **** **** **** ********************

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #11 Central Ave & Rosecrans Ave ************ Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 63 Level Of Service: XXXXXX **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include</t Volume Module: Base Vol: 138 567 111 181 706 107 148 1164 177 109 466 114 Reduced Vol: 139 613 112 183 774 124 159 1188 179 110 486 115 FinalVolume: 139 613 112 183 774 124 159 1188 179 110 486 115 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 2.61 0.39 1.00 1.62 0.38 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 4172 628 1600 2587 613 Capacity Analysis Module: Vol/Sat: 0.09 0.19 0.07 0.11 0.24 0.08 0.10 0.28 0.28 0.07 0.19 0.19 Crit Moves: **** **** **** ***************

Existing+Project Conditions - PM Peak 11-1-2016

		11-1	2016				

				tion Repor			
	as Cycle Le						
******			*****	*****	*****	*****	*****
Intersection #12 S							
******		*****					
01000 (000)	100			al Vol./Ca	-	0.4	
Loss Time (sec):	10			re Delay (s		: XXXX	
Optimal Cycle:	32			Of Service	-		A

	rth Bound	South E		East B		West Bo	
	- T - R	L - T				L - T	
		,		1	,	•	
	Permitted		tted.	Permi		Permit	
Rights:	Include	Incl		Incl		Inclu 0 0	
Min. Green: 0	0 0	0 0	_	0 0	0	0 0	0 4.0
Y+R: 4.0		4.0 4.0		4.0 4.0			
Lanes: 0 (1747
Volume Module:	7 31	10 6	16	9 397	21	23 680	19
Base Vol: 15	. 0-	12 6 1.01 1.01		9 397 1.01 1.01	1.01	1.01 1.01	1.01
Growth Adj: 1.01 Initial Bse: 15	7 31	1.01 1.01		9 401	21	23 687	19
Added Vol: 0	0 0	0 0		0 54	0	0 66	0
	0 12	6 0	_	0 134	0	23 249	11
PasserByVol: 0 Initial Fut: 15	7 43	18 6	•	9 589	21	46 1002	30
	1.00 1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00
PHF Adj: 1.00		1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00
PHF Volume: 15	7 43	1.00 1.00		9 589	21	46 1002	30
Reduct Vol: 0	0 0	0 0		0 0	0	0 0	0
Reduced Vol: 15	7 43	18 6		9 589	21	46 1002	30
	1.00 1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00
3	1.00 1.00	1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00
FinalVolume: 15	7 43	18 6		9 589	21	46 1002	30
Final volume. 15							
Saturation Flow Mo							
	1600 1600	1600 1600	1600	1600 1600	1600	1600 1600	1600
Adjustment: 1.00		1.00 1.00		1.00 1.00	1.00	1.00 1.00	1.00
7	0.11 0.66	0.45 0.15		1.00 1.93	0.07	1.00 1.94	0.06
Final Sat.: 370	173 1057	719 240		1600 3089	111	1600 3106	94
				1000 3003			
Capacity Analysis					and the second second	I was a second	1)
	0.04 0.04	0.01 0.03	0.03	0.01 0.19	0.19	0.03 0.32	0.32
Crit Moves:	****	****		****		****	
*********	*****	*****	*****	*****	*****	****	*****

Existing+Project Conditions - PM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #17 Compton Ave & Imperial Hwy ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.954 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 137 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R______ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 98 304 167 214 257 101 78 1434 86 63 735 Initial Bse: 99 307 169 216 260 102 79 1448 87 64 742 234 Reduced Vol: 273 391 238 220 313 102 79 1499 192 115 802 237 FinalVolume: 273 391 238 220 313 102 79 1499 192 115 802 237 Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 0.75 0.25 1.00 2.66 0.34 1.00 1.54 0.46 Final Sat.: 1600 1600 1600 1600 1206 394 1600 4255 545 1600 2470 730 Capacity Analysis Module: Vol/Sat: 0.17 0.24 0.15 0.14 0.26 0.26 0.05 0.35 0.35 0.07 0.32 0.32 Crit Moves: **** **** **** *******************

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #18 Compton Ave & 118th St ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.522 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 35 Level Of Service: XXXXXX ************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 7 477 49 44 311 7 9 13 7 44 14 Initial Bse: 7 482 49 44 314 7 9 13 7 44 14 46 PHF Volume: 18 561 115 82 392 7 9 13 13 139 14 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 18 561 115 82 392 7 9 13 13 139 14 0 FinalVolume: 18 561 115 82 392 7 9 13 13 139 14 82 Saturation Flow Module: Lanes: 0.05 1.62 0.33 0.34 1.63 0.03 0.26 0.37 0.37 0.59 0.06 0.35 Final Sat.: 83 2584 532 548 2605 47 412 595 593 945 96 559 _____ Capacity Analysis Module: Vol/Sat: 0.01 0.22 0.22 0.05 0.15 0.15 0.01 0.02 0.02 0.09 0.15 0.15 Crit Moves: **** *** *******************

Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #19 Compton Ave & 120th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.817 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 71 Level Of Service: xxxxxx ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 65 241 70 78 281 69 45 273 89 136 416 111 Initial Bse: 66 243 71 79 284 70 45 276 90 137 420 112 Added Vol: 0 78 5 3 122 25 17 37 0 9 41 FinalVolume: 66 321 99 114 406 95 62 473 90 200 760 177 Saturation Flow Module: Lanes: 1.00 1.53 0.47 1.00 1.62 0.38 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 1600 2448 752 1600 2595 605 1600 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.04 0.13 0.13 0.07 0.16 0.16 0.04 0.30 0.06 0.13 0.48 0.11 **** Crit Moves: **** *************

Existing+Project Conditions E PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #20 Compton Ave & 124th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10 Optimal Cycle: 26 XXXXXX Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 0 349 25 46 302 4 1 4 3 17 3 Initial Bse: 0 352 25 46 305 4 1 4 3 17 3 Added Vol: 0 82 PasserByVol: 0 22 Initial Fut: 0 456 0 0 131 0 0 0 0 0 51 0 0 0 25 46 487 4 1 4 0 0 3 0 0 0 3 17 FinalVolume: 0 456 25 46 487 4 1 4 3 17 3 42 ------Saturation Flow Module: Lanes: 0.00 1.90 0.10 0.17 1.81 0.02 0.12 0.50 0.38 0.27 0.05 0.68 Final Sat.: 0 3032 168 277 2899 24 200 800 600 439 77 1084 Capacity Analysis Module: Vol/Sat: 0.00 0.15 0.15 0.03 0.17 0.17 0.00 0.01 0.01 0.01 0.04 0.04 Crit Moves: **** **** *******************

Existing+Project Conditions = PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #26 Wilmington Ave & Imperial Hwy **************** Critical Vol./Cap.(X): 0.820 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 71 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 159 451 47 30 618 70 137 15 375 0 Ω Initial Bse: 161 456 47 30 624 71 138 15 379 0 0 Added Vol: 12 24 0 0 178 4 10 0 67 0 0 PasserByVol: 21 47 0 0 127 0 0 0 11 0 0 Initial Fut: 194 527 47 30 929 75 148 15 457 0 67 0 FinalVolume: 194 527 47 30 929 75 148 15 457 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.12 0.18 0.18 0.02 0.31 0.31 0.09 0.01 0.29 0.00 0.00 Crit Moves: **** ****

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #27 Wilmington Ave & I-105 e/b Ramps ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 179 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 326 902 0 0 529 421 328 0 179 0 Initial Bse: 329 911 0 0 534 425 331 0 181 0 0 0 FinalVolume: 639 1377 0 0 856 485 334 0 354 0 0 Saturation Flow Module: Final Sat.: 1600 4800 0 0 3200 3200 1600 0 1600 0 0 Capacity Analysis Module: Vol/Sat: 0.40 0.29 0.00 0.00 0.27 0.15 0.21 0.00 0.22 0.00 0.00 0.00 Crit Moves: **** *** *** **************

Willowbrook Existing+Project Conditions - PM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #28 Wilmington Ave & 118th St ************** Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 180 Level Of Service: XXXXXX ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R_____ Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 ______ Volume Module: Base Vol: 28 992 84 132 547 32 108 50 50 37 44 137 Initial Bse: 28 1002 85 133 552 32 109 51 51 37 44 2 Added Vol: 147 39 29 64 17 230 315 2 203 19 0 0 PasserByVol: 0 379 0 0 186 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 197 755 262 424 53 254 56 46 182 Reduced Vol: 175 1420 FinalVolume: 175 1420 114 197 755 262 424 53 254 56 46 182 -----Saturation Flow Module: Lanes: 1.00 2.78 0.22 2.00 1.48 0.52 0.58 0.07 0.35 0.55 0.45 1.00 Final Sat.: 1600 4444 356 2880 2375 825 929 115 556 877 723 1600 Capacity Analysis Module: Vol/Sat: 0.11 0.32 0.32 0.07 0.32 0.32 0.27 0.46 0.46 0.04 0.06 0.11 *** Crit Moves: **** *** *** ******************** -----Willowbrook

Existing+Project Conditions - PM Peak 11-1-2016

					11-1	2010						
				·								
			Level O								,	
			ycle Le									6 4 6 1 1 6
******								****	*****	*****	****	*****
Intersection												
******	****			****	****					*****		
Cycle (sec):			00			Critic	al Vol	l./Caj	o.(X):		0.9	
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	
Optimal Cycle	∋:		21			Averag Level	Of Se	rvice	:			E
*****	****	****	*****	****	****	*****	****	****	*****			
Approach:	No	rth Bo	ound					ast Bo	ound	₩e	est Bo	ound
Movement:			- R	Ъ -	- T	- R	L ·		- R		- T	
Control:		?ermit	tted	. 1	ermit	ted		Permi	ted	I	ermit?	
Rights:		Incl	ıde		Inclu	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:			4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 () 1	1 0	1 () 1	1 0	1 (0 1	0 1	1 (1	0 1
											-	
Volume Module	•		'			'	'		'			,
Base Vol:	74	718	80	79	485	45	295	298	184	91	146	136
Growth Adj:	1.01		1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:		725	81	80	490	45	298	301	186	92	147	137
Added Vol:	8	185	2	3	230	5	27	20	17	5	18	2
PasserByVol:	0		0	0	93	103	110	20	0	7	11	0
Initial Fut:		1199	83	83	813	153	435	341	203	104	176	139
User Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
•	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:		1199	83	83	813	153	435	341	203	104	176	139
Reduct Vol:	0	0	0	0	0	0	0	0	× 0	0	0	0
Reduced Vol:		1199	83	83	813	153	435	341	203	104	176	139
PCE Adi:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
3	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj: FinalVolume:		1199	83	83	813	153	435		203	104		139
Finalvolume:												
			,				3.55.2.3					
Saturation Fl				1600	1600	1600	1600	1600	1600	1600	1600	1600
Sat/Lane:		1600	1600		1600						1.00	1.00
Adjustment:			1.00		1.00	1.00		1.00	1.00			
Lanes:	1.00		0.13		1.68	0.32		1.00	1.00		1.00	1.00
Final Sat.:			207		2692	508		1600			1600	1600
							1			1		
Capacity Anal					0 00	0 20	0 07	0 01	0 10	0 00	0 17	0 00
Vol/Sat:	0.05	0.40	0.40		0.30	0.30	0.27	0.21	0.13	0.06	****	0.09
Crit Moves:		****		****						6 6 6 6 7		
******	****	****	*****	****	****	*****	****	****	*****	****	*****	*****

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #30 Wilmington Ave & 120th St (East) *************** Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 58 Level Of Service: xxxxxx ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R_____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 5.0 1.0 1.0 1.0 1.0 1.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.0 1.0 0.1 0.0 0 ______| Volume Module: Base Vol: 8 807 17 35 707 16 53 2 14 2 0 Initial Bse: 8 815 17 35 714 16 54 2 14 2 0 15 0 20 FinalVolume: 121 1005 19 41 960 116 343 49 229 3 24 20 Saturation Flow Module: Lanes: 1.00 1.96 0.04 1.00 1.78 0.22 0.87 0.13 1.00 0.06 0.51 0.43 Final Sat.: 1600 3140 60 1600 2855 345 1400 200 1600 102 814 683 Capacity Analysis Module: Vol/Sat: 0.08 0.32 0.32 0.03 0.34 0.34 0.21 0.24 0.14 0.00 0.03 0.03 Crit Moves: **** **** ****************

Willowbrook Existing+Project Conditions - PM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #31 Wilmington Ave & 124th St **************** Critical Vol./Cap.(X): Cycle (sec): 100 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10
Optimal Cycle: 41 XXXXXX ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____| Volume Module: Base Vol: 21 757 46 64 615 18 13 43 20 35 47 Initial Bse: 21 765 46 65 621 18 13 43 20 35 47 0 0 0 0 0 Ω 0 Added Vol: 0 192 0 0 248 0 0 0 20 PasserByVol: 0 86 0 38 165 0 0 35 13 43 20 0 PHF Volume: 21 1043 46 103 1034 18 35 47 0 0 Reduct Vol: 0 0 Reduced Vol: 21 1043 0 0 0 46 103 1034 0 0 0 0 18 13 43 20 35 47 69 FinalVolume: 21 1043 46 103 1034 18 13 43 20 35 47 69 Saturation Flow Module: Lanes: 1.00 1.91 0.09 1.00 1.97 0.03 0.17 0.57 0.26 0.23 0.31 0.46 Final Sat.: 1600 3063 137 1600 3145 55 274 905 421 371 499 730 Capacity Analysis Module: Vol/Sat: 0.01 0.34 0.34 0.06 0.33 0.33 0.01 0.05 0.05 0.02 0.10 0.10 *** Crit Moves: **** *** ***************

Willowbrook Existing+Project Conditions = PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************ Intersection #32 Wilmington Ave & El Segundo Blvd ***************** Critical Vol./Cap.(X): Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 113 Level Of Service: xxxxxx **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 144 579 83 101 480 86 182 927 326 44 296 Initial Bse: 145 585 84 102 485 87 184 936 329 44 299 69 0 6 39 Added Vol: 16 139 0 52 187 8 14 7 27 95
 84
 186
 799
 95
 198
 943
 356
 44
 305
 124

 0
 0
 0
 0
 0
 0
 0
 0
 0

 84
 186
 799
 95
 198
 943
 356
 44
 305
 124
 PHF Volume: 161 790 Reduct Vol: 0 0 Reduced Vol: 161 790 FinalVolume: 161 790 84 186 799 95 198 943 356 44 305 124 Saturation Flow Module: Lanes: 1.00 1.81 0.19 1.00 1.79 0.21 1.00 1.45 0.55 1.00 1.42 0.58 Final Sat.: 1600 2893 307 1600 2860 340 1600 2323 877 1600 2277 923 Capacity Analysis Module: Vol/Sat: 0.10 0.27 0.27 0.12 0.28 0.28 0.12 0.41 0.41 0.03 0.13 0.13 *** Crit Moves: **** *** ****

Crit Moves: ****

Willowbrook

Existing+Project Conditions - PM Peak 11-1-2016

11-1-2016 Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) *********** Intersection #34 Willowbrook Ave W & 119th Street ************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 33 Level Of Service: XXXXXX **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ Volume Module: 0 323 93 11 163 Base Vol: 50 0 17 0 28 56 Initial Bse: 51 0 17 0 28 57 0 326 94 11 165 0 Added Vol: 12 0 0 0 0 0 0 11 9 0 17 0 PasserByVol: 0 0 0 0 0 0 0 19 0 0 17 0 Initial Fut: 63 0 17 0 28 57 0 356 103 11 199 0 PHF Volume: 63 0 17 0 28 57 0 356 103 11 199
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 63 0 17 0 28 57 0 356 103 11 199 Saturation Flow Module: Lanes: 1.00 0.00 1.00 0.00 0.33 0.67 0.00 0.78 0.22 0.05 0.95 0.00 Final Sat.: 1600 0 1600 0 533 1067 0 1241 359 85 1515 0 Capacity Analysis Module: Vol/Sat: 0.04 0.00 0.01 0.00 0.05 0.05 0.00 0.29 0.29 0.01 0.13 0.00

**** ***

Crit Moves: ****

Willowbrook

Existing+Project Conditions - PM Peak 11-1-2016 _____ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #35 Willowbrook Ave E & 119th Street *************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Loss Time (sec): 10
Optimal Cycle: 28 XXXXXX Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< ______ Volume Module: Base Vol: 50 14 27 7 12 42 70 201 90 Initial Bse: 51 14 27 7 12 42 71 203 91 9 86 5 Added Vol: 0 1 0 0 1 3 6 5 0 0 14
PasserByVol: 0 0 0 0 0 0 0 19 0 0 17
Initial Fut: 51 15 27 7 13 45 77 227 91 9 117 0 14 0 0 17 0 - 5 Saturation Flow Module: Lanes: 0.55 0.16 0.29 0.11 0.20 0.69 1.00 0.71 0.29 1.00 0.96 0.04 Final Sat.: 870 261 470 172 320 1108 1600 1143 457 1600 1534 66 _____ Capacity Analysis Module: Vol/Sat: 0.03 0.06 0.06 0.00 0.04 0.04 0.05 0.20 0.20 0.01 0.08 0.08

**** ****

EWP PM Peak Tue Nov 1, 2016 13:29:56 Page 39-1 ______

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016

						2010						
			Level O	f Com	ri ao (Computa	tion I	Conord	_			
											\	
1CU 1			ycle Le									cara de tratado de de
								****	*****	*****	*****	
Intersection		-	_			-		****	*****	*****	****	*****
Cycle (sec):		10	00			Critic	al Vol	L./Car	o.(X):		0.9	918
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	cxx
Optimal Cycle		1:	10			Level	Of Se	rvice				E
******		****	*****	****	****	*****	****	****	*****	*****	****	*****
Approach:	No	rth Bo	าแทส	SOI	ith Bo	ound	Ea	ast Bo	bruc	We	est Bo	nınd
Movement:	L ·		- R	L ·		- R			- R		Т	
											_	
Control:			hase			nase	*	rotect			otect	
Rights:	Sp.	Incl		ъp.	Incl		F.	Ovl	Jea		Incli	
_	0			0			0	0	^	0	0	0
Min. Green:	_	0	0	0		0	_	_	0	-	-	_
Y+R:	4.0			4.0		4.0			4.0	4.0		4.0
Lanes:		7	0 1	. 0 (0 0		3	-	2 () 2	1 0
	1											
Volume Module												
Base Vol:	544	8	271	9	22	25		1612	339	596	812	1
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01		1.01	1.01	1.01		1.01
Initial Bse:	549	8	274	9	22	25	47	1628	342	602	820	1
Added Vol:	146	7	3	0	0	0	18	130	158	2	77	3
PasserByVol:	71	0	7	0	0	0	0	56	95	0	26	0
Initial Fut:	766	15	284	9	22	25	65	1814	595	604	923	4
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	766	15	284	9	22	· 25	65	1814	595	604	923	4
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	766	15	284	9	22	25	65	1814	595	604	923	4
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	766	15	284	9	22	25	65	1814	595	604	923	4
OvlAdjVol:									59	-		
							1					[]
Saturation Fl			,	1		1	1		1	,		
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:		0.90	1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lanes:		0.04	1.00		0.39	0.45	1.00		1.24	2.00		0.01
Final Sat.:	2824	56	1600	257	629	714	1600		1977	2880		21
					029	7 1 4	1600		19//	2000	ユ //フ	
Consider Anni				200000			lases.			1		
Capacity Anal	-			0 01	0 01	0 04	0 04	0 30	0 20	0 01	0 10	0 10
Vol/Sat:	0.27	0.27	0.18	0.04	0.04	0.04	0.04	0.30	0.30	0.21	0.19	0.19
OvlAdjV/S:								****	0.03	****		
Crit Moves:	****					***						
******	****	****	*****	****	*****	*****	****	****	*****	****	*****	*****

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016

			Level O									
									ne Alte			
*****									*****	*****	****	*****
Intersection									*****	*****	****	*****
Cycle (sec):		10	00			Critic	al Vol	L./Car	o.(X):		0.5	540
Loss Time (se	ec):		LO			Averag	e Dela	ay (se	ec/veh)	:	XXX	CXX
Optimal Cycle		3	36			Level	Of Ser	rvice	:			A
******	****	****	*****	****	****	*****	*****	****	*****	****	****	*****
Approach:	No	cth Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	W∈	est Bo	ound
Movement:		- Т		L -	_	- R			- R	L -		- R
Control:	1	ermit?	ted	I	Permit	ted	I	Permit	tted	I	Permit	ted
Rights:		Incl	ıde		Inclu	ıde		Inclu	ıde		Incl	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 (0 0	1 0	1 (0 0	1 0	1 (2	0 1	0 0	2	0 1
Volume Module	∋:											
Base Vol:	24	100	* 9	34	113	16	14	986	68	0	358	34
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01		1.01	1.01		1.01	1.01
Initial Bse:	24	101	9	34	114	16	14	996	69	0	362	34
Added Vol:	0	6	0	5	4	0	0	60	0	0	45	7
PasserByVol:	0	5	0	0	7	0	0	20	0	0	11	0
Initial Fut:	24	112	9	39	125	16		1076	69	0	418	41
User Adj:	1.00		1.00	1.00		1.00		1.00	1 00		1.00	1.00
PHF Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	24	112	9	39	125	16		1076	69	0	418	41
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	24	112	9	39	125	16		1076	69	0	418	41
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1:00		1.00	1.00
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	24	112	9	. 39	125	16		1076	69		418	41
	M/											
Saturation F										4.500	7.600	1.000
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600
Adjustment:	1.00		1.00	1.00		1.00		1.00	1.00		1.00	1.00
Lanes:	1.00		0.08		0.89	0.11		2.00	1.00		2.00	1.00
Final Sat.:		1480	120	100	1417	183		3200	1600		3200	1600
						[
Capacity Anal	-			0 00	0 00		0 01	0 0 0	0 04	0 00	0 7 7	0 00
Vol/Sat:		0.08	0.08	0.02	0.09	0.09	0.01	0.34	0.04	0.00	0.13	0.03
Crit Moves:	****				****			****	4.4.4.4.4.4.	****		
*****	****	****	*****	***	~ * * * * * * * * * * * * * * * * * * *	****	***			****		

Willowbrook Existing+Project Conditions - PM Peak 11-1-2016

		Т	evel 0	f Serv	rice (Computa	tion E	Report	-			
TCU 1	(Loss								ne Alte	rnativ	7e)	
*****	*****	****	****	****	****	*****	****	****	*****	****	****	*****
Intersection	#38 W	Villow	brook	Ave E	& El	Segund	o Blvo	i				
*****									*****	****	****	****
Cvcle (sec):		10	0.0			Critic	al Vo	L./Car	o.(X):		0.5	35
Loss Time (se	ac):	1	.0			Averag	e Dela	av (se	ec/veh)	:	XXXX	xx
Optimal Cycle	-		15			Level		_				A
*****				****	****	****	****	****	*****	****	****	*****
Approach:	Nor	th Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	We	est Bo	und
Movement:		- T				- R	L ·	- Т	- R	L -	- T	- R
Control:		Permit				ted					Permit	
Rights:		Inclu				ıde		Inclu			Inclu	ıde
Min. Green:	0		0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 0	0 0	1 0	1 (0 0	1 0	0 :	L 1	0 1	1 () 1	1 0
]						
Volume Module			'	r					·			1(*)
Base Vol:	12	55	33	32	80	14	0	981	44	34	372	39
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:		56	33	32	81	14	0	991	44	34	376	39
Added Vol:	0	0	0	0	0	1	1	64	0	0	51	0
PasserByVol:	0	3	0	0	6	0	0	20	0	0	11	0
Initial Fut:	12	59	33	32	87	15	1	1075	44	34	438	39
User Adj:	1.00	1.00	1 . 00	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1 00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	12	59	33	32	87	15	1	1075	44	34	438	39
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	12	59	33	32	87	15	1	1075	44	34	438	39
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1 00	1.00	1.00	1.00		1.00	1 . 00	1.00	1.00	1.00
FinalVolume:	12	59	33	32	87	15		1075	44	34	438	39
Saturation F	low Mo	dule:										
Sat/Lane:	1600	1600	1600	1600	1600	1600		1600	1600		1600	1600
Adjustment:	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Lanes:	1.00	0.64	0.36		0.85	0.15		1.99	1.00		1.83	0.17
Final Sat.:	1600		580		1362	238		3197			2936	264
Capacity Ana								_				
Vol/Sat:	0.01	0.06	0.06		0.06	0.06	0.00	0.34	0.03		0.15	0.15
Crit Moves:		****		***				****		***		
*****	*****	****	*****	****	****	*****	****	****	*****	****	****	****

Existing+Project Conditions - PM Peak 11-1-2016

11-1-2016
Tarrel Of Couries Computation Deposit
Level Of Service Computation Report
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)

Intersection #39 Mona Blvd & Imperial Hwy

Cycle (sec): 100 Critical Vol./Cap.(X): 0.875
Loss Time (sec): 10 Average Delay (sec/veh): XXXXXX
Cycle (sec): 100 Critical Vol./Cap.(X): 0.875 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx Optimal Cycle: 89 Level Of Service: D ***********************************

Approach: North Bound South Bound East Bound West Bound
Movement: L - T - R L - T - R L - T - R
Control: Permitted Permitted Permitted Permitted
Rights: Include Include Include Include
Min. Green: 0 0 0 0 0 0 0 0 0 0
Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
Lanes: 0 1 0 0 1 0 0 1! 0 0 1 0 2 1 0 1 0 2 1 0
Volume Module:
Base Vol: 184 67 247 54 68 72 94 1615 240 152 1110 43
Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0
Initial Bse: 186 68 249 55 69 73 95 1631 242 154 1121 43
Added Vol: 3 0 5 0 0 0 0 116 17 8 79 0
The training of the training o
THE VOLUME. 103 /3 231 33 /3 IS TO THE
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reduced Vol: 189 75 254 55 73 73 95 1803 266 162 1226 43
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
FinalVolume: 189 75 254 55 73 73 95 1803 266 162 1226 43
Saturation Flow Module:
Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
Lanes: 0.72 0.28 1.00 0.27 0.37 0.36 1.00 2.61 0.39 1.00 2.90 0.10
Final Sat.: 1147 453 1600 436 582 582 1600 4182 618 1600 4636 164
Capacity Analysis Module:
Vol/Sat: 0.12 0.16 0.16 0.03 0.12 0.12 0.06 0.43 0.43 0.10 0.26 0.26
Crit Moves: ****

A - 4 A 1 /

Lane Group EBL EBR NBL NBT SBT SBR Lane Configurations Y T
Volume (vph) 147 74 27 220 331 80 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.955 0.974 Fit Protected 0.968 0.950
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 Frt 0.955 0.974 Fit Protected 0.968 0.950
Lane Util. Factor 1.00 1.
Lane Util. Factor 1.00 1.
Fit Protected 0.968 0.950
Delta Anna de la companya del companya de la companya del companya de la companya del la companya de la company
Satd. Flow (prot) 1722 0 1770 1863 1814 0
Flt Permitted 0.968 0.950
Satd. Flow (perm) 1722 0 1770 1863 1814 0
Link Speed (mph) 30 30 30
Link Distance (ft) 266 283 255
Travel Time (s) 6.0 6.4 5.8
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 160 80 29 239 360 87
Shared Lane Traffic (%)
Lane Group Flow (vph) 240 0 29 239 447 0
Enter Blocked Intersection No No No No No No
Lane Alignment Left Right Left Left Right
Median Width(ft) 12 12 12
Link Offset(ft) 0 0 0
Crosswalk Width(ft) 16 16
Two way Left Turn Lane
Headway Factor 1.00 1.00 1.00 1.00 1.00
Turning Speed (mph) 15 9 15 9
Sign Control Stop Free Free

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 41.8%

Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report Page 1

Intersection Int Delay, s/veh	5.7						
int Delay, Siveri	3.7	المراسيان	1,29	V 7 - 34	1,72		W
Movement	EBL		BR	NBL	NBT	SBT	SBI
Vol, veh/h	147		74	27	220	331	8
Conflicting Peds, #/hr	0		0	0	0	0	
Sign Control	Stop	5	top	Free	Free	Free	Fre
RT Channelized	-		one	· ·	None	3 11 6	Non
Storage Length	0			0	100		
Veh in Median Storage, #	0				0	0	
Grade, %	0		1 Can 1 Ca	111 - 119	0	0	
Peak Hour Factor	92		92	92	92	92	9
Heavy Vehicles, %	2		2	2	2	2	V 1817
Mvmt Flow	160		80	29	239	360	8
		S. T. W.					100
Major/Minor	Minor2	بالبيات	To las	Major1	2011	Major2	
Conflicting Flow All	701		403	447	0		
Stage 1	403			-	141	*	
Stage 2	298		3 24	-			W.
Critical Hdwy	6.42	6	.22	4.12	75	•	
Critical Hdwy Stg 1	5.42	111,11	THE PERSON NAMED IN			*	
Critical Hdwy Stg 2	5.42		*	(X)		ie:	
Follow-up Hdwy	3.518	3.	318	2.218			
Pot Cap-1 Maneuver	405		647	1113	540	:=:	
Stage 1	675			-U -721	TO AN		
Stage 2	753					·	
Platoon blocked, %		LIBERT ST					
Mov Cap-1 Maneuver	394		647	1113		•	
Mov Cap-2 Maneuver	394	F 18 54	10- 2 3				
Stage 1	675		*		-	i.e.	
Stage 2	733	A LINE AND					
				2000			
Approach	EB			NB	100	SB	1, 57
HCM Control Delay, s	21.6			0.9		0	
HCM LOS	С	100				ly at the second of the	E-5-W
Minor Lane/Major Mvmt	NBL	NBT EB	Ln1 SB1	SBR			7 3
Capacity (veh/h)	1113						
HCM Lane V/C Ratio	0.026				ALC: U	The second second second second	1181
	8.3						
HCM Control Delay (s)	6.3 A	To the Tar			415		
HCM Lane LOS			_		N . 1 . 5	The second secon	
HCM 95th %tile Q(veh)	0.1	. 	3				

9/14/2016 Baseline Synchro 8 Report Page 2

Existing+Project Conditions - PM Peak 11-1-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #41 Mona Blvd & El Segundo Blvd ********************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: Average Delay (sec/veh): **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 47 967 Initial Bse: 83 113 63 18 89 40 38 355 55 Added Vol: 0 1 0
PasserByVol: 0 7 0
Initial Fut: 83 121 63 3 1 0 13 2 0 64 0 0 49 0 0 20 0 0 11 0 21 103 42 38 439 55 47 1027 34 PHF Volume: 83 121 63 21 103 42 38 439 55 47 1027 Reduct Vol: 0 0 0 0 0 0 0 0 0 Reduced Vol: 83 121 63 21 103 42 38 439 55 47 1027 34 FinalVolume: 83 121 63 21 103 42 38 439 55 47 1027 34 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.17 0.17 0.01 0.08 0.03 0.02 0.15 0.15 0.03 0.33 Crit Moves: **** **** **** *******************

Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #43 Alameda St & 103rd St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 88 Level Of Service: XXXXXX ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 115 736 0 0 1222 235 190 0 158 Ω Initial Bse: 116 743 0 0 1234 237 192 0 160 0 0 PHF Volume: 116 808 0 0 1274 246 200 0 160 0 0 0 Reduct Vol: 0 0 0 0 1274 246 200 0 160 0 0 0 0 Reduced Vol: 116 808 0 0 1274 246 200 0 160 0 0 0 FinalVolume: 116 808 0 0 1274 246 200 0 160 0 0 Saturation Flow Module: Lanes: 1.00 2.00 0.00 0.00 1.68 0.32 0.56 0.00 0.44 0.00 0.00 0.00 Final Sat.: 1600 3200 0 0 2682 518 890 0 710 0 0 0 Capacity Analysis Module: Vol/Sat: 0.07 0.25 0.00 0.00 0.48 0.48 0.12 0.00 0.22 0.00 0.00 0.00 Crit Moves: **** ****

Willowbrook

Existing+Project Conditions - PM Peak 11-1-2016

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #45 Alameda St & Imperial Hwy **************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 71 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Ovl Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 216 689 139 102 700 453 413 1295 201 103 660 11 0 0 36 0 0 12 49 61 37 23 0 Added Vol: 5 0
PasserByVol: 0 0 0 45 0 0 15 0 Initial Fut: 221 689 139 102 700 501 499 1379 212 103 720 PHF Volume: 221 689 139 102 700 501 499 1379 212 103 720 66 Reduct Vol: 0 0 Reduced Vol: 221 689 139 102 700 501 499 1379 212 103 720 66 FinalVolume: 221 689 139 102 700 501 499 1379 212 103 720 66 224 OvlAdjVol: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.26 0.26 0.06 0.22 0.31 0.17 0.33 0.33 0.06 0.15 0.04 OvlAdjV/S: 0.14 Crit Moves: **** ****

Willowbrook Existing+Project Conditions - PM Peak

Existing+Project Conditions - PM Peak 11-1-2016												
			Level O									
ICU 1(L	oss	as Cy	cle Le	ngth %	k) Met	hod (F	uture	Volur	ne Alte	rnativ	re)	
*****	*****************											
	Intersection #46 Alameda St & El Segundo Blvd ************************************											
Cycle (sec):		10	00			Critic	al Vol	L./Car	o.(X):		0.9	
Loss Time (sec):	1	10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	xx
Optimal Cycle:		10	06			Level						E
*****	***					*****	*****	****	*****	****	****	*****
Approach:	Nor	cth Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	W∈	est Bo	und
			- R			- R					- Т	
Control:	I	?ermit	ted ide	I	Permit	ted	I	Permit	ted	E	Permit	ted
Rights:		Inclu	ıde		Inclu	ıde		Inclu	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0			4.0	4.0	4.0	4.0		
			1 0		1	1 0	1 (0 1) 1	
-												
Volume Module:												
Base Vol:	102	717	98	107	699	43	50	258	95	182		190
Growth Adj: 1	.01	1.01	1.01		1.01	1.01		1.01	1.01	1.01		1.01
Initial Bse:	103	724	99	108	706	43	51	261	96	184	706	192
Added Vol:	34	5	0	0	11	0	0	22	44	0	17	0
	8	0	0	0	0	0	0	5	15	0	3	0
	145	729	99	108	717	43	51	288	155	184		192
,		1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00
· - J ·		1.00	1.00	1.00		1,00		1.00	1.00	1.00		1.00
	145	729	99	108	717	43	51	288	155	184	726	192
	0	0	0	0	0	0	0	0	0	0	0	0
	145	729	99	108	717	43	51	288	155	184		192
_		1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00
-		1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00
	145		99	108	717	43	51		155	184		192
Control of Discontinuous			1									
Saturation Flo				1.000	1.000	1600	1600	1600	1600	1600	1600	1600
. ,		1600	1600		1600			1.00	1.00		1.00	1.00
Adjustment: 1			1.00	1.00	1.89	1.00		2.00			1.00	1.00
		1.76 2818	382		3017	183		3200	1600		1600	1600
Final Sat.: 1			100	W-								1600
Capacity Analy			- 4							1		
			0.26	0 07	0 24	0.24	0 03	0 00	0.10	0 11	0.45	0.12
Crit Moves:	.09	****	-0.20	****	0.24	0.24	****	0.09	0.10	J.11	****	0.12
*********	***		*****		****	*****	****	****	*****	****	****	*****

.....

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************ Intersection #52 El Segundo Blvd & San Pedro St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 41 XXXXXX ****************** Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 101 322 51 86 228 85 146 1415 72 33 568
Added Vol: 0 0 0 0 0 0 0 40 0 0 54
PasserByVol: 0 0 0 0 0 0 0 16 0 0 31
Initial Fut: 101 322 51 86 228 85 146 1471 72 33 653 0 0 85 PHF Volume: 101 322 51 86 228 85 146 1471 72 33 653 85 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 101 322 51 86 228 85 146 1471 72 33 653 85 FinalVolume: 101 322 51 86 228 85 146 1471 72 33 653 85 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.12 0.12 0.05 0.10 0.10 0.09 0.32 0.32 0.02 0.15 0.15 Crit Moves: **** **** * * * *

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #13 Slater Ave & El Segundo Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 47 Level Of Service: XXXXXX ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ___________________________ Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 0 0 0 10 0 48 46 1643 0 0 692 16 Initial Bse: 0 0 0 10 0 48 46 1659 0 0 699 16 PHF Volume: 0 0 0 10 0 48 46 1747 0 0 836 16 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 0 0 0 10 0 48 46 1747 0 0 836 16 FinalVolume: 0 0 0 10 0 48 46 1747 0 0 836 16 Saturation Flow Module: Final Sat.: 0 0 0 1600 0 1600 1600 3200 0 0 3139 61 Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.01 0.00 0.03 0.03 0.55 0.00 0.00 0.27 0.27 Crit Moves: **** **** ****

Willowbrook Existing+Project Conditions - PM Peak

11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #21 Compton Ave & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 65 Level Of Service: XXXXXX ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 67 31 16 111 64 152 235 1347 103 16 449 Initial Bse: 68 31 16 112 65 154 237 1360 104 16 453 75 Added Vol: 0 0 0 33 0 98 63 15 0 0 11 PasserByVol: 0 12 0 0 23 29 10 0 0 0 1 16 464 19 PHF Volume: 68 43 16 145 88 281 310 1375 104 16 464 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 68 43 16 145 88 281 310 1375 104 16 464 Ω FinalVolume: 68 43 16 145 88 281 310 1375 104 16 464 94 Saturation Flow Module: Lanes: 1.00 1.46 0.54 1.00 1.00 1.00 1.00 1.86 0.14 1.00 1.66 0.34 Final Sat.: 1600 2330 870 1600 1600 1600 2975 225 1600 2663 537 Capacity Analysis Module: Vol/Sat: 0.04 0.02 0.02 0.09 0.05 0.18 0.19 0.46 0.46 0.01 0.17 0.17 Crit Moves: **** **** **** ****

Existing+Project Conditions - PM Peak 11-1-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #33 Wilmington Ave & Rosecrans Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 126 Level Of Service: xxxxxx ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R_____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: 153 674 153 147 475 135 114 1059 163 93 468 114 Initial Bse: 155 681 155 148 480 136 115 1070 165 94 473 115 Added Vol: 0 111 0 50 155 9 9 0 0 0 1
PasserByVol: 0 39 0 26 75 14 8 0 0 0
Initial Fut: 155 831 155 224 710 159 132 1070 165 94 474 0 PHF Volume: 155 831 155 224 710 159 132 1070 Reduct Vol: 0 0 0 0 0 0 0 94 **474** 0 0 165 0 Reduced Vol: 155 831 155 224 710 159 132 1070 165 94 474 165 FinalVolume: 155 831 155 224 710 159 132 1070 165 94 474 165 Saturation Flow Module: Lanes: 1.00 1.69 0.31 1.00 1.63 0.37 1.00 2.00 1.00 1.00 1.48 0.52 Final Sat.: 1600 2698 502 1600 2613 587 1600 3200 1600 1600 2373 827 Capacity Analysis Module: Vol/Sat: 0.10 0.31 0.31 0.14 0.27 0.27 0.08 0.33 0.10 0.06 0.20 0.20 *** Crit Moves: **** **** ***

EWP PM Peak Tue Nov 1, 2016 13:29:56 ______

Willowbrook Existing+Project Conditions - PM Peak 11-1-2016

	11-1-2016											
TCII 1	Level Of Service Computation Report											
	ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											
	Intersection #42 Willowbrook Ave & Rosecrans Ave											

Cycle (sec):		(n	00			Critic	al Vo	l /Car	o.(X):		0.7	48
Loss Time (sec): 10 Average Delay (sec/veh): XXXXXX												
Optimal Cycle			57			Level				•		C
*****				****	****					****	****	*****
		rth B				ound		ast Bo			est Bo	
L L			- R	L ·	- T	- R				L -	- Т	- R
Control:		Permi				ted	•			*	ermit	
Rights:		Incl	ude		Incl	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0			4.0	4.0	4.0
Lanes:			0 0			0 0			1 0		1	
Volume Module	e:											
Base Vol:	30	107	16	132	79	27	15	1314	19	29	796	123
Growth Adj:		1.01	1.01		1.01	1,01		1.01	1.01	1.01		1.01
Initial Bse:		108	16	133	80	27		1327	19	29	804	124
Added Vol:	0	0	0	4	0	0	0	50	0	0	37	6
PasserByVol:		1	0	6	2	0	0	20	0	0	11	3
Initial Fut:			16	143	82	27		1397	19	29	100	133
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	30	109	16	143	82	27		1397	19	29	852	133
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		109	16	143	82	27		1397	19	29	852	133
PCE Adj:		1.00	1.00		1.00	1.00		1.00		1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1,00	1.00		1.00
FinalVolume:		109	16	143	82	27		1397	19	29		133
Saturation F				1.600	1.600	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Sat/Lane:		1600	1600		1600	1600		1600	1600	1600		1600
-	1.00		1.00		1.00	1.00		1.00		1.00		1.00
Lanes:		0.71	0.10		0.32	0.11		1.97		1.00		0.27
Final Sat.:			166	909	519	173		3157	43 l	1600	2/6/	433
	7/1		12				1			1		
Capacity Ana		0.10	0.10	0 00	0.16	0.16	0 01	0.44	0.44	0 02	0.31	0.31
Vol/Sat: Crit Moves:	0.02	****	0.10	****	0.10	0.10	0.01	****	0.44	****	U.JI	0.31
*********	****	****	*****	****	****	*****	****	****	****	****	****	*****

Crit Moves: ****

Willowbrook Existing+Project Conditions - PM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #55 El Segundo Blvd & Santa Fe Ave ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10
Optimal Cycle: 52 XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 151 513 69 39 368 68 96 270 213 12 68 Initial Bse: 151 513 69 39 368 68 96 270 213 12 68 Added Vol: 0 0 0 0 0 0 0 0 22 0 0 17 PasserByVol: 0 0 0 0 0 0 0 5 0 0 3 26 0 Ο Initial Fut: 151 513 69 39 368 68 96 297 213 12 88 26 PHF Volume: 151 513 69 39 368 68 96 297 213 12 88 26 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 151 513 69 39 368 68 96 297 213 12 88 26 12 88 26 FinalVolume: 151 513 69 39 368 68 96 297 213 Saturation Flow Module: 1.00 1.76 0.24 1.00 1.69 0.31 0.16 0.49 0.35 0.09 0.70 0.21 Final Sat.: 1600 2821 379 1600 2701 499 253 784 562 152 1117 330 Capacity Analysis Module:

Vol/Sat: 0.09 0.18 0.18 0.02 0.14 0.14 0.06 0.38 0.38 0.01 0.08 0.08

Willowbrook Existing+Project Conditions - PM Peak

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #56 Alameda St & Rosecrans Ave ************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.638 Loss Time (sec): 10
Optimal Cycle: 43 Average Delay (sec/veh): Level Of Service: Optimal Cycle: 43 ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 136 771 0 0 868 77 111 0 198 0 0 Initial Bse: 136 771 0 0 868 77 111 0 198 0 0 0 0 0 0 0 0 0 77 111 0 0 Added Vol: 0 36 PasserByVol: 7 8 0 49 0 15 0 0 8 0 815 0 0 = 15 0 932 0 15 0 213 Initial Fut: 143 815 0 0 932 77 111 0 213 0 0 0 0 0 0 0 0 0 0 143 815 PHF Volume: Ω Reduct Vol: 0 0 0 0 0 Reduced Vol: 143 815 0 0 932 77 111 0 213 0 0 0 FinalVolume: 143 815 0 0 932 77 111 0 213 0 0 Saturation Flow Module: Lanes: 1.00 2.00 0.00 0.00 1.85 0.15 1.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1600 3200 0 0 2956 244 1600 0 1600 0 0 0 Capacity Analysis Module: Vol/Sat: 0.09 0.25 0.00 0.00 0.32 0.32 0.07 0.00 0.13 0.00 0.00 0.00 Crit Moves: **** **** *** ************

Title of the state of the state

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

Crit Moves: **** ****

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************** Intersection #58 Wilmington Ave & W Compton Blvd ************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 97 Average Della Level Of Service: Average Delay (sec/veh): ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 106 793 155 150 544 82 132 898 109 140 451 172 Initial Bse: 106 793 155 150 544 82 132 898 109 140 451 Added Vol: 0 111 0 0 155 0 0 0 0 0 0 PasserByVol: 0 31 0 8 60 1 1 0 0 0 0 Added Vol: 0 111 PasserByVol: 0 31 0 0 5 Initial Fut: 106 935 155 158 759 83 133 898 109 140 451 PHF Volume: 106 935 155 158 759 83 133 898 109 140 451 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 106 935 155 158 759 83 133 898 109 140 451 177 FinalVolume: 106 935 155 158 759 83 133 898 109 140 451 177 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.80 0.20 1.00 1.78 0.22 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 2885 315 1600 2854 346 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.07 0.29 0.10 0.10 0.26 0.26 0.08 0.31 0.31 0.09 0.14 0.11

Crit Moves: ****

EWP PM Peak Thu Mar 2, 2017 15:05:50

Willowbrook Existing+Project Conditions - PM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #59 Willowbrook Ave & W Compton Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 31 ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: PHF Volume: 17 113 15 0 114 38 15 1054 75 0 711 61 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 17 113 15 0 114 38 15 1054 75 0 711 61 FinalVolume: 17 113 15 0 114 38 15 1054 75 0 711 61 Saturation Flow Module: Lanes: 0.12 0.78 0.10 0.00 0.75 0.25 1.00 2.80 0.20 0.00 1.84 0.16 Final Sat.: 188 1247 166 0 1200 400 1600 4481 319 0 2947 253 Capacity Analysis Module: Vol/Sat: 0.01 0.09 0.09 0.00 0.10 0.10 0.01 0.24 0.24 0.00 0.24 0.24

**** **** *****************

Willowbrook Existing+Project Conditions - PM Peak

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *******************

Intersection #60 Central Ave & Alondra Blvd *********************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 99 Average Doll,
Level Of Service: Average Delay (sec/veh): ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R

Control: Protected Protected Protected Protected Rights: Include Include Include Include On Ontology O Volume Module: Base Vol: 119 782 148 180 632 65 115 969 132 65 334 158 Initial Bse: 119 782 148 180 632 65 115 969 132 65 334 158 Added Vol: 0 27 0 0 37 0 0 0 0 0 0 0 PasserByVol: 0 3 0 0 5 1 1 1 0 0 1 0 0 0 1 1 Added Vol: 0 27 PasserByVol: 0 3

Initial Fut: 119 812 148 180 674 66 116 970 132 65 335 158 PHF Volume: 119 812 148 180 674 66 116 970 132 65 335 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 119 812 148 180 674 66 116 970 132 65 335 158 FinalVolume: 119 812 148 180 674 66 116 970 132 65 335 158

Saturation Flow Module: Lanes: 1.00 1.69 0.31 1.00 1.82 0.18 1.00 1.76 0.24 1.00 2.00 1.00 Final Sat.: 1600 2707 493 1600 2915 285 1600 2817 383 1600 3200 1600

Capacity Analysis Module:

Vol/Sat: 0.07 0.30 0.30 0.11 0.23 0.23 0.07 0.34 0.34 0.04 0.10 0.10 Crit Moves: **** **** **** ************************

Willowbrook Existing+Project Conditions PM Peak 2-9-17

Level Of Service Computation Report												
	ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											

Intersection								****	*****	****	*****	*****
Cycle (sec):		10	00			Critic	al Vol	l./Cag	o.(X):		0.9	24
Loss Time (se	ec):		LO			Averag	e Dela	ay (se	ec/veh)	:	XXXX	XX
Optimal Cycle			L4			Level						E
******	****	****	*****	****	****	*****	****	****	*****	****	*****	****
Approach:		rth Bo			uth Bo				ound		est Bo	
Movement:			- R			- R			- R	_	- T	
				,						,		
Control:	P	rotect		Pı		ced	Pi			Pı		
Rights:			ıde		Incl				ıde		Inclu	
Min. Green:	0	0	0		0	0		0			0	0
Y+R:	4.0		4.0	4.0				4.0				4.0
Lanes:			1 0			1 0			0 1) 1	
Volume Module												
Base Vol:	79	894	113	129	569	70		1012	159	105	425	158
Growth Adj:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:	79	894	113	129	569	70		1012	159	105	425	158
Added Vol:	0	111	0	0	155	0	0	0	0	0	0	0
PasserByVol:	0	24	0	8	47	1	1	0	0	0	0	3
Initial Fut:		1029	113	137	771	71		1012	159	105	425	161
User Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:		1029	113	137	771	71		1012	159	105	425	161
	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:			113	137	771	71		1012	159	105	425	161
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:		1029	113	137	771	71		1012	159		425	161
Saturation Fl												
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600
Adjustment:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
	1.00		0.20		1.83	0.17		2.00	1.00		1.45	0.55
Final Sat.:		2883	317		2930	270		3200	1600		2321	879
Capacity Anal	_				0 0 =	2 26		0 00	0.10	0 0=	0 10	0.10
Vol/Sat:	0.05	0.36	0.36	0.09	0.26	0.26	0.07	0.32	0.10	0.07	0.18	0.18
Crit Moves:		****										
*******	****	****	*****	****	****	*****	****	****	*****	****	*****	*****

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************* Intersection #62 Wilmington Ave & Greenleaf Blvd ************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.952 Loss Time (sec): Average Delay (sec/veh): 10 Optimal Cycle: 135 Level Of Service: ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Inclu Volume Module: Base Vol: 70 970 330 148 564 19 45 532 34 98 224 169 34 0 0 0 0 0 1 98 224 10 1.00 169 Initial Bse: 70 970 330 148 564 19 45 532 34 98 224 0 0 0 0 Added Vol: 0 111
PasserByVol: 0 18 0 0 0 155 2 36 0 2 36 150 755 19 45 532 34 Initial Fut: 70 1099 330 PHF Volume: 70 1099 330 150 755 19 45 532 34 98 224 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 170 0 Reduced Vol: 70 1099 330 150 755 19 45 532 34 98 224 FinalVolume: 70 1099 330 150 755 19 45 532 34 98 224 170 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.95 0.05 1.00 0.94 0.06 1.00 0.57 0.43 Final Sat.: 1600 3200 1600 1600 3121 79 1600 1504 96 1600 910 690 _____ Capacity Analysis Module: Vol/Sat: 0.04 0.34 0.21 0.09 0.24 0.24 0.03 0.35 0.35 0.06 0.25 0.25 Crit Moves: **** * * * * * * * * *******************

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

Existing+Project Conditions - PM Peak 2-9-17

Level Of Service Computation Report ICU İ(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #64 Central Ave & Greenleaf Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Optimal Cycle: 48 Average Delay (sec/veh): Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 ------Volume Module: Base Vol: 0 866 326 311 507 0 0 0 68 0 169 Added Vol: 0 27 PasserByVol: 0 3 Initial Fut: 0 896 FinalVolume: 0 896 326 311 549 0 0 0 68 0 169 _____ Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.00 0.28 0.20 0.19 0.17 0.00 0.00 0.00 0.00 0.04 0.00 0.11 Crit Moves: **** *** ************************

Existing+Project Conditions - PM Peak 2-9-17

Level Of Service Computation Report														
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)														
*****												*****		
Intersection								****	*****	****	****	*****		
Cvcle (sec):		10	00			Critic	al Vol	l./Car	o.(X):		0.5	530		
Loss Time (se	ec):							, ,		:	: xxxxxx			
Optimal Cycle			53			Level				A				
				****	****	*****	****	****	*****	****	*****			
Approach:	No	rth Bo	ound	Sou	ath Bo	ound	Eá	ast Bo	ound	We	est Bo	ound		
Movement:		- Т		L ·	- Т	- R	ь -	- Т	- R	L -	- Т	- R		
Control:	•	Permit				ted		rotect		•	Permit			
Rights:		Incl	ıde		Incl	ıde		Inclu	ıde		Incl	ıde		
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:	0 (1!	0 0	0 (1!	0 0	1 (0 2	0 1	0 () 1	1 0		
Volume Module	e:		,						·			·		
Base Vol:	16	89	13	35	67	20	18	1056	20	0	571	39		
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Initial Bse:	16	89	13	35	67	20	18	1056	20	0	571	39		
Added Vol:	0	0	0	0	0	0	0	0	0	0	0	0		
PasserByVol:	0	3	0	0	8	0	, 0	9	0	0	3	0		
Initial Fut:	16	92	13	35	75	20	18	1065	20	0	574	39		
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Volume:	16	92	13	35	75	20	18	1065	20	0	574	39		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	16	92	13	35	75	20	18	1065	20	0	574	39		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
FinalVolume:	16	92	13	35	75	20	18	1065	20	0	574	39		
Saturation Fl	Low Mo	odule												
Sat/Lane:	1600	1600	1600		1600	1600		1600	1600		1600	1600		
Adjustment:	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00		
Lanes:	0.13	0.76	0.11	0.27	0.58	0.15		2.00	1.00		1.87	0.13		
Final Sat.:		1217	172	431		246		3200	1600		2996	204		
Capacity Anal														
Vol/Sat:	0.01	0.08	0.08		0.08	0.08	0.01		0.01	0.00	0.19	0.19		
Crit Moves:		***		****				***						
*******	****	****	*****	****	****	*****	****	****	*****	****	****	*****		

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #66 Alameda St. West & Greenleaf Blvd. ****************

Cvcle (sec): 100 Critical Vol./Cap.(X): 0.748 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 57 Level Of Service:

******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 84 546 219 61 646 83 93 599 80 208 211 43 Initial Bse: 84 546 219 61 646 83 93 599 80 208 211 43 Added Vol: 0 36 0 0 49 0 0 0 0 PasserByVol: 0 15 0 0 30 0 0 2 0 Initial Fut: 84 597 219 61 725 83 93 601 80 Added Vol: 0 36 PasserByVol: 0 15 0 0 0 1 Reduced Vol: 84 597 219 61 725 83 93 601 80 208 212 43 FinalVolume: 84 597 219 61 725 83 93 601 80 208 212 43 _____ Saturation Flow Module: Lanes: 1.00 1.46 0.54 1.00 1.79 0.21 1.00 1.77 0.23 1.00 1.00 1.00 Final Sat.: 1600 2341 859 1600 2871 329 1600 2824 376 1600 1600 1600 _____ Capacity Analysis Module: Vol/Sat: 0.05 0.26 0.25 0.04 0.25 0.25 0.06 0.21 0.21 0.13 0.13 0.03 Crit Moves: **** ***

.....

Willowbrook Existing+Project Conditions - PM Peak 11-1-2016

					TT-T.	-2016						
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection						*****	****	****	*****	****	****	*****
Cycle (sec):		7 (00			Critic	al Vol	L./Car	c. (X):		0.6	551
Cycle (sec): Loss Time (secondary of the cycle)	ac) -		1.0			Averag	e Dela	av (se	ec/veh)		xxxx	xx
Optimal Cycle			45			Level	Of Sei	cvice	:	•		B
********		****	******	****	****	*****	*****	****	*****	****	*****	*****
											est Bo	
Approach: Movement:	NO.	ונוו א	Junu	500	ירוו סי	Junu	T	ast bo	Juiia	L -		
Movement:	ь.	- T	- R	, т.	- 1	- R	, ш -	- 1	- K	ь -	- 1	- R
					- -							
Control: Rights:]	Permi	tted]	Permi	tted	Sp.	Lit Pf	nase	Sp.	lit Ph	ıase
Rights:		Incl	ude		Incl	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	0 :	1 0	1 0	1 (0 1	4.0 1 0	0 (1!	0 0	1 1	L 0	0 1
Volume Module				'								,
Base Vol:		687	236	201	1116	0	6	24	2	229	1	136
Growth Adj:			1.01		1.01			1.01			1.01	1.01
			238		1127		6			231	1	137
Initial Bse: Added Vol:	0	49	230	200		0	0	0		0		0
PasserByVol:			21	0			0		_	8	_	0
_					1167		6			239		137
Initial Fut:			259									
User Adj:			1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:			1.00		1.00	1.00		1.00			1.00	1.00
PHF Volume:		759	259		1167		6	24	2	239	1	137
Reduct Vol:			0		0		0			0		0
Reduced Vol:			259	203	1167	0	6		2	239		137
PCE Adj:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	0	759	259	203	1167	0	6	24	2	239	1	137
Saturation Fl	ow Mo	odule	: '							57		2.5
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00
Lanes:			0.51		2.00	0.00		0.75			0.01	1.00
Final Sat.:			815		3200				100	3187		1600
Capacity Anal	1.1									i,		
Vol/Sat:				0 12	0 26	0 00	0 02	0 02	0 02	0 09	0 00	0.09
	0.00	U.3∠ ****	0.32	****	0.36	0.00	0.02	****	0.02	0.00	0.00	****
Crit Moves:					. ماد ماد ماد ماد ماد							
		~ ~ ~ ~ ~ ~ ~										

Willowbrook Existing+Project Conditions - PM Peak 2-9-17

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #53 Imperial Hway & Fernwood Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 63 Level Of Service: XXXXXX ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 95 70 7 104 90 9 44 1264 221 7 789 143 Initial Bse: 95 70 7 104 90 9 44 1264 221 7 789 143 Added Vol: 0 0 0 0 0 0 0 0 61 0 0 45 0 PasserByVol: 0 0 0 0 0 0 0 0 23 0 0 15 0 Initial Fut: 95 70 7 104 90 9 44 1348 221 7 849 143 PHF Volume: 95 70 7 104 90 9 44 1348 221 7 849 143 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 95 70 7 104 90 9 44 1348 221 7 849 143 FinalVolume: 95 70 7 104 90 9 44 1348 221 7 849 143 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.06 0.11 0.11 0.07 0.13 0.13 0.03 0.49 0.49 0.00 0.31 0.31 *** Crit Moves: **** ****

Existing+Project Conditions = PM Peak

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) Intersection #54 Imperial Hwy & State St			2-9	-17				
TCU 1 (Loss as Cycle Length *) Method (Future Volume Alternative) ***********************************	***************************************	7 7	05 00	Gamanaa	tion Deposit			
Intersection	TCII 1/I og						rnativa)	
Intersection #54 Imperial Hwy & State St ***********************************								*****
Cycle (sec): 100								
North Bound Cycle Formation Cycle				****	****	****	*****	
North Bound Cycle Formatted Cvcle (sec):	100		Critic	al Vol./Car	o.(X):	0.8	309	
Optimal Cycle: 69	-	1.0					XXXX	cxx
Approach: North Bound		69						
Movement: L - T - R L - T - R L - T - R L - T - R L - T - R L - T - R R L - T - R R R - T R R R - T R R R - T R R R R R R R R R		*****	******	*****	******	*****	*****	*****
Control: Permitted Permitted Permitted Permitted Include Inclu	Approach: No	orth Bound	South E	Bound	East Bo	ound	West Bo	ound
Control:	Movement: L	- T - R	L - T	- R	L - T	- R	L - T	- R
Rights: Include 0<			11					
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control:	Permitted	Permi	tted	Permit	ted	Permit	ted
Y+R:	Rights:	Include	Incl	.ude		ıde	Inclu	ıde
Lanes: 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1	Min. Green:		_	_	-		-	0
Volume Module: Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Volume Module: Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				5,5,5,5,5,5				
Growth Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0							otar mo	
Initial Bse: 51 454 123 72 326 124 339 1047 30 116 718 76 Added Vol: 0 0 0 0 0 0 0 0 0 61 0 0 0 45 0 PasserByVol: 0 0 0 0 0 0 1 9 0 14 0 14 0 14 0 Initial Fut: 51 454 123 72 326 125 348 1108 44 116 777 76 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Added Vol: 0 0 0 0 0 0 0 0 0 0 0 14 0 14 0 14 0 Initial Fut: 51 454 123 72 326 125 348 1108 44 116 777 76 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	_							
PasserByVol: 0 0 0 0 0 0 1 9 0 14 0 14 0 14 0 Initial Fut: 51 454 123 72 326 125 348 1108 44 116 777 76 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
Initial Fut: 51 454 123 72 326 125 348 1108 44 116 777 76 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								-
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	-		7		-			
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
PHF Volume: 51 454 123 72 326 125 348 1108 44 116 777 76 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3							
Reduced Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3							
Reduced Vol: 51 454 123 72 326 125 348 1108 44 116 777 76 PCE Adj: 1.00 1.00								
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00				_				
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0								
FinalVolume: 51 454 123 72 326 125 348 1108 44 116 777 76								
Saturation Flow Module: Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160	-	L 454 123	72 326	125	348 1108	44	116 777	76
Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160								
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Saturation Flow M	Module:		•		•		
Lanes: 1.00 1.57 0.43 1.00 1.45 0.55 1.00 1.92 0.08 1.00 1.82 0.18 Final Sat.: 1600 2518 682 1600 2313 887 1600 3078 122 1600 2915 285			1600 1600	1600	1600 1600	1600	1600 1600	1600
Final Sat.: 1600 2518 682 1600 2313 887 1600 3078 122 1600 2915 285	Adjustment: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00
Capacity Analysis Module: Vol/Sat: 0.03 0.18 0.18 0.05 0.14 0.14 0.22 0.36 0.36 0.07 0.27 0.27	Lanes: 1.00	1.57 0.43	1.00 1.45	0.55	1.00 1.92	0.08	1.00 1.82	0.18
Capacity Analysis Module: Vol/Sat: 0.03 0.18 0.18 0.05 0.14 0.14 0.22 0.36 0.36 0.07 0.27 0.27							1600 2915	285
Vol/Sat: 0.03 0.18 0.18 0.05 0.14 0.14 0.22 0.36 0.36 0.07 0.27 0.27	4.		[]					
Crit Morroe **** **** ****				0.14		0.36		0.27
**************************************	Crit Moves:			and a site of the site of the site of	***		****	

Intersections LOS Analysis Sheets

Existing + Project + Cumulative Conditions

Willowbrook Existing+Project+Cumulative Conditions - AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #3 Avalon Blvd & El Segundo ************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.757
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 58 Level Of Service: C *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include</t Volume Module: 93 81 556 165 383 69 110 997 Base Vol: 76 514 113 Initial Bse: 77 519 94 82 562 114 167 387 70 111 1007 255 Added Vol: 7 19 38 2 17 0 0 109 2 25 75 6 PasserByVol: 0 13 0 0 5 0 0 32 0 0 13 0 Initial Fut: 84 551 132 84 584 114 167 528 72 136 1095 261 Reduced Vol: 84 551 132 84 584 114 167 528 72 136 1095 261 Final Volume: 84 551 132 84 584 114 167 528 72 136 1095 261 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.05 0.21 0.21 0.05 0.22 0.22 0.10 0.12 0.12 0.09 0.28 0.28 Crit Moves:

_____ Willowbrook Existing+Project+Cumulative Conditions - AM Peak

10-4-2016

					10-4	-2016						
**********			7777777									
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
	Intersection #4 Avalon Blvd & Rosecrans Ave											
Intersection												
Cycle (sec):	,	I	00			Critic	aı vo.	L./Car	O. (X):		0.6	084
Loss Time (s	ec):		10			Critic Averag Level	e nera	ay (se	ec/ven)	:	XXXXX	CXCX
Optimal Cycle	e:		48		<i></i> .	rever	OI Sei	rvice		4. 4. 4. 1. 4		В

Movement:	L	- T	- R	, ь.	- T	- R	, Г	- <u>T</u> .	- R	L -		
Control:	Pro			Pro	ot+Pei	rmit				Pro		
Rights:		Incl			Inclu			Inclu		_	Inclu	
Min. Green:				0			0			0		0
	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	. 1	0 1	1 0	. 1 () 1	1 0	. 1 (0 2	1 0	1 () 2	1 0
												7.77.7
Volume Module												
	103			160	470	99			63		1049	159
Growth Adj:					1.01	1.01		1.01			1.01	1.01
Initial Bse:			59	162		100	48		64		1059	161
	0	47	5	8	35	4	5		0	1	20	2
PasserByVol:			0	0		0		8		0	3	0
Initial Fut:			64	170		104					1082	163
User Adj:	1.00	1.00	1.00		1.00	1.00		1.00			1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	104	530	64	170	514	104	53	451	64	115	1082	163
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	104	530	64	170	514	104	53	451	64	115	1082	163
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	104	530		170					64			163
Saturation F												
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-	1.00		0.21	1.00	1.66	0.34	1.00	2.63	0.37	1.00	2.61	0.39
Final Sat.:	1600	2857	343	1600	2661	539			594			627
	Capacity Analysis Module:											
Vol/Sat:	-			0.11	0.19	0.19	0.03	0.11	0.11	0.07	0.26	0.26
Crit Moves:		****		****			****	· · · —	_		***	
******		****	*****	****	****	*****	****	****	*****	****	****	*****

Willowbrook

Existing+Project+Cumulative Conditions * AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *********** Intersection #10 Central Ave & El Segundo Blvd ************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.971 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 155 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 204 659 194 125 687 209 89 400 76 170 965 Initial Bse: 206 666 196 126 694 211 90 404 77 172 975 86 Added Vol: 18 23 34 0 30 13 15 87 15 22 65 PasserByVol: 0 29 0 0 12 3 16 15 0 0 10 Initial Fut: 224 718 230 126 736 227 121 506 92 194 1050 86 PHF Volume: 224 718 230 126 736 227 121 506 92 194 1050 86 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 224 718 230 126 736 227 121 506 92 194 1050 FinalVolume: 224 718 230 126 736 227 121 506 92 194 1050 86 _____ Saturation Flow Module: ______ Capacity Analysis Module: Vol/Sat: 0.14 0.30 0.30 0.08 0.30 0.30 0.08 0.16 0.06 0.12 0.35 0.35

Crit Moves: **** **** ****

existing with floyest with the oct 1, 2010 1, 02.10

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #11 Central Ave & Rosecrans Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.870 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 87 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include< Volume Module: Initial Bse: 136 577 72 96 650 209 122 349 Added Vol: 16 66 0 4 40 17 22 12 PasserByVol: 0 20 0 0 8 2 5 5 126 118 989 17 22 12 3 0 14 2 5 5 0 0 2 Initial Fut: 152 663 72 100 698 228 149 366 129 118 1005 158 PHF Volume: 152 663 72 100 698 228 149 366 129 118 1005 158 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 152 663 72 100 698 228 149 366 129 118 1005 158 FinalVolume: 152 663 72 100 698 228 149 366 129 118 1005 158 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.21 0.04 0.06 0.22 0.14 0.09 0.10 0.10 0.07 0.36 0.36

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #12 Slater Ave & 120th St ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.609 Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 41 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Volume Module: Initial Bse: 42 41 67 46 37 45 43 765 35 44 737 18
Added Vol: 0 0 0 0 0 0 0 67 0 0 56 0
PasserByVol: 0 0 18 9 0 0 0 209 0 8 83 4
Initial Fut: 42 41 85 55 37 45 43 1041 35 52 876 22 PHF Volume: 42 41 85 55 37 45 43 1041 35 52 876 22 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 42 41 85 55 37 45 43 1041 35 52 876 22 FinalVolume: 42 41 85 55 37 45 43 1041 35 52 876 22 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.11 0.11 0.03 0.09 0.09 0.03 0.34 0.34 0.03 0.28 0.28 Crit Moves: **** **** **** ******************

Willowbrook Existing+Project+Cumulative Conditions = AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #17 Compton Ave & Imperial Hwy ************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.127 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 ********* Volume Module: 169 114 292 135 76 667 173 192 1504 40 5 42 0 1 49 172 87 26 0 0 34 0 0 17 3 0 7 Initial Bse: 115 335 169 114 292 Added Vol: 95 26 40 5 42 163 Added Vol: 95 26 PasserByVol: 2 14 PasserByVol: 2 14 0 0 34 0 0 17 3 0 7 0 Initial Fut: 212 375 209 119 368 135 77 733 348 279 1537 166 PHF Volume: 212 375 209 119 368 135 77 733 348 279 1537 166 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 212 375 209 119 368 135 77 733 348 279 1537 166 FinalVolume: 212 375 209 119 368 135 77 733 348 279 1537 166 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.23 0.13 0.07 0.31 0.31 0.05 0.23 0.23 0.17 0.53 0.53 *** Crit Moves: ******************

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #18 Compton Ave & 118th St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.579
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 38 Level Of Service: A ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: 39 58 60 17 Base Vol: 9 479 86 56 539 5 36 Initial Bse: 9 484 87 57 544 5 Added Vol: 0 56 105 62 31 0 39 59 36 61 17 Added Vol: 0 56 105 62 31 0 0 0 0 63 0 29
PasserByVol: 4 16 0 0 37 0 0 0 9 0 0
Initial Fut: 13 556 192 119 612 5 39 59 45 124 17 78 FinalVolume: 13 556 192 119 612 5 39 59 45 124 17 78 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.24 0.24 0.07 0.23 0.23 0.02 0.09 0.09 0.08 0.14 0.14 Crit Moves: *******************

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #19 Compton Ave & 120th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.926 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 115 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Include State Volume Module: Base Vol: 106 296 85 129 308 115 122 465 88 88 460 160 86 130 311 116 123 470 89 89 465 162 Initial Bse: 107 299 Added Vol: 0 128 10 4 74 15 31 36 0 3 41 PasserByVol: 0 0 34 48 0 0 0 247 0 17 98 Initial Fut: 107 427 130 182 385 131 154 753 89 109 604 184 PHF Volume: 107 427 130 182 385 131 154 753 89 109 604 184 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 107 427 130 182 385 131 154 753 89 109 604 FinalVolume: 107 427 130 182 385 131 154 753 89 109 604 184 Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.07 0.17 0.17 0.11 0.16 0.16 0.10 0.47 0.06 0.07 0.38 0.11

Crit Moves: **** **** ****

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #20 Compton Ave & 124th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.432
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 30 Level Of Service: A ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lanes: 0 1 0 1 0 0 1 0 0 0 1! 0 0 0 1! 0 0 _____ Volume Module: 7 5 12 3 36 40 Base Vol: 1 360 25 59 426 Initial Bse: 1 364 25 60 430 7 5 12 3 36 40 109 0 FinalVolume: 1 536 25 60 524 7 5 12 3 36 40 109 _____ Saturation Flow Module: Lanes: 0.01 1.90 0.09 0.20 1.78 0.02 0.25 0.60 0.15 0.19 0.22 0.59 Final Sat.: 6 3050 144 323 2839 38 400 960 240 313 348 939 _____ Capacity Analysis Module: Vol/Sat: 0.00 0.18 0.18 0.04 0.18 0.18 0.00 0.01 0.01 0.02 0.12 0.12 Crit Moves: **** **** ****

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

10-4-2016	
Level Of Service Computation Report	
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternati	
**************	*****
Intersection #26 Wilmington Ave & Imperial Hwy ************************************	
	0.832
Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh):	
Optimal Cycle: 75 Level Of Service:	D
**************************************	_
	est Bound
Movement: L - T - R L - T - R L	
•	rotected
Rights: Include Include Include	Include
Min. Green: 0 0 0 0 0 0 0 0 0	0 0
Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	4.0 4.0
Lanes: 1 0 1 1 0 1 0 1 0 1 0 1 0 1	0 0 0 0
Volume Module:	
Base Vol: 175 422 51 31 835 143 142 23 218 0	
	1.01 1.01
Initial Bse: 177 426 52 31 843 144 143 23 220 0	
Added Vol: 14 31 0 0 214 4 10 0 32 0	
PasserByVol: 7 16 0 0 203 0 0 0 17 0	
Initial Fut: 198 473 52 31 1260 148 153 23 269 0	-
(2)	1.00 1.00 1.00 1.00
PHF Volume: 198 473 52 31 1260 148 153 23 269 0 Reduct Vol: 0 0 0 0 0 0 0 0	
Reduced Vol: 198 473 52 31 1260 148 153 23 269 0	
110000000 101. 130 173 32 32 1200 210 200 20	1.00 1.00
	1.00 1.00
FinalVolume: 198 473 52 31 1260 148 153 23 269 0	
Saturation Flow Module:	,
Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160	1600 1600
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00 1.00
Lanes: 1.00 1.80 0.20 1.00 1.79 0.21 1.00 1.00 1.00 0.00	0.00 0.00
Final Sat.: 1600 2886 314 1600 2863 337 1600 1600 0	T .
Capacity Analysis Module:	
VO2/ VO32 VO32 VO32 VO32 VO32 VO32 VO32 VO32	0.00 0.00
Crit Moves: ****	

Existing+Project+Cumulative Conditions = AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.218 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 180 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 407 Base Vol: 325 644 0 0 655 481 0 532 0 0 Initial Bse: 328 650 0 0 662 486 411 0
Added Vol: 98 201 0 0 219 28 4 0
PasserByVol: 53 73 0 0 219 0 0 0
Initial Fut: 479 924 0 0 1100 514 415 0 0 537 144 0 0 0 0 79 760 PHF Volume: 479 924 0 0 1100 514 415 0 760 0 0 FinalVolume: 479 924 0 0 1100 514 415 0 760 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.30 0.19 0.00 0.00 0.34 0.16 0.26 0.00 0.48 0.00 0.00 0.00

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to THE MOBILITY GROUP

Crit Moves:

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #28 Wilmington Ave & 118th St *************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.208 Average Delay (sec/veh): 10 Loss Time (sec): Optimal Cycle: 180 Level Of Service: *************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: 92 939 164 59 18 80 20 Base Vol: 129 843 60 Initial Bse: 130 851 61 93 948 Added Vol: 209 36 8 17 19 PasserByVol: 0 125 0 0 298 60 18 81 20 39 166 326 214 326 214 1 139 0 0 0 0 22 2 49 0 0 Initial Fut: 339 1012 69 110 1265 492 274 19 220 42 41 106 PHF Volume: 339 1012 69 110 1265 492 274 19 220 42 41 106 Reduct Vol: 0 0 0 0 0 0 0 0 0 0

.....

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

______ Level Of Service Computation Report

Level Of Service Computation Report										
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)										
					*****	******	*****			
Intersection #29	Wilmington A	ve & 120th *****	St (We *****	st) *******	*****	*****	*****			
Cvcle (sec):	100		Critic	al Vol./Ca	: (X), a	0.9	916			
Loss Time (sec):	10		Averag	e Delay (s	ec/veh):	: xxxx	cxx			
Optimal Cycle:	108		_	Of Service			E			
*****	*****	*****	*****	*****	*****	******	*****			
Approach: No	rth Bound	South Bo	ound	East E	ound	West Bo	ound			
Movement: L	- T - R	L - T	- R	L - T	- R	L - T				
					[]					
	Permitted	Permit		Permi		Permit				
Rights:	Include	Inclu	ıde	Incl	ude	Inclu	ıde			
Min. Green: 0	0 0	0 0	0	0 0	0	0 0	0			
Y+R: 4.0	4.0 4.0	4.0 4.0	4.0	4.0 4.0	4.0	4.0 4.0	4.0			
Lanes: 1	0 1 1 0					1 0 1	0 1			
Volume Module:										
Base Vol: 35	713 141	111 619	314	143 148	109	65 308	184			
Growth Adj: 1.01	1.01 1.01	1.01 1.01	1.01	1.01 1.01	1.01	1.01 1.01	1.01			
Initial Bse: 35	720 142	112 625	317	144 149	110	66 311	186			
Added Vol: 19	236 1	1 159	20	15 6	6	3 16	2			
PasserByVol: 0	95 0	0 140	171	33 6	0	11 15	0			
Initial Fut: 54	1051 143	113 924	508	192 161	116	80 342	188			
User Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
PHF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00			
PHF Volume: 54	1051 143	113 924	508	192 161		80 342	188			
Reduct Vol: 0		0 0	0	0 0	•	0 0	0			
Reduced Vol: 54	1051 143	113 924	508	192 161		80 342	188			
	1.00 1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00			
MLF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00			
	1051 143	113 924	508	192 161		80 342	188			
Saturation Flow M										
	1600 1600	1600 1600	1600	1600 1600		1600 1600	1600			
3	1.00 1.00	1.00 1.00	1.00	1.00 1.00		1.00 1.00	1.00			
	1.76 0.24	1.00 1.29	0.71	1.00 1.00		1.00 1.00	1.00			
	2816 384	1600 2065	1135	1600 1600	11111	1600 1600	1600			
Capacity Analysis	1									
	0.37 0.37	0.07 0.45	0.45	0.12 0.10	0.07	0.05 0.21	0.12			
Crit Moves: ****		***		***		****				
					******		*****			

Traffix 8.0.0715 (c) 2008 Dowling Assoc. Licensed to THE MOBILITY GROUP

	Existing+Project+Cumulative Conditions - AM Peak 10-4-2016											
	Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***********************************											
Intersection								****	*****	*****	****	*****
Cycle (sec):		1	00			Critic	al Vo	l./Caj	o.(X):		0.6	
Loss Time (se	ec):		10			Averag				:	XXXX	
Optimal Cycle			48			Level						В

Approach:			ound					ast_Bo			st Bo	
Movement:	, L	- T	- R	, L	- T	- R	Ъ.	- T	- R	L -		
]]		tted					ermit	
Rights:		Incl		_	Incl			Incl			Inclu	
Min. Green:	0		0	0		0		0	0	0	0	0
Y+R:	4.0			4.0			4.0			4.0		4.0
Lanes:			1 0			1 0			0 1			
	•									55555		
Volume Module			_		650		1.0	0	2	1.3	2	4.0
Base Vol:	26		7	25	659	75	18	0	3	13	3	40
Growth Adj:		1.01			1.01	1.01		1.01	1.01	1.01		1.01
Initial Bse:		831		25	666	76	18	0	3	13	3	40
Added Vol:	0	251	1	5	163	0	0	0	0	1	0	4
PasserByVol:		0	0	0	0	151	95 113	14	72 75	14	35 38	0 44
Initial Fut:		1082	8	30	829	227		14	1.00	1.00		1.00
User Adj:		1.00	1.00		1.00	1.00 1.00		1.00	1.00	1.00		1.00
PHF Adj:		1.00	1.00 8	30	1.00	227	113	14	75	1.00	38	44
PHF Volume: Reduct Vol:		1082	0	0	049	0	112	7.4	0	0	0	
Reduct Vol:	106	1082	8	30	829	227	113	14	75	14	38	44
PCE Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:		1082	8	30	829	227	113	14	75	14	38	44
rinarvorume.	130											
Saturation Fl	6		,			1				1		1
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:		1.00	1.00		1.00	1.00		1.00		1.00		1.00
Lanes:		1.99	0.01		1.57	0.43		0.11	1.00	0.15		0.46
Final Sat.:			24		2512	688		176	1600	234		736
Capacity Anal												-
Vol/Sat:	-		0.34	0.02	0.33	0.33	0.07	0.08	0.05	0.01	0.06	0.06
Crit Moves:	***				****		****			7	***	
			and the second second	the standards of		والمراجلة والمراجلة والمراجلة		ب مقد مقد مقد مقد م		بالمحاجف مقد مقد مقد مقد		and the state of the

Willowbrook Existing+Project+Cumulative Conditions - AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *********************** Intersection #31 Wilmington Ave & 124th St **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.705 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 51 Level Of Service: ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RMovement: Control: Permitted Permitted Permitted Permitted Rights: Include Inclu _____ Volume Module: Base Vol: 49 757 40 48 670 13 20 47 41 84 99 Initial Bse: 49 765 40 48 677 13 20 47 41 85 100 FinalVolume: 49 1150 40 61 896 13 20 47 41 85 100 106 _____ Saturation Flow Module: Lanes: 1.00 1.93 0.07 1.00 1.97 0.03 0.18 0.44 0.38 0.29 0.34 0.37 Final Sat.: 1600 3091 109 1600 3154 46 296 696 607 467 551 582 _____ Capacity Analysis Module: Vol/Sat: 0.03 0.37 0.37 0.04 0.28 0.28 0.01 0.07 0.07 0.05 0.18 0.18 Crit Moves: **** **** ****

and the second s

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)

Cycle (sec): 100 Critical Vol./Cap.(X): 0.847
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 79 Level Of Service: D

Approach: North Bound South Bound East Bound West Bound L-T-R L T T R L-T-R Volume Module: Base Vol: 173 744 54 123 640 135 92 393 258 56 557 Initial Bse: 175 751 55 124 646 136 93 397 261 57 563 Added Vol: 34 185 0 36 117 11 6 11 18 0 17 PasserByVol: 0 102 0 11 42 0 0 0 0 0 Initial Fut: 209 1038 55 171 805 147 99 408 279 57 580 178 PHF Volume: 209 1038 55 171 805 147 99 408 279 57 580 178 FinalVolume: 209 1038 55 171 805 147 99 408 279 57 580 178 _____ Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.13 0.34 0.34 0.11 0.30 0.30 0.06 0.21 0.21 0.04 0.24 0.24 Crit Moves: **** **** ****

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #34 Willowbrook Ave W & 119th Street ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.478 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 32 Level Of Service: XXXXXX ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: 0 228 58 11 334 Base Vol: 164 0 24 0 12 41 Initial Bse: 166 0 24 0 12 41 0 230 59 11 337 0

Saturation Flow Module:

FinalVolume: 169 0 24 0 12 41 0 243 68 11 371 0

Capacity Analysis Module:

Vol/Sat: 0.11 0.00 0.02 0.00 0.03 0.03 0.00 0.19 0.19 0.01 0.24 0.00 Crit Moves: **** **** ****

Willowbrook Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #35 Willowbrook Ave E & 119th Street *************** Cycle (sec): Critical Vol./Cap.(X): 0.388 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 28 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - RControl: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 91 43 37 3 44 66 38 112 97 23 172 Initial Bse: 92 43 37 3 44 67 38 113 98 23 174 0 0 0 0 43 37 0 0 5 0 1 4 2 5 0 0 0 0 6 3 45 71 40 124 Added Vol: 0 PasserByVol: 0 Initial Fut: 92 43 98 23 205 FinalVolume: 92 43 37 3 45 71 40 124 98 23 205 4 Saturation Flow Module: Lanes: 0.53 0.25 0.22 0.03 0.38 0.59 1.00 0.56 0.44 1.00 0.98 0.02 Final Sat.: 851 402 346 41 610 949 1600 894 706 1600 1569 31 Capacity Analysis Module: Vol/Sat: 0.06 0.11 0.11 0.00 0.07 0.07 0.03 0.14 0.14 0.01 0.13 0.13 Crit Moves: **** **** **** *****

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

		-	, ,		10-4-	-2016						
			Level O								\	
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
Intersection #36 Imperial Hwy & I-105 w/b Ramps												

Cycle (sec):		10				Critic					0.9	
Loss Time (se	ac) :								ec/veh)	:		
Optimal Cycle		10				Level						E
****				****	****	*****	****	****	****	****	*****	*****
Approach:	No	rth Bo	ound	Soi	ith Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:		- T				- R			- R		- T	
Control:	Sp	lit Ph	nase	Sp.		nase	P:		ted	Pi	rotect	
Rights:		Inclu	ıde		Inclu	ıde		Ovl			Inclu	ıde
Min. Green:	0		0		0	0	-	0	0	0	-	0
Y+R:	4.0		4.0	4.0		4.0			4.0		4.0	4.0
Lanes:			0 1			0 0			1 1	2 (1 0
	•											
Volume Module				_	2.4			1000	000	725	1222	1.2
Base Vol:	534	11	136	7	34	67		1002	222		1333	13
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01		1.01	1.01
Initial Bse:	539		137	7	34	68		1012	224		1346	13 4
Added Vol:	181	9	1	0	0	0	7	89	112	2	131	0
PasserByVol:	116	0	11	0 7	0 34	0	0	19 1120	32 368	744	42 1519	17
Initial Fut:	836	20	149	•		68 1.00		1.00	1.00		1.00	1.00
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:	836	1.00	1.00	7	34	68		1120	368		1519	17
PHF Volume:	0.0	20	149	0	34	0	0	0	0	744	0	0
Reduct Vol: Reduced Vol:	836	20	149	7	34	68	-	1120	368		1519	17
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	836	20	149	7.00	34	68		1120	368		1519	17
OvlAdjVol:	030	20	143	,	24	0.0	50	1120	0	/ 11	1313	Ψ,
ovinaj voi.			1	l					- 40	1		
Saturation Fl				:1:		,	1		90	4 :		34.
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:		0.05	1.00		0.31	0.63		3.76	1.24		2.97	0.03
Final Sat.:	2812		1600	104		993		6021	1979		4746	54
Capacity Anal	ysis	Modul	.e: '							-		
Vol/Sat:	0.30	0.30	0.09	0.07	0.07	0.07	0.04	0.19	0.19	0.26	0.32	0.32
OvlAdjV/S:									0.00			
Crit Moves:		****		****				***		****		
*****	r****	****	*****	****	****	*****	****	****	*****	****	****	*****

and the state of t

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

		10-4-	2016							
Level Of Service Computation Report										
7.577 2.47			_	_	. 77					
1CU 1(Loss a	s Cycle Leng									
Intersection #37 Wi										
a 1 ()	7.00		a	77-7 /0	(32)	0.41	- 4			
Cycle (sec):	100 10		critical	. Vol./Cap.	. (X):	0.4	54			
	10	•	Average	Delay (sec	c/ven):	XXXX	XXX.			
Optimal Cycle:	31			Service:		to the aller also also also also also also	A			

1 1				East Bou		West Bo				
Movement: L -	T - R	L - T	- R	L - T -	- K I	_ T				
						D				
				Permitt		Permit				
Rights: Include Include Include Include Min Green: 0 0 0 0 0 0 0 0 0 0										
Min. Green: 0		0 0	0	•	0		0			
	0 1 0	4.0 4.0 1 0 0	4.0	4.0 4.0		1.0 4.0	4.0			
						0 2				
Volume Module:			_			0 565	2.7			
	166 7	0 9	6	45 444	60	0 565	37			
Growth Adj: 1.01 1	70	.01 1.01		01 1.01		.01 1.01	1.01			
	168 7	0 9	6	45 448	61	0 571	37			
Added Vol: 0	2 0	5 4	0	0 46	0	0 78	2			
PasserByVol: 0	6 0	0 2	0	0 7	0	0 17	0			
	176 7	5 15	6	45 501	61	0 666	39			
User Adj: 1.00 1		.00 1.00		00 1.00		.00 1.00	1.00			
PHF Adj: 1.00 1		.00 1.00		00 1.00	- 17	.00 1.00	1.00			
	176 7	5 15	6	45 501	61	0 666	39			
	0 0	0 0	0	0 0	0	0 0	0			
	176 7	5 15	6	45 501	61	0 666	39			
PCE Adj: 1.00 1		.00 1.00		00 1.00		.00 1.00	1.00			
MLF Adj: 1.00 1		.00 1.00		00 1.00	- 100	.00 1.00	1.00			
	176 7	5 15	6	45 501	61	0 666	39			
	-									
Saturation Flow Mod										
Sat/Lane: 1600 1	600 1600 1	600 1600		.600 1600		500 1600	1600			
Adjustment: 1.00 1	.00 1.00 1	.00 1.00	1.00 1	00 1.00	1.00 1.	.00 1.00	1.00			
Lanes: 1.00 0	.96 0.04 1	.00 0.71		00 2.00		00 2.00	1.00			
Final Sat.: 1600 1				.600 3200	1600	0 3200	1600			
			-							
Capacity Analysis M	odule:									
Vol/Sat: 0.04 0	.11 0.11 0	.00 0.01	0.01 0	0.03 0.16	0.04 0.	00 0.21	0.02			
CIIC MOVCS.		***		***		***				
*****	*****	****	*****	*****	******	*****	*****			

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #38 Willowbrook Ave E & El Segundo Blvd **************** Critical Vol./Cap.(X): 0.479 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 32 Level Of Service: xxxxxx ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 0 1 0 1 0 0 1 0 0 0 2 0 1 1 0 1 1 0 Volume Module: Base Vol: 42 96 38 75 166 43 0 432 19 43 532 Initial Bse: 42 97 38 76 168 43 0 436 19 43 537 66 19 43 634 0 0 _____ Saturation Flow Module: Lanes: 1.00 0.73 0.27 1.00 0.79 0.21 0.00 2.00 1.00 1.00 1.81 0.19 Final Sat.: 1600 1162 438 1600 1268 332 0 3200 1600 1600 2900 300 ______ Capacity Analysis Module: Vol/Sat: 0.03 0.09 0.09 0.05 0.13 0.13 0.00 0.15 0.01 0.03 0.22 0.22 Crit Moves: **** **** **** *****************

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak

			y y -		10-4	-2016		-				
	Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											
ICU 1	(Loss	as C	ycle Le	ngth '	శ) Met	thod (F	uture	Volur	ne Alte	rnative)		
*****							****	****	*****	****	******	
Intersection							****	****	*****	*****	*****	
Cycle (sec):		10	0.0			Critic	al Vo	L./Car	o.(X):		0.772	
Loss Time (se	ec):	:	LO			Averag	e Dela	ay (se	ec/veh)	: x:	CCCCC	
Optimal Cycle	e:	(51			Level	Of Se	rvice:	:		C	
*****	****	****	*****	****	****	*****	****	****	*****	****	******	
Approach:	No	rth Bo	ound	Sou	ith Bo	ound		ast Bo		West	Bound	
Movement:		- T				- R		- T			r - R	
Control:		Permit]	Permit]	Permit			nitted	
Rights:	ghts: Include Include I										clude	
Min. Green:		0	0		0	0		0	0	0	0 0	
Y+R:	4.0		4.0	4.0		4.0	4.0		4.0		.0 4.0	
Lanes:	. 0 :	-	-		1!		1 (2 1 0	
Volume Module												
Base Vol:	139	49	155	27	102	92	37	928	176	189 17		
Growth Adj:	1.01		1.01		1.01	1.01		1.01	1.01	1.01 1.		
Initial Bse:	140	49	157	27	103	93	37	937	178	191 18		
Added Vol:	4	0	5	0	0	0	0	84	6		33 0	
PasserByVol:	0	2	0	0	5	0	0	19	11	_	12 0	
Initial Fut:	144	51	162	27	108	93		1040	195	193 19'		
User Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00 1.0		
PHF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00 1.0		
PHF Volume:	144	51	162	27	108	93	-	1040	195	193 19		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0 0	
Reduced Vol:	144	51	162	27	108	93	-	1040	195	193 19		
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00 1.0		
MLF Adj:	1.00		1.00	1.00		1.00		1.00	1.00	1.00 1.0		
FinalVolume:	144	51	162	27	108	93		1040	195	193 19	(2)	
	,		,									
Saturation Fl				7.000	1.000	1.000	1.000	1.000	1.000	1600 160	1600	
Sat/Lane:	1600		1600	1600		1600		1600	1600	1600 160		
Adjustment:	1.00		1.00	1.00		1.00		1.00	1.00	1.00 1.0		
Lanes:	0.74		1.00	0.12		0.41		2.53	0.47 757	1.00 2.9		
Final Sat.:	1179		1600	191	757	651		4043	/5/ 	1600 474		
Canadity Anal	•			1			1					
Capacity Anal	0.09		.e: 0.10	0 02	0.14	0.14	0 02	0.26	0.26	0.12 0.4	2 0.42	
Vol/Sat:	****	0.12	0.10	0.02	****	0.14	****	0.20	0.20	***		
Crit Moves:							4 4 4 4			***	• ••	

3: Mona Blvd & 119th St- Existing+Project+ Cumulative Project AM

5	<i>></i>	-		†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W		Ť	^	1>	
Volume (vph)	90	41	50	195	218	144
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00
Frt	0.958				0.946	
Fit Protected	0.967		0.950			
Satd. Flow (prot)	1726	0	1770	1863	1762	0
Flt Permitted	0.967		0.950			
Satd. Flow (perm)	1726	0	1770	1863	1762	0
Link Speed (mph)	30			30	30	
Link Distance (ft)	266			283	255	
Travel Time (s)	6.0			6.4	5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	98	45	54	212	237	157
Shared Lane Traffic (%)						
Lane Group Flow (vph)	143	0	54	212	394	0
Enter Blocked Intersection	No	No	No	No	. No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Sign Control	Stop			Free	Free	
Intersection Summary		100		24"		

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 41.1%

Analysis Period (min) 15

ICU Level of Service A

Synchro 8 Report 9/14/2016 Baseline Page 1

Intersection								
Int Delay, s/veh	3.3				Contract of			
			1-21		September 1	ES DELLA		
Movement	EBL	1 - 1 - 1	EBR		NBL	NBT	SBT	SBR
Vol, veh/h	90		41		50	195	218	144
Conflicting Peds, #/hr	0		0		0	0	0	C
Sign Control	Stop		Stop		Free	Free	Free	Free
RT Channelized	-		None		7 6	None	940.	None
Storage Length	0	8 J	1.00		0			
Veh in Median Storage, #	0		•		18	0	0	
Grade, %	0		TY No.		4.5-5	0	Constitution of the second	THE !
Peak Hour Factor	92		92		92	92	92	92
Heavy Vehicles, %	2		2		2	2	2	2
Mvmt Flow	98		45		54	212	237	157
				- 100				
Major/Minor	Minor2	100		do no	Major1		Major2	100
Conflicting Flow All	636	N VI	315	1 11	393	0	No. of the last of	C
Stage 1	315		8		.	F	3	
Stage 2	321		H IVer					
Critical Hdwy	6.42		6.22		4.12	3.5%	. 	
Critical Hdwy Stg 1	5.42	1 2	6 1.5			Marin .		allow a
Critical Hdwy Stg 2	5.42		-		15 4 (: -0	3#3	34
Follow-up Hdwy	3.518	1	3.318	WATE OF	2.218	111		7
Pot Cap-1 Maneuver	442		725		1166	= €	•	-
Stage 1	740		17 1 8		NY			- I -
Stage 2	735							1) ?
Platoon blocked, %	Samuel Control			F = 1 X		-		B.F.
Mov Cap-1 Maneuver	422		725		1166			
Mov Cap-2 Maneuver	422	100	100	- Ta	1 × 1		rê Ballin bergint British	N= 1
Stage 1	740		2		9 4 3	(a).	30	
Stage 2	701	nike je	18 Tu			100		Section .
		-			100			
Approach	EB				NB		SB	
HCM Control Delay, s	15.4				1.7		0	
HCM LOS	C					A CONTRACTOR OF THE PARTY OF TH		
Minor Lane/Major Mvmt	NBL	NBT	EBLn1	SBT	SBR		THE RESERVE OF THE PARTY OF THE	
Capacity (veh/h)	1166	i e	486	8 (#)	7-2			
HCM Lane V/C Ratio	0.047	4	0.293	178.0	11 36	Per Vision	THE WAY IS NOT THE	
HCM Control Delay (s)	8.2	2	15.4	15				
HCM Lane LOS	A A		C		F 36			7.7
HCM 95th %tile Q(veh)	0.1		1.2	1.0	-			

9/14/2016 Baseline Synchro 8 Report Page 2

Existing+Project+Cumulative Conditions AM Peak

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #41 Mona Blvd & El Segundo Blvd *************** Critical Vol./Cap.(X): 0.550 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 36 Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Movement: _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <t Volume Module: Initial Bse: 39 110 72 90 131 48 56 502 33 48 543 Added Vol: 0 0 0 1 1 1 0 51 0 0 79 PasserByVol: 0 11 0 0 5 0 0 7 0 0 17 Reduced Vol: 39 121 72 91 137 49 56 560 33 48 639 43 FinalVolume: 39 121 72 91 137 49 56 560 33 48 639 43 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.15 0.06 0.14 0.03 0.03 0.19 0.19 0.03 0.21 0.21 Crit Moves: **** *** *** *** *******************

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

					10-4	-2016							
	Level Of Service Computation Report												
T.OTT 1	/T					_		~			\		
**********						chod (F						*****	
Intersection													
**********						*****	****	****	*****	****	****	*****	
Cycle (sec):			00			Critic					0.8		
Loss Time (se	عر) .		10						ec/veh)		XXXX		
Optimal Cycle			72			Level		_		•	1000	D	
	*************									****	****	*****	
Approach:		rth Bo			ith Bo			ast Bo			West Bound		
Movement:			- R			- R	L -	- Т	- R	L -	- Т	- R	
Control:		Permi			Permit			Permit			Permit		
Rights:		Incl	ude		Inclu	ıde		Inclu	ıde		Inclu	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	
Lanes:	1 (2	0 0	0 () 1	1 0	0 (1!	0 0	0 (0 0	0 0	
Volume Module	∋:												
Base Vol:	178	809	0	0	948	191	194	0	152	0	0	0	
Growth Adj:	1.01	1.01	1.01		1.01	1.01		1 01	1.01	1,01		1.01	
Initial Bse:	180	817	0	0	957	193	196	0	154	0	0	0	
Added Vol:	5	31	0	0	48	4	1	0	4	0	0	0	
PasserByVol:	0	5	0	0	6	14	3	0	0	0	0	0	
Initial Fut:	185	853	0		1011	211	200	0	158	0	0	0	
User Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
PHF Adj:	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00	
PHF Volume:	185	853	0		1011	211	200	0	158	0	0	0	
Reduct Vol:	0	0	0	0	0	0	0	0	0 1 = 0	0	0	0	
Reduced Vol:	185	853	0		1011	211 1.00	200	1 0.0	158 1.00	1.00	1 - 00	0 1.00	
PCE Adj:	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00		1.00	
MLF Adj: FinalVolume:	1.00	853	0		1011	211	200	1,00	158	0	0	0	
rinarvorume:								-			-		
Saturation Fl				1		1	l		ļ	1		ı	
Sat/Lane:	1600		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00		1.00	1.00		1.00		1.00	1.00	1.00		1.00	
Lanes:	1.00		0.00	0.00		0.35		0.01	0.44	0.00		0.00	
Final Sat.:	1600		0		2648	552	895	0	705	0	0	0	
Capacity Anal	ysis	Modu]	le:	1					31				
Vol/Sat:	0.12		0.00	0.00	0.38	0.38	0.12	0.00	0.22	0.00	0.00	0.00	
Crit Moves:	***				****				****				

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

		10-4-	2016								
	Torrol C	of Service C	'omputa	tion Popor	= = = = = = = = = = = = = = = = = = =		(A. A. A				
TCH 1 / LOGG	as Cycle Le					rnative)					
**********	*******	:119c11 8/ Mec	*****	******	******	********	*****				
Intersection #45 Alameda St & Imperial Hwy											
********				*****	*****	*****	*****				
Cycle (sec):	100			al Vol./Ca			337				
Loss Time (sec):	10		Averag	re Delay (se	ec/veh)	: xxxx	CXX				
Optimal Cycle:	76			Of Service			D				

Approach: No	rth Bound	South Bo		East Bo		West Bo	ound				
	- T - R			L - T		L - T					
Control: P	Protected Protected Protected Protec										
Rights:	Include	Ovl		Incl		Incl					
	0 0	0 0			0		0				
		4.0 4.0		4.0 4.0		4.0 4.0	4.0				
	0 1 1 0					1 0 3					
Volume Module:											
	643 82	74 641	540	357 536	169	85 1226	36				
-	1.01 1.01	1.01 1.01	1.01	1.01 1.01	1.01	1.01 1.01	1.01				
Initial Bse: 211		75 647	545	361 541	171	86 1238	36				
Added Vol: 6		0 0	48	31 55	4	0 82	0				
PasserByVol: 0		0 0	18	12 8	0	0 23	0				
Initial Fut: 217		75 647	611	404 604	175	86 1343	36				
	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1,00 1.00	1.00				
3	1.00 1.00	1.00 1.00	1.00	1.00 1.00 404 604	1.00	1,00 1.00 86 1343	1.00				
PHF Volume: 217		75 647	611 0	0 0	175 0		36				
Reduct Vol: 0 Reduced Vol: 217		0 0 75 647	611	404 604	175	0 0 86 1343	0 36				
	650 83 1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00				
MLF Adj: 1.00		1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00				
FinalVolume: 217		75 647	611	404 604	175	86 1343	36				
OvlAdjVol:	650 65	/3 64/	387	404 004	1/3	00 1343	30				
OVIAUJ VOI.		1									
Saturation Flow Mo			ı			ASTRA LIBERTA DELL'OTARE					
	1600 1600	1600 1600	1600	1600 1600	1600	1600 1600	1600				
	1.00 1.00	1.00 1.00	1.00	1.00 1.00	1.00	1.00 1.00	1.00				
-	1.77 0.23	1.00 2.00	1.00	2.00 2.33		1.00 3.00	1.00				
	2839 361	1600 3200	1600	2880 3724	1076	1600 4800	1600				
Capacity Analysis		1		ı	, ,		1				
	0.23 0.23	0.05 0.20	0.38	0.14 0.16	0.16	0.05 0.28	0.02				
OvlAdjV/S:			0.24								
Crit Moves: ****			***	***		****					
******	*****	*****	*****	*****	******	*****	****				

_____ Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************* Intersection #46 Alameda St & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.827 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 73 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____ Volume Module: Base Vol: 153 632 50 78 759 109 105 417 153 40 361 103 Initial Bse: 155 638 51 79 767 110 106 421 155 40 365 104 PHF Adj: _____|___|___| Saturation Flow Module: Lanes: 1.00 1.85 0.15 1.00 1.75 0.25 1.00 2.00 1.00 1.00 1.00 1.00 Final Sat.: 1600 2968 232 1600 2800 400 1600 3200 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.13 0.22 0.22 0.05 0.28 0.28 0.07 0.14 0.12 0.03 0.25 0.07

Crit Moves: **** **** ****

Existing+Project+Cumulative Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #52 El Segundo Blvd & San Pedro St ***************** Critical Vol./Cap.(X): 0.611 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 41 Level Of Service: xxxxxx ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 1 1 0 1 0 1 1 0 1 0 2 1 0 1 0 2 1 0 _____ Volume Module: Base Vol: 77 232 34 95 245 153 96 518 41 49 1186 Initial Bse: 77 232 34 95 245 153 96 518 41 49 1186 46 FinalVolume: 78 233 34 96 246 154 98 654 42 49 1278 47 ______ Saturation Flow Module: Lanes: 1.00 1.75 0.25 1.00 1.23 0.77 1.00 2.82 0.18 1.00 2.89 0.11 Final Sat.: 1600 2793 407 1600 1968 1232 1600 4510 290 1600 4630 170 Capacity Analysis Module: Vol/Sat: 0.05 0.08 0.08 0.06 0.13 0.13 0.06 0.14 0.15 0.03 0.28 0.28

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak
10-4-2016

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #13 Slater Ave & El Segundo Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.717
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 52 Level Of Service: C **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 0 0 0 34 0 177 62 869 0 0 1370 Initial Bse: 0 0 0 34 0 179 63 878 0 0 1384 11 FinalVolume: 0 0 0 34 0 179 63 1014 0 0 1481 11 _____ Saturation Flow Module: Final Sat.: 0 0 0 1600 0 1600 1600 3200 0 0 3176 24 _____ Capacity Analysis Module: Vol/Sat: 0.00 0.00 0.00 0.02 0.00 0.11 0.04 0.32 0.00 0.00 0.47 0.47 **** **** Crit Moves: *****************

Existing+Project+Cumulative Conditions = AM Peak 10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #21 Compton Ave & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.940 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 125 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 172 102 27 136 69 276 148 594 93 12 927 Initial Bse: 174 103 27 137 70 279 149 600 94 12 936 112 Added Vol: 0 1 0 18 2 58
PasserByVol: 0 18 0 0 8 10
Initial Fut: 174 122 27 155 80 347
 105
 16
 0
 0
 29

 15
 0
 0
 0
 0
 15 0 269 616 12 965 94 Reduced Vol: 174 122 27 155 80 347 269 616 94 12 965 144 FinalVolume: 174 122 27 155 80 347 269 616 94 12 965 144 ______ Saturation Flow Module: Lanes: 1.00 1.63 0.37 1.00 1.00 1.00 1.00 1.74 0.26 1.00 1.74 0.26

Capacity Analysis Module:

Vol/Sat: 0.11 0.05 0.05 0.10 0.05 0.22 0.17 0.22 0.22 0.01 0.35 0.35 Crit Moves: **** **** ****

Final Sat.: 1600 2615 585 1600 1600 1600 1600 2777 423 1600 2784 416

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #33 Wilmington Ave & Rosecrans Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.935 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 121 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 95 614 119 138 813 189 99 462 103 124 900 Initial Bse: 96 620 120 139 821 191 100 467 104 125 909 99 Reduced Vol: 96 833 120 182 943 202 118 476 104 125 919 180 FinalVolume: 96 833 120 182 943 202 118 476 104 125 919 180 Saturation Flow Module: Lanes: 1.00 1.75 0.25 1.00 1.65 0.35 1.00 2.00 1.00 1.00 1.67 0.33 Final Sat.: 1600 2797 403 1600 2636 564 1600 3200 1600 1600 2676 524 ______|____| Capacity Analysis Module: Vol/Sat: 0.06 0.30 0.30 0.11 0.36 0.36 0.07 0.15 0.07 0.08 0.34 0.34

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #42 Willowbrook Ave & Rosecrans Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.727 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 54 Level Of Service: ***************
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 18 98 19 145 83 35 6 906 29 35 1157 148 Initial Bse: 18 99 19 146 84 35 6 915 29 35 1169 149 FinalVolume: 18 101 19 152 85 35 6 964 29 35 1256 156 _____ Saturation Flow Module: Lanes: 0.13 0.73 0.14 0.56 0.31 0.13 1.00 1.94 0.06 1.00 1.78 0.22 Final Sat.: 210 1168 222 895 498 207 1600 3106 94 1600 2845 355 Capacity Analysis Module: Vol/Sat: 0.01 0.09 0.09 0.10 0.17 0.17 0.00 0.31 0.31 0.02 0.44 0.44 Crit Moves: **** ****

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #55 El Segundo Blvd & Santa Fe Ave ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.607 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 41 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0

 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4 Y+R: Volume Module: Base Vol: 143 356 27 16 451 64 62 115 163 46 114 Initial Bse: 143 356 27 16 451 64 62 115 163 46 114 0 0 0 0 23 0 0 0 0 2 16 451 64 62 140 Added Vol: 0 0 0 0 0 0 34 PasserByVol: 0 0 27 5 0 46 153 Initial Fut: 143 356 163 PHF Volume: 143 356 27 16 451 64 62 140 163 46 153 33 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 143 356 27 16 451 64 62 140 163 46 153 33 FinalVolume: 143 356 27 16 451 64 62 140 163 46 153 33 _____ Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.09 0.12 0.12 0.01 0.16 0.16 0.04 0.23 0.23 0.03 0.15 0.14 *******************

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #56 Alameda St & Rosecrans Ave *******************

Critical Vol./Cap.(X): 0.634 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 43 Level Of Service: *******************

Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 118 606 0 0 883 115 104 0 193 0 0

Initial Bse: 118 606 0 0 883 115 104 0 193 0 0 FinalVolume: 130 668 0 0 919 115 104 0 208 0 0 Saturation Flow Module:

Capacity Analysis Module:

Vol/Sat: 0.08 0.21 0.00 0.00 0.32 0.32 0.07 0.00 0.13 0.00 0.00 0.00 Crit Moves: *** ************

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #57 Central Ave & W Compton Bvld ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.774 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 2 0 1 1 0 2 0 1 1 0 1 0 Volume Module: 148 104 345 138 164 758 Base Vol: 182 573 83 138 655 120 Initial Bse: 182 573 83 138 655 148 104 345 138 164 758 79 0 12 0 664 83 1 42 0 5 0, 0 0 0 1 1 0 0 0 Added Vol: 0 79 0 PasserBvVol: 0 0 PasserByVol: 0 12 Initial Fut: 182 664 139 702 148 105 346 138 164 758 Reduced Vol: 182 664 83 139 702 148 105 346 138 164 758 123 FinalVolume: 182 664 83 139 702 148 105 346 138 164 758 123 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.23 0.23 0.09 0.22 0.09 0.07 0.11 0.09 0.10 0.28 0.28

	2-9-17												
						Computa							
	ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
								*****	*****	****	*****	*****	
Intersection								****	*****	****	****	*****	
Cvcle (sec):		10	00			Critic	al Vo	l./Car	o.(X):		0.7	738	
Loss Time (se	ec):		10			Averag				:			
Optimal Cycle	,		55			Level						C	
******	****	****	*****	****	****	*****	****	****	*****	****	*****	*****	
Approach:	No	rth Bo	ound	Sou	ith Bo	ound	E	ast Bo	ound	We	est Bo	ound	
Movement:	L	- T	- R	L ·	- T	- R	L	- T	- R	L -	- T	- R	
Control:	P	rotect	ted	P	rotect	ed	P:	rotect	ed	Protected			
Rights:		Inclu			Incl			Incl		Include			
Min. Green:	0	-	0	0		0	-	0	0	0	-	0	
Y+R:	4.0		4.0	4.0		4.0		4.0	4.0		4.0	4.0	
Lanes:			0 1			1 0			1 0	1 (2	0 1	
77-1 26-1-1	1												
Volume Module		1.60	7.60	150	71.0	100	7.0	F1 F	107	122	600	120	
Base Vol:	86	460	169	179	718	128	70	515	127 1.00	133	682 1.00	139 1.00	
Growth Adj: Initial Bse:	86	1.00	1.00 169	179	718	1.00 128	70	515	127	133	682	139	
Added Vol:	0	152	169	1/9	96	128	0	1	127	133	3	139	
PasserByVol:	8 0	48	0	3	20	0	1	0	0	0	0	7	
Initial Fut:	86	660	169	182	834	128	71	516	127	133	685	146	
User Adj:		1.00	1.00		1.00	1.00	. –	1.00	1.00		1.00	1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
PHF Volume:	86	660	169	182	834	128	71	516	127	133	685	146	
Reduct Vol:	0		0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	86	660	169	182	834	128	71	516	127	133	685	146	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	86	660	169	182	834	128	71	516	127	133	685	146	
Saturation Fl	Low Mo	odule											
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Lanes:		2.00	1.00		1.73	0.27		1.60	0.40		2.00	1.00	
Final Sat.:		3200	1600		2774	426		2568	632		3200	1600	
Capacity Anal	_												
Vol/Sat:		0.21	0.11	0.11	0.30	0.30	0.04	0.20	0.20		0.21	0.09	
Crit Moves:	****				****		b 6 C 6 C	****	and deltas	****	eactace e	and also de also de 1	
******	*****	****	*****	****	*****	*****	****	*****	*****	****	****	*****	

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #59 Willowbrook Ave & W Compton Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.537 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 36 Level Of Service: *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 1! 0 0 0 0 0 1 0 1 0 2 1 0 0 0 1 1 0 Volume Module: Base Vol: 24 117 6 0 179 67 24 627 63 0 764 Initial Bse: 24 117 6 0 179 67 24 627 63 0 764 29 0 0 0 0 0 1 0 0 1 0 0 1 6 0 180 67 24 629 0 3 0 2 0 769 0 Added Vol: 0 0 PasserByVol: 5 2 65 Initial Fut: 29 119 PHF Volume: 29 119 6 0 180 67 24 629 65 0 769 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 FinalVolume: 29 119 6 0 180 67 24 629 65 0 769 29 Saturation Flow Module: Lanes: 0.19 0.77 0.04 0.00 0.73 0.27 1.00 2.72 0.28 0.00 1.93 0.07 Final Sat.: 301 1236 62 0 1166 434 1600 4350 450 0 3084 116 Capacity Analysis Module: Vol/Sat: 0.02 0.10 0.10 0.00 0.15 0.15 0.02 0.14 0.14 0.00 0.25 0.25

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************** Intersection #60 Central Ave & Alondra Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 60 Level Of Service: Critical Vol./Cap.(X): 0.769 ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 142 524 69 173 795 130 75 327 120 85 735 Initial Bse: 142 524 69 173 795 130 75 327 120 85 735 0 0 69 0 42 0 0 0 0 2 0 1 1 173 839 130 76 328 0 0 0 Added Vol: 0 79 PasserByVol: 0 5 Initial Fut: 142 608 0 85 735 120 PHF Adj: PHF Volume: 142 608 Reduct Vol: 0 0 69 173 839 130 76 328 120 85 735 204 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 142 608 69 173 839 130 76 328 120 85 735 204 FinalVolume: 142 608 69 173 839 130 76 328 120 85 735 204 Saturation Flow Module: Lanes: 1.00 1.80 0.20 1.00 1.73 0.27 1.00 1.46 0.54 1.00 2.00 1.00 Final Sat.: 1600 2874 326 1600 2771 429 1600 2343 857 1600 3200 1600 _____ Capacity Analysis Module: Vol/Sat: 0.09 0.21 0.21 0.11 0.30 0.30 0.05 0.14 0.14 0.05 0.23 0.13 Crit Moves: **** **** **** *************************

Existing+Project+Cumulative Conditions - AM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #61 Wilmington Ave & Alondra Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.862 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 84 Level Of Service: *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: 100 498 105 137 850 Base Vol: 104 444 142 170 833 87 Initial Bse: 104 444 142 170 833 87 100 498 105 137 850 0 96 0 0 0 2 15 0 1 0 172 944 87 101 498 0 Added Vol: 0 152 0 0 0 0 PasserByVol: 0 38 0 0 PasserByVol: 0 38 0 2 15 Initial Fut: 104 634 142 172 944 105 137 850 Reduced Vol: 104 634 142 172 944 87 101 498 105 137 850 147 FinalVolume: 104 634 142 172 944 87 101 498 105 137 850 147 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.07 0.24 0.24 0.11 0.32 0.32 0.06 0.16 0.07 0.09 0.31 0.31 Crit Moves: **** **** ****

2-9-17

					2-9	- I /						
	Level Of Service Computation Report											
T (7) 1	/T)	
1CU 1						hod (F						
Intersection												

Cycle (sec):	,	Τ.	00 10 74			Critic					0.8	
Loss Time (se		:	10			Averag				:	XXXX	
Optimal Cycle			74		h la da da da	Level						D
Approach:	No	rth Bo	ound_	Soi	ith Bo	ound_	_ Ea		ound_		est Bo	
Movement:			- R	ъ.	- T	- R	Ъ.	- T	- R		- T	
Control:]					ted]	?ermit	ted	I	Permit	
Rights:		Incl			Incl			Inclu			Inclu	
Min. Green:			0	0			0		0	0		0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0 1 0	4.0	4.0	4.0			4.0
Lanes:	1 () 2	0 1	1 (0 1	1 0	1 (0 0	1 0		0 0	
Volume Module	∋:											
Base Vol:	35	471	114	104	1031	21	38	192	86	276	361	74
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:		471	114	104	1031	21	38	192	86	276	361	74
Added Vol:	0	152	0	0	96	0	0	0	0	0	0	0
PasserByVol:	0	30	0	1	12	0	0	0	0	0	0	2
Initial Fut:			114	105	1139	21	38	192	86	276	361	76
User Adj:	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	35	653	114	105	1139	21	38	192	86	276	361	76
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	35	653	114	105	1139	21	38	192	86	276	361	76
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00
FinalVolume:		653	114		1139	21	38		86		361	76
Saturation Fl				1		1				100		, i
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00		1.00	1.00		1.00	1.00		1.00	1.00
_												0.17
Lanes:			1.00		1.96	0.04		0.69			0.83	278
Final Sat.:	T000	3200	1600		3142	58			495			278
Consolty Dool												
Capacity Anal	-			0 05	0 36	0.36	0 00	0 1 5	0 15	0 15	0 05	0 07
Vol/Sat:		0.20	0.07	0.07	0.36	0.36	0.02	0.17 ****	0.1/	0.17 ****	0.27	0.27
Crit Moves:	****								nana ara			
*****	****	****	*****	****	****	*****	****	****	*****	****	*****	*****

Existing+Project+Cumulative Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #63 Wilmington Ave & Walnut St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.628 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 42 Level Of Service: XXXXXX ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Lanes: 1 0 2 0 1 1 0 2 0 1 1 0 1 0 1 1 0 1 1 0 Volume Module: Base Vol: 81 530 41 33 1228 87 26 60 58 24 95 Initial Bse: 81 530 41 33 1228 87 26 60 58 24 95 46 0 PHF Volume: 81 712 41 33 1336 87 26 60 58 24 95 46 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 81 712 41 33 1336 87 26 60 58 24 95 46 FinalVolume: 81 712 41 33 1336 87 26 60 58 24 95 46 Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 1600 1600 1600 2156 1044 Capacity Analysis Module: Vol/Sat: 0.05 0,22 0.03 0.02 0.42 0.05 0.02 0.04 0.04 0.02 0.04 0.04 Crit Moves: **** **** **** ************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************ Intersection #64 Central Ave & Greenleaf Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.548 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 0 0 2 0 1 1 0 2 0 0 0 0 0 0 0 1 0 0 0 1 ______ Volume Module: Base Vol: 0 467 76 137 976 0 0 0 206 0 Initial Bse: 0 467 76 137 976 0 0 0 0 206 0 FinalVolume: 0 551 76 137 1020 0 0 0 206 0 191 Saturation Flow Module:

Capacity Analysis Module:

Existing+Project+Cumulative Conditions - AM Peak

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #65 Willowbrook Ave & Alondra Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.535 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 35 Level Of Service: xxxxxx ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 0 0 1! 0 0 0 0 1! 0 0 1 0 2 0 1 0 0 1 1 0 Volume Module: Base Vol: 11 68 29 33 102 44 26 666 24 0 913 PHF Volume: 11 75 29 33 105 44 26 669 24 0 918 36 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 11 75 29 33 105 44 26 669 24 0 918 36 FinalVolume: 11 75 29 33 105 44 26 669 24 0 918 36 Saturation Flow Module: Final Sat.: 153 1043 403 290 923 387 1600 3200 1600 0 3079 121 Capacity Analysis Module: Vol/Sat: 0.01 0.07 0.07 0.02 0.11 0.11 0.02 0.21 0.02 0.00 0.30 0.30 Crit Moves: **** **** ****

Existing+Project+Cumulative Conditions - AM Peak 2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************** Intersection #66 Alameda St. West & Greenleaf Blvd. ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.641 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 44 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 ______ Volume Module: Base Vol: 73 415 105 48 659 59 21 190 107 264 313 Initial Bse: 73 415 105 48 659 59 21 190 107 264 313 0 0 31 0 0 0 0 0 10 0 0 1 105 48 700 59 21 191 0 0 Added Vol: 0 50 PasserByVol: 0 24 0 0 0 0 2 Initial Fut: 73 489 264 315 107 Reduced Vol: 73 489 105 48 700 59 21 191 107 264 315 34 FinalVolume: 73 489 105 48 700 59 21 191 107 264 315 34 Saturation Flow Module: Lanes: 1.00 1.65 0.35 1.00 1.84 0.16 1.00 1.28 0.72 1.00 1.00 1.00 Final Sat.: 1600 2634 566 1600 2951 249 1600 2051 1149 1600 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.19 0.19 0.03 0.24 0.24 0.01 0.09 0.09 0.17 0.20 0.02 Crit Moves: **** **** **** *******************

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #44 Alameda St & Abbott Rd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.679
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 47 Level Of Service: B ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 1< ______ Volume Module: Initial Bse: 0 752 220 150 940 1 2 2 2 470 1
Added Vol: 0 31 0 4 48 0 0 0 0 0 0
PasserByVol: 0 5 7 0 6 0 0 0 0 13 0
Initial Fut: 0 788 227 154 994 1 2 2 2 483 1 PHF Volume: 0 788 227 154 994 1 2 2 2 483 1 258 FinalVolume: 0 788 227 154 994 1 2 2 2 483 1 258 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.32 0.10 0.31 0.31 0.00 0.00 0.00 0.15 0.15 0.16

Crit Moves:

**** ***

Willowbrook

Existing+Project+Cumulative Conditions - AM Peak 2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #53 Imperial Hway & Fernwood Ave ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.764 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 60 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 60 40 3 159 45 17 23 665 45 2 1289 0 0 0 0 55 0 0 0 0 8 159 45 17 23 728 0 0 0 82 0 23 2 1394 0 0 45 PHF Volume: 60 40 3 159 45 17 23 728 45 2 1394 124 FinalVolume: 60 40 3 159 45 17 23 728 45 2 1394 124 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.06 0.06 0.10 0.14 0.14 0.01 0.24 0.24 0.00 0.47 0.47

Willowbrook Existing+Project+Cumulative Conditions - AM Peak

2-9-17

Level Of Service Computation Report													
TCU 1	(Loss								ne Alte	rnativ	ze)		
******	****	****	*****	*****	****	*****	****	****	*****	****	****	*****	
Intersection													
*****							****	****	*****	****	****	*****	
Cycle (sec):		10	00			Critic	al Vol	l./Cai	o.(X):		0.7	773	
Loss Time (se	ec):	:	LO			Averag	e Dela	ay (s	ec/veh)	. ×	XXXX	кхх	
Optimal Cycle			51	Average Delay (sec/veh): Level Of Service:							C		
*****		****	*****	****	****	*****	****	****	*****	****	****	*****	
Approach:	No	rth Bo	ound	Sou	ith Bo	ound	Εá	ast Bo	ound	We	est Bo	ound	
Movement:	L ·	- Т	- R	L -	- Т	- R	L ·	- Т	- R	L -	- T	- R	
Control:	· 1	Permit	ted		ermit	ted	. 1	Permi	tted	· 1	Permit	ted	
Rights:		Incl	ıde		Inclu	ıde		Incl	ude		Inclu	ıde	
Min. Green:	0	0	0		0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lanes:	1 () 1	1 0	1 () 1	1 0	1 () 1	1 0	1 () 1	1 0	
Volume Module	≘:												
Base Vol:	15	240	134	106	367	271	98	736	3	114	1141	37	
Growth Adj:	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	15	240	134	106	367	271	98	736	3	114	1141	37	
Added Vol:	0	0	0	0	0	0	0	55	0	0	82	0	
PasserByVol:	0	0	0	0	0	2	3	0	5	0	21	0	
Initial Fut:	15	240	134	106	367	273	101	791	8	114	1244	37	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	15	240	134	106	367	273	101	791	8	114	1244	37	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	15	240	134	106	367	273	101	791	8	114	1244	37	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	15	240	134	106	367	273	101	791	8	114	1244	37	
Saturation F	Low Mo	odule	:										
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.28	0.72	1.00	1.15	0.85	1.00	1.98	0.02	1.00	1.94	0.06	
Final Sat.:	1600	2053	1147	1600	1835	1365	1600	3168	32	1600	3108	92	
Capacity Anal	lysis	Modu.	Le:										
Vol/Sat:	0.01	0.12	0.12	0.07	0.20	0.20		0.25	0.25	0.07	0.40	0.40	
Crit Moves:	***				****		****				***		
******	*******************												

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #3 Avalon Blvd & El Segundo ***************** Critical Vol./Cap.(X): 0.957 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 140 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Initial Bse: 122 711 172 149 536 94 135 1384 105 103 466 113 Added Vol: 4 18 65 7 19 0 0 184 7 59 174 4 PasserByVol: 0 8 0 0 16 0 0 20 0 0 38 0 Added Vol: 4 18 65 7 19 0 0 184 7 59 174 4
PasserByVol: 0 8 0 0 16 0 0 20 0 0 38 0
Initial Fut: 126 737 237 156 571 94 135 1588 112 162 678 117 PHF Volume: 126 737 237 156 571 94 135 1588 112 162 678 117 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 Reduced Vol: 126 737 237 156 571 94 135 1588 112 162 678 117 FinalVolume: 126 737 237 156 571 94 135 1588 112 162 678 117 Saturation Flow Module: Lanes: 1.00 1.51 0.49 1.00 1.72 0.28 1.00 2.80 0.20 1.00 2.56 0.44 Final Sat.: 1600 2422 778 1600 2748 452 1600 4484 316 1600 4093 707 Capacity Analysis Module: Vol/Sat: 0.08 0.30 0.30 0.10 0.21 0.21 0.08 0.35 0.35 0.10 0.17 0.17 Crit Moves: **** **** Crit Moves: *************************

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #4 Avalon Blvd & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.842 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 77 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Prot+Permit Prot+Permit Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 132 625 158 217 484 59 124 1148 112 86 469 119 Initial Bse: 133 631 160 219 489 60 125 1159 113 87 474 120 FinalVolume: 133 710 162 222 565 66 130 1196 113 92 552 128 _____ Saturation Flow Module: Lanes: 1.00 1.63 0.37 1.00 1.79 0.21 1.00 2.74 0.26 1.00 2.43 0.57 Final Sat.: 1600 2607 593 1600 2867 333 1600 4385 415 1600 3895 905 Capacity Analysis Module: Vol/Sat: 0.08 0.27 0.27 0.14 0.20 0.20 0.08 0.27 0.27 0.06 0.14 0.14 Crit Moves:

10-4-21	016								
Tanal Of Compine Co.									
Level Of Service Con									
ICU 1(Loss as Cycle Length %) Metho									

Intersection #10 Central Ave & El Segundo									
# · · · · · · · · · · · · · · · · · · ·	ritical Vol./Cap.(X): 1.014								
	verage Delay (sec/veh): xxxxxx								
	evel Of Service: F								

Approach: North Bound South Bour									
Movement: L - T - R L - T -									
Control: Prot+Permit Prot+Permit Permitted Permitted									
Rights: Include Include									
Min. Green: 0 0 0 0 0	0 0 0 0 0 0 0								
Y+R: 4.0 4.0 4.0 4.0 4.0									
Lanes: 1 0 1 1 0 1 0 1 1									
Volume Module:									
	153 195 1238 145 86 483 79								
	1.01 1.01 1.01 1.01 1.01 1.01								
Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 Initial Bse: 83 640 215 180 662	155 197 1250 146 87 488 80								
Added Vol: 53 57 27 0 36	36 25 96 37 38 133 0								
PasserByVol: 0 19 0 0 36	11 11 10 0 0 29 0								
Initial Fut: 136 716 242 180 734	202 233 1356 183 125 650 80								
	1.00 1.00 1.00 1.00 1.00 1.00 1.00								
	1.00 1.00 1.00 1.00 1.00 1.00 1.00								
PHF Volume: 136 716 242 180 734	202 233 1356 183 125 650 80								
Reduct Vol: 0 0 0 0 0	0 0 0 0 0 0 0								
Reduced Vol: 136 716 242 180 734	202 233 1356 183 125 650 80								
	1.00 1.00 1.00 1.00 1.00 1.00 1.00								
	1.00 1.00 1.00 1.00 1.00 1.00 1.00								
FinalVolume: 136 716 242 180 734	202 233 1356 183 125 650 80								
Saturation Flow Module:	11 11 11								
	1600 1600 1600 1600 1600 1600								
	1.00 1.00 1.00 1.00 1.00 1.00 1.00								
3	0.43 1.00 2.00 1.00 1.00 1.78 0.22								
Final Sat.: 1600 2392 808 1600 2510	690 1600 3200 1600 1600 2850 350								
Capacity Analysis Module:									
	0.29 0.15 0.42 0.11 0.08 0.23 0.23								
Crit Moves: **** ****	***								
***********	**********								

10-4-2016												
]	Level C	f Ser	vice (Computa	tion 1	Report	=			
ICU 1	(Loss	as Cy	ycle Le	ngth '	ಕ) Met	hod (F	uture	Volur	ne Alte	rnativ	<i>r</i> e)	
*****												*****
Intersection							****	****	*****	****	*****	*****
Cycle (sec):			00			Critic					0.8	
Loss Time (se	00).		10					, ,	ec/veh)	٠.		
Optimal Cycle			70			Level				•	~~~	D
*********				****	*****					****	****	-
								ast Bo			est Bo	
Approach:									- R		st bo - T	
Movement:	_	_								_	_	
~										•		•
Control: Protected Protected Protected Protected												
Rights:		Inclu		_	Inclu			Inclu		_	Inclu	
Min. Green:	0		0	0	-	0	-	0	0	0		0
Y+R:	4.0		4.0		4.0			4.0				4.0
Lanes:	1	-				0 1		-	1 0) 1	1 0
Volume Module	e:											
Base Vol:	138	567	111	181	706	107	148	1164	177	109	466	114
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	139	573	112	183	713	108	149	1176	179	110	471	115
Added Vol:	8	86	0	13	116	41	24	15	12	0	16	6
PasserByVol:	0	13	0	0	24	5	3	3	0	0	5	0
Initial Fut:	147	672	112	196	853	154	176	1194	191	110	492	121
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	147	672	112	196	853	154	176	1194	191	110	492	121
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	147	672	112	196	853	154	176	1194	191	110	492	121
PCE Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	147		112	196	853	154	176	1194	191	110	492	121
	1											
Saturation Fl	1		1	1		'	'		ı	'		*
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	2.00	1.00	1.00	2.00	1.00	1.00	2.59	0.41	1.00	1.60	0.40
Final Sat.:	1600	3200	1600	1600	3200	1600	1600	4139	661	1600	2567	633
	Capacity Analysis Module:											
Vol/Sat:	-	0.21	0.07	0.12	0.27	0.10	0.11	0.29	0.29	0.07	0.19	0.19
Crit Moves:	****			-	****	•	-	****		****		

					10-4	-2010							
			Level C								,		
			ycle Le										
*****						*****	****	****	*****	****	****	*****	
Intersection													
*****	****	****	*****	****	****						****	*****	
Cycle (sec):		1	00			Critic	al Vol	l./Caj	p.(X):		0.4		
Loss Time (se	ec):		10			Averag	e Dela	ay (s	ec/veh)	:	XXX	CXX	
Cycle (sec): Loss Time (se Optimal Cycle	∋:		33			Level	Of Se	rvice	:		A		
*****	****	****	*****	****	****	*****	****	****	*****	****	****	*****	
Approach:	No	rth B	ound	Sot	uth Bo	ound	Ėá	ast Bo	ound	We	est Bo	ound	
Movement:			- R	L ·	- T	- R	L -	- Т	- R	L ·	- T	- R	
Control: Permitted Permitted Permitted Permitted													
Rights:		Incl	ude		Incl	ıde		Incl	ıde		Incl	ıde	
Min Green.	0	٥	0	0	0	0	0	0	0	Λ	Λ	0	
Y+R:	4 0	4 0	4.0	4 n	4 0	4 0	4.0	4 0	4 0	4 0	4 0	4 0	
Lanes:	0 1	1 11	0 0	0 (7 7 1	0 0	1 (1 1	1 0	1 () 1	1 0	
			usususi	Language			Lesses						
	Volume Module:												
		-	7.7	10	_	1.0	0	397	21	23	680	1.0	
	15			12	6		9					19	
Growth Adj:					1.01			1.01			1.01	1.01	
Initial Bse:		7		12	6		9		21		687	19	
Added Vol:		0	_	0	0	0		83		0		0	
PasserByVol:		0		6	0	0	0	134		23		11	
Initial Fut:		7		18	6	16	9				1044	30	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	15	7	43	18	6	16	9	618	21	46	1044	30	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	15	7	43	18	6	16	9	618	21	46	1044	30	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	15	7	43	18	6	16	9	618	21	46	1044	30	
Saturation Fl				'					,	'		1.5	
	1600			1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:			1.00		1.00			1.00			1.00	1.00	
Lanes:					0.15	0.40		1.93			1.94		
Final Sat.:				719		641			106		3110	90	
Capacity Anal										1			
			0.04	0 01	0 02	0 02	0 01	0 20	0 20	0 02	0.24	0.34	
•	0.01	****	0.04	****	0.03	0.03	****	0.20	0.20	0.03	****	0.34	
Crit Moves: *******	د داد باد باد باد د												
			, a a a a a a a										

Willowbrook

Existing+Project+Cumulative - PM Peak Hour

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #17 Compton Ave & Imperial Hwy *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.967 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 151 Level Of Service: ********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 98 304 167 214 257 101 78 1434 86 63 735 232 Initial Bse: 99 307 169 216 260 102 79 1448 87 64 742 234 Added Vol: 180 47 71 6 32 1 1 46 111 54 47 PasserByVol: 5 42 0 0 23 0 0 11 2 0 21 239 PHF Adj: Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 0.75 0.25 1.00 2.65 0.35 1.00 1.54 0.46 Final Sat.: 1600 1600 1600 1600 1205 395 1600 4237 563 1600 2470 730 Capacity Analysis Module: Vol/Sat: 0.18 0.25 0.15 0.14 0.26 0.26 0.05 0.36 0.36 0.07 0.33 0.33 Crit Moves: **** **** **** *******************

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #18 Compton Ave & 118th St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.562
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 37 Level Of Service: A **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: 7 Base Vol: 7 477 49 44 311 9 13 7 14 44 44 14 46 Initial Bse: 7 482 49 44 314 7 9 13 7 FinalVolume: 18 563 131 92 396 7 9 13 13 169 14 98 Saturation Flow Module: Lanes: 0.05 1.58 0.37 0.37 1.60 0.03 0.26 0.37 0.37 0.60 0.05 0.35 Final Sat.: 81 2528 591 597 2558 46 412 595 593 961 80 559 _____| Capacity Analysis Module: Vol/Sat: 0.01 0.22 0.22 0.06 0.15 0.15 0.01 0.02 0.02 0.11 0.18 0.18 Crit Moves: **** **** ****

Willowbrook

Existing+Project+Cumulative - PM Peak Hour

	10-4-2016											
						Computa					\	
1CU 1						thod (F						
						****	***	яккяк:	****	****	*****	*****
Intersection		_					***			****		
	****			****	****	Critic				^ ^ ^ ^ ^ ^ ^	0.8	
Cycle (sec):	~~\ .		00					_	ec/veh)			
Loss Time (se			10 78			Level		_		: XXXXXXX		
Optimal Cycle				*****	*****					*****	*****	_
_		rth Bo			ıth Bo			ast Bo			est Bo	
Approach: Movement:	L NO.		- R	L -		- R	L -		- R			- R
Movement:										_	_	
Control:	1	Permi			Permi		1.4.1	Permit		**	Permit	11.7
Rights:		Incl		1	Incl			Incl			Incli	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	_	4.0	4.0	4.0	4.0		4.0	4.0	4.0	-	4.0
Lanes:		0 1		1 (1 (1 (0 1
Lanes.	69	-								1	_	
Volume Module	41		ļ	1		1	'		1	1		1
Base Vol:	65	241	70	78	281	69	45	273	89	136	416	111
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01	1.01		1.01
Initial Bse:	66	243	71	79	284	70	45	276	90	137	420	112
Added Vol:	0	92	5	3	143	37	22	62	0	9	71	4
PasserByVol:	0	0	23	32	0	0	0	160	0	54	299	61
Initial Fut:	66	335	99	114	427	107	67	498	90	200	790	177
User Adj:	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Volume:	66	335	99	114	427	107	67	498	90	200	790	177
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	66	335	99	114	427	107	67	498	90	200	790	177
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	66	335	99	114	427	107	67	498	90	200	790	177

Saturation F	Low Mo	odule:	. '						·			on.
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	1.55	0.45	1.00	1.60	0.40	1.00	1.00	1.00	1.00	1.00	1.00
Final Sat.:	1600	2472	728	1600	2560	640	1600	1600	1600	1600	1600	1600
Capacity Anal	lysis	Modu]	Le:									
Vol/Sat:	0.04	0.14	0.14	0.07	0.17	0.17	0.04	0.31	0.06	0.13	0.49	0.11
Crit Moves:		****		****			****				***	

Willowbrook Existing+Project+Cumulative = PM Peak Hour 10-4-2016

					10-4	-2016							
			rever c	i Ser	vice	Computa	tion I	Report					
						thod (F							
*****						*****	****	****	*****	****	*****	*****	
Intersection							h to to to to						
	****			*****	****					**************************************			
Cycle (sec):			00			Critic					0.3		
Loss Time (s			10			_		-		:	XXXXX		
Optimal Cycle			26 ******			Level							
								ast Bo			est Bo		
Approach:		rth B	- R			ound - R			- R		:5L B(- T		
Movement:				_ L	- 1	- <u>r</u> c	ј						
Control:			tted			tted					Permit		
Rights:		Incl				ude		Inclu			Incl		
_	0		0		0	0		0	0	Ω	0	0	
Y+R:	_	4.0		-		4.0	-	_		4.0	_	_	
Lanes:			1 0			1 0			0 0		1.0		
Volume Module	7											,	
Base Vol:	_	349	25	46	302	4	1	4	3	17	3	42	
Growth Adj:					1.01	1.01		1.01	1.01	1.01	1.01	1.01	
Initial Bse:			25	46	305	4	1		3	17	3	42	
Added Vol:	0		0	0	153	0	0	0	0	0	0	0	
PasserByVol:	0	22	0	0	51	0	0	0	0	0	0	0	
Initial Fut:		470	25	46	509	4	1	4	3	17	3	42	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	0	470	25	46	509	4	1	4	3	17	3	42	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	0	470	25	46	509	4	1	4	3	17	3	42	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00	
FinalVolume:	0	470	25	46		4	1	_	3	17	3	42	
Saturation Fi													
Sat/Lane:			1600	1600		1600		1600	1600		1600	1600	
Adjustment:			1.00	1.00		1.00		1.00	1.00		1.00	1.00	
Lanes:		1.90	0.10		1.82	0.01		0.50	0.38		0.05	0.68	
Final Sat.:		3037	163		2911	23		800	600	439	77	1084	
				-									
Capacity Anal				2 2-				0.05	0.05	0.01	0 0 .	0 04	
Vol/Sat:	0.00	0.15	0.15	0.03	0.17	0.17	0.00	0.01	0.01	0.01	0.04	0.04	
Crit Moves:		****	to do also de also de A						and the state of t	alle alle alle de de			
*******	****	****	****	****	* * * * * * *		*****						

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #26 Wilmington Ave & Imperial Hwy ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.840
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 77 Level Of Service: D ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 159 451 47 30 618 70 137 15 375 0 Ο Initial Bse: 161 456 47 30 624 71 138 15 379 0 0 FinalVolume: 198 546 47 30 982 75 148 15 458 0 0 _____ Saturation Flow Module: Lanes: 1.00 1.84 0.16 1.00 1.86 0.14 1.00 1.00 1.00 0.00 0.00 0.00 Final Sat.: 1600 2944 256 1600 2974 226 1600 1600 1600 0 0 _____

Vol/Sat: 0.12 0.19 0.19 0.02 0.33 0.33 0.09 0.01 0.29 0.00 0.00 0.00

Crit Moves: **** ****

Capacity Analysis Module:

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

10-4	-2016									
Level Of Service Computation Report										
ICU 1(Loss as Cycle Length %) Me										

Intersection #27 Wilmington Ave & I-105	e/D Ramps									
Cycle (sec): 100	Critical Vol./Cap.(X): 1.010									
Loss Time (sec): 10	Average Delay (sec/veh): xxxxxx Level Of Service: F									
opozimaz ogozo:	Level OI Service:									
Approach: North Bound South B										
Movement: L - T - R L - T										
Control Protected Protected Protected										
Control: Protected Protected Protected Protected Rights: Include Include Include Include										
Y+R: 4.0 4.0 4.0 4.0 4.0										
Lanes: 1 0 3 0 0 0 0 2	0 2 1 0 0 0 1 0 0 0 0 0									
Volume Medule.										
Volume Module:	421 228 0 170 0 0									
Base Vol: 326 902 0 0 529										
Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 Tnitial Bse: 329 911 0 0 534										
11120101 2001 013 311										
Added Vol: 150 334 0 0 236										
PasserByVol: 160 219 0 0 137										
Initial Fut: 639 1464 0 0 907										
User Adj: 1.00 1.00 1.00 1.00 1.00										
PHF Adj: 1.00 1.00 1.00 1.00 1.00 PHF Volume: 639 1464 0 0 907										
101 101 101										
Reduct Vol: 0 0 0 0 0 0										
Reduced Vol: 639 1464 0 0 907										
PCE Adj: 1.00 1.00 1.00 1.00 1.00										
MLF Adj: 1.00 1.00 1.00 1.00 1.00 FinalVolume: 639 1464 0 0 907										
111101101	489 334 0 364 0 0 0									
Saturation Flow Module:	1600 1600 1600 1600 1600 1600									
Sat/Lane: 1600 1600 1600 1600 1600										
Adjustment: 1.00 1.00 1.00 1.00 1.00										
Lanes: 1.00 3.00 0.00 0.00 2.00										
Final Sat.: 1600 4800 0 0 3200	3200 1000 0 1000									
Garatha Balania Mahila										
Capacity Analysis Module:	0.15 0.21 0.00 0.22 0.00 0.00 0.00									
Vol/Sat: 0.40 0.31 0.00 0.00 0.28	0.15 0.21 0.00 0.23 0.00 0.00 0.00									
CIIC Moves: """										

10-4-2016

10-4	10-4-2016									
Level Of Service Computation Report										
ICU 1(Loss as Cycle Length %) Me										
	thod (ruture volume Alternative)									
Intersection #28 Wilmington Ave & 118th	DL **************									
	Critical Vol./Cap.(X): 1.119									
-2 , ,	Average Delay (sec/veh): xxxxxx									
	Level Of Service: F									
op = = = = = = = = = = = = = = = = = = =	TEACT OF DETAICE:									
Control Protected Protected Permitted Permitted										
Control: Protected Protected Permitted Permitted Rights: Include Include Include Include										
	0 0 0 0 0 0 0									
Lanes: 1 0 2 1 0 2 0 1										
	32 108 50 50 37 44 137									
Base Vol: 28 992 84 132 547 Growth Adi: 1.01 1.01 1.01 1.01 1.01	1.01 1.01 1.01 1.01 1.01 1.01									
	32 109 51 51 37 44 138									
	263 380 2 244 19 2 44									
110000 1021	0 0 0 0 0 0 0									
	295 489 53 295 56 46 182									
User Adj: 1.00 1.00 1.00 1.00 1.00 PHF Adj: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00									
	295 489 53 295 56 46 182									
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									
	1.00 1.00 1.00 1.00 1.00 1.00 1.00									
PCE Adj: 1.00 1.00 1.00 1.00 1.00										
MLF Adj: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 295 489 53 295 56 46 182									
FinalVolume: 199 1441 114 197 782										
1										
Saturation Flow Module:	1600 1600 1600 1600 1600 1600									
Sat/Lane: 1600 1600 1600 1600 1600	1600 1600 1600 1600 1600 1600 1600									
Adjustment: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00									
Lanes: 1.00 2.78 0.22 2.00 1.45										
Final Sat.: 1600 4449 351 2880 2323	877 936 100 564 877 723 1600									
Capacity Analysis Module:	0.24 0.21 0.52 0.50 0.40 0.50 0.41									
Vol/Sat: 0.12 0.32 0.32 0.07 0.34	0.34 0.31 0.52 0.52 0.04 0.06 0.11									
CIIC MOVES:										

Willowbrook

Existing+Project+Cumulative - PM Peak Hour 10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #29 Wilmington Ave & 120th St (West) ************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.956 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 139 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</ Y+R: 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 ... Lanes: 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Volume Module: Base Vol: 74 718 80 79 485 45 295 298 184 91 146 136 Initial Bse: 75 725 81 80 490 45 298 301 186 92 147 137 Added Vol: 8 207 2 3 268 35 51 20 17 5 18 2 PasserByVol: 0 289 0 0 93 103 110 20 0 7 11 0 Initial Fut: 83 1221 83 83 851 183 459 341 203 104 176 139 PHF Volume: 83 1221 83 83 851 183 459 341 203 104 176 139 Saturation Flow Module: Lanes: 1.00 1.87 0.13 1.00 1.65 0.35 1.00 1.00 1.00 1.00 1.00 1.00 Final Sat.: 1600 2997 203 1600 2632 568 1600 1600 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.41 0.41 0.05 0.32 0.32 0.29 0.21 0.13 0.06 0.11 0.09

Crit Moves: **** **** **** *******************

10-4-2016

10-4	-2016									
Town Of Committee	Computation Deposit									
ICU 1(Loss as Cycle Length %) Me	Computation Report									

Intersection #30 Wilmington Ave & 120th	>> (Edst)									
Cycle (sec): 100	Critical Vol./Cap.(X): 0.767									
Loss Time (sec): 10	Average Delay (sec/veh): xxxxxx									
	Level Of Service: C									
1	**********									
Approach: North Bound South Bo	ound East Bound West Bound									
Movement: L - T - R L - T										
Control: Permitted Permitted Permitted Permitted										
Rights: Include Incl										
Min. Green: 0 0 0 0 0	0 0 0 0 0 0 0									
Y+R: 4.0 4.0 4.0 4.0 4.0										
Lanes: 1 0 1 1 0 1 0 1										
Volume Module:										
Base Vol: 8 807 17 35 707	16 53 2 14 2 0 15									
Growth Adj: 1.01 1.01 1.01 1.01 1.01	1.01 1.01 1.01 1.01 1.01 1.01									
Initial Bse: 8 815 17 35 714	16 54 2 14 2 0 15									
Added Vol: 0 212 2 6 284	0 0 0 0 1 0 5									
	100 289 47 215 0 24 0									
Initial Fut: 121 1027 19 41 998	116 343 49 229 3 24 20									
User Adj: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00									
PHF Adj: 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00									
PHF Volume: 121 1027 19 41 998	116 343 49 229 3 24 20									
Reduct Vol: 0 0 0 0 0	0 0 0 0 0 0									
Reduced Vol: 121 1027 19 41 998	116 343 49 229 3 24 20									
PCE Adj: 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00									
MLF Adj: 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00									
FinalVolume: 121 1027 19 41 998	116 343 49 229 3 24 20									
Saturation Flow Module:										
Sat/Lane: 1600 1600 1600 1600 1600	1600 1600 1600 1600 1600 1600									
Adjustment: 1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00									
Lanes: 1.00 1.96 0.04 1.00 1.79	0.21 0.87 0.13 1.00 0.06 0.51 0.43									
Final Sat.: 1600 3141 59 1600 2866	334 1400 200 1600 102 814 683									
Capacity Analysis Module:										
Vol/Sat: 0.08 0.33 0.33 0.03 0.35	0.35 0.21 0.24 0.14 0.00 0.03 0.03									
Crit Moves: **** ****	***									
*********	**********									

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

	10-4-2016												
	Level Of Service Computation Report												
	/=										\		
*************									ne Alte				

Intersection			_							****		*****	
			00			Critic					0.6		
Cycle (sec):	00).		LO						ec/veh)				
Loss Time (se Optimal Cycle			11			Level				•	XXXXXX B		
********				*****	****					****	****	_	
Approach:		rth Bo			ith Bo			ast Bo			est Bo		
Movement:	L		- R		- T				- R		. T		
		_											
Control: Permitted Permitted Permitted Permitted													
Rights: Include Include Include Include													
Min. Green:	0		0	0	-	0	0	0	0	0	0	0	
Y+R:	4.0	-	4.0	4.0	500		4.0	_		4.0	•	4.0	
Lanes:			1 0) 1			1.5			1.0		
	0	-								1			
Volume Module:													
Base Vol:	21	757	46	64	615	18	13	43	20	35	47	49	
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01	1.01	_	1.01	
Initial Bse:	21	765	46	65	621	18	13	43	20	35	47	49	
Added Vol:	0	213	0	0	285	0	0	0	0	0	0	0	
PasserByVol:	0	86	0	38	165	0	0	0	0	0	0	20	
Initial Fut:		1064	46		1071	18	13	43	20	35	47	69	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Volume:		1064	46		1071	18	13	43	20	35	47	69	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:		1064	46		1071	18	13	43	20	35	47	69	
PCE Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:		1064	46		1071	18	13	43	20	35	47	69	
Saturation Fl						'	•						
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:		1.92	0.08	1.00	1.97	0.03	0.17	0.57	0.26	0.23	0.31	0.46	
Final Sat.:		3066	134		3147	53	274		421		499	730	
Capacity Anal	lysis	Modu]	.e:			•	•					,	
Vol/Sat:	0.01	0.35	0.35	0.06	0.34	0.34	0.01	0.05	0.05	0.02	0.10	0.10	
Crit Moves:		****		****			****				****		

Level Of Service Computation Report TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) TCU 1 (Loss Time (sec): 10						10-4	-2016						
ICU 1(Loss as Cycle Length *) Method (Future Volume Alternative) ************************************													
**************************************												,	
Intersection #32 Wilmington Ave & El Segundo Blvd	ICU 1	(Loss	as C	йсте ге	ength	%) Me1	inod (F	uture	VOLU	me Alte	ernativ	<i>7</i> e)	nescalista all disasi
Cycle (sec): 100									****	*****	****	****	*****
Cycle (sec): 100													
Doss Time (sec): 10		****			****	****					*****		
Optimal Cycle: 132	•		1	00									
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T R R R R R R R R R											:	XXX	
Approach: North Bound													_
Novement: L - T - R L - T - R L - T - R L - T - R R L - T - R R R R R R R R R R	****												
Control: Protected Protected Include I	Approach:												
Control:													
Rights:													
Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Y+R:	Rights:		Incl	ıde		Incl	ıde		Incl	ıde		Inclu	ıde
Lanes: 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0	Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Volume Module: Base Vol: 144 579 83 101 480 86 182 927 326 44 296 68 Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Volume Module: Base Vol: 144 579 83 101 480 86 182 927 326 44 296 68 Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Lanes:	1	0 1	1 0	1	0 1	1 0	1 (0 1	1 0	1 (1	1 0
Base Vol: 144 579 83 101 480 86 182 927 326 44 296 68 Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0													
Growth Adj: 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0	Volume Module	e:					•				•		·
Initial Bse: 145 585 84 102 485 87 184 936 329 44 299 69 Added Vol: 36 152 0 69 209 8 14 26 42 0 31 48 PasserByVol: 0 66 0 32 127 0 0 0 0 0 0 0 0 16 Initial Fut: 181 803 84 203 821 95 198 962 371 44 330 133 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Base Vol:	144	579	83	101	480	86	182	927	326	44	296	68
Added Vol: 36 152 0 69 209 8 14 26 42 0 31 48 PasserByVol: 0 66 0 32 127 0 0 0 0 0 0 0 0 16 Initial Fut: 181 803 84 203 821 95 198 962 371 44 330 133 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
PasserByVol: 0 66 0 32 127 0 0 0 0 0 0 0 0 0 16 Initial Fut: 181 803 84 203 821 95 198 962 371 44 330 133 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Bse:	145	585	84	102	485	87	184	936	329	44	299	69
Initial Fut: 181 803 84 203 821 95 198 962 371 44 330 133 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Added Vol:	36	152	0	69	209	8	14	26	42	0	31	48
User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	PasserByVol:	0	66	0	32	127	0	0	0	0	0	0	16
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Initial Fut:	181	803	84	203	821	95	198	962	371	44	330	133
PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	User Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: 181 803 84 203 821 95 198 962 371 44 330 133 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PHF Volume:	181	803	84	203	821	95	198	962	371	44	330	133
Reduced Vol: 181 803 84 203 821 95 198 962 371 44 330 133 PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0		0	0	0	0	0	0	0	0	0	0	0	0
PCE Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Reduced Vol:	181	803	84	203	821	95	198	962	371	44	330	133
MLF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
FinalVolume: 181 803 84 203 821 95 198 962 371 44 330 133	_												
Saturation Flow Module: Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160													
Saturation Flow Module: Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 160		-11			114								
Sat/Lane: 1600 1600 1600 1600 1600 1600 1600 1600		A1			i.A			1		1			
Adjustment: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0					1600	1600	1600	1600	1600	1600	1600	1600	1600
Lanes: 1.00 1.81 0.19 1.00 1.79 0.21 1.00 1.44 0.56 1.00 1.43 0.57 Final Sat.: 1600 2897 303 1600 2868 332 1600 2309 891 1600 2282 918													
Final Sat.: 1600 2897 303 1600 2868 332 1600 2309 891 1600 2282 918	_												
Capacity Analysis Module: Vol/Sat: 0.11 0.28 0.28 0.13 0.29 0.29 0.12 0.42 0.42 0.03 0.14 0.14 Crit Moves: **** **** ****													
Capacity Analysis Module: Vol/Sat: 0.11 0.28 0.28 0.13 0.29 0.29 0.12 0.42 0.42 0.03 0.14 0.14 Crit Moves: **** **** ****													
Vol/Sat: 0.11 0.28 0.28 0.13 0.29 0.29 0.12 0.42 0.42 0.03 0.14 0.14 Crit Moves: **** **** ****					1		1	1		1	1		
Crit Moves: **** **** ****					0 12	0 20	0 20	0 12	0 42	0 42	0 03	0 14	0 14
CITE MOVES.	•	U. II		0.20		0.43	0.43	0.12		0.44		0.14	0.14
		****		*****		*****	*****	****	*****	*****	*****	****	*****

		10-4	-2016							
Level Of Service Computation Report										
	as Cycle Le									
*****					****	****	*****			
Intersection #34										
******		****								
Cycle (sec):	100			al Vol./C		0.4				
Loss Time (sec):	10		_	_		: XXXXX				
Optimal Cycle:	33			Of Servic			A			

	rth Bound	South Bo		East		West Bo				
Movement: L - T - R L - T - R L - T - R										
Control: Permitted Permitted Permitted Permitted										
Rights:	Include	Incl	ıde	Inc	lude	Inclu	ıde			
Min. Green: 0	0 0	0 0	0	0	0 0	0 0	0			
Y+R: 4.0	4.0 4.0	4.0 4.0	4.0	4.0 4.	-	4.0 4.0	4.0			
Lanes: 1										
Volume Module:										
Base Vol: 50	0 17	0 28	56	0 32	3 93	11 163	0			
Growth Adj: 1.01	1.01 1.01	1.01 1.01	1.01	1.01 1.0	1 1.01	1.01 1.01	1,01			
Initial Bse: 51	0 17	0 28	57	0 32	6 94	11 165	0			
Added Vol: 12	0 0	0 0	0	0 1	1 9	0 17	0			
PasserByVol: 0	0 0	0 0	0	0 1	9 0	0 17	0			
Initial Fut: 63	0 17	0 28	57	0 35	6 103	11 199	0			
User Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1,00 1.0	0 1.00	1.00 1.00	1.00			
PHF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.0	0 1.00	1.00 1.00	1.00			
PHF Volume: 63	0 17	0 28	57	0 35	6 103	11 199	0			
Reduct Vol: 0	0 0	0 0	0	0	0 0	0 0	0			
Reduced Vol: 63	0 17	0 28	57	0 35	6 103	11 199	0			
PCE Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.0	0 1.00	1.00 1.00	1.00			
MLF Adj: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.0	0 1.00	1.00 1.00	1.00			
FinalVolume: 63	0 17	0 28	57	0 35	5 103	11 199	0			
Saturation Flow Mo	odule:						-			
Sat/Lane: 1600	1600 1600	1600 1600	1600	1600 160	1600	1600 1600	1600			
Adjustment: 1.00	1.00 1.00	1.00 1.00	1.00	1.00 1.0	1.00	1.00 1.00	1.00			
_	0.00 1.00	0.00 0.33	0.67	0.00 0.7	0.22	0.05 0.95	0.00			
Final Sat.: 1600	0 1600	0 533	1067	0 124	1 359	85 1515	0			
Capacity Analysis	Module:			•	A.12		14			
	0.00 0.01	0.00 0.05	0.05	0.00 0.2	9 0.29	0.01 0.13	0.00			
Crit Moves: ****		***		***	*	***				
*****	****	****	*****	*****	*****	*****	****			

......

Willowbrook Existing+Project+Cumulative 🖹 PM Peak Hour

10-4-2016

10-4-2016												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #35 Willowbrook Ave E & 119th Street												

Cycle (sec): 100												
Loss Time (se	cle (sec): 100 Critical Vol./Cap.(X): 0.377 ss Time (sec): 10 Average Delay (sec/veh): XXXXXX timal Cycle: 28 Level Of Service: A											
Optimal Cycle	l Cycle: 28 Level Of Service: A											
*****	****	****	*****	****	****	*****	****	****	*****	****	*****	*****
Approach:												
Movement:	Tı -	- Т	- R	L ·	- T	- R	L ·	- T	- R	L -	- Т	- R
Control: Permitted Permitted Permitted Permitted												ted
Dights:	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include											
Min. Green:				0		0			0			0
Y+R:	4 0	4 0										-
I+K;	4.0	4.0	0 0	0 /	7.0	0 0	1 (3 0	4.0 1 0	1 (1.0	1 0
Lanes:	0 () I:	0 0	0 (J 1:	0 0	, ,	5 0	_ U	1 .	, 0	1
										1		
Volume Module			0.7	_	1.0	4.0	7.0	201	0.0	0	0.5	_
Base Vol:	50		27	7		42	70			9		5
Growth Adj:					1.01			1.01			1.01	1.01
Initial Bse:	51	14	27	7		42	71			9		5
Added Vol:	0	1		0		3	6		0	0		0
PasserByVol:		0	0	0	0	0	0	19	0	0	17	0
Initial Fut:	51	15	27	7	13	45	77	227	91	9		5
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	51	15	27	7	13	45	77	227	91	9	117	5
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	51	15	27	7	13	45	77	227	91	9	117	5
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:			27	7		45	77	227	91	9	117	5
Saturation Fl				I		'				'		
	1600		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00		1.00			1.00			1.00	
Lanes:			0.29		0.20	0.69		0.71			0.96	
Final Sat.:			470	172		1108			457		1534	66
Final Sat.:	0/0	∠01					1					
			,	1			1					
Capacity Anal	ysis	Moau	LE:	0 00	0.04	0 04	0.05	0 20	0.20	0 01	0 00	0 00
		0.06	0.06	0.00	****	0.04	0.05	****	0.20	****	0.08	0.00
Crit Moves: *******	****					المراجعة والمراجعة والمراجعة			ملد ماد وای وای وای وای وای			
*****	***		*****	******			****					

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #36 Imperial Hwy & I-105 w/b Ramps ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.928 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 116 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Include
 Include
 Ovl
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Base Vol: 544 8 271 9 22 25 47 1612 339 596 812 Initial Bse: 549 8 274 9 22 25 47 1628 342 602 820 1 PHF Volume: 770 15 284 9 22 25 65 1862 619 604 969 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 770 15 284 9 22 25 65 1862 619 604 969 FinalVolume: 770 15 284 9 22 25 65 1862 619 604 969 4 75 OvlAdjVol: _____ Saturation Flow Module: Lanes: 1.96 0.04 1.00 0.16 0.39 0.45 1.00 3.75 1.25 2.00 2.99 0.01 Final Sat.: 2825 55 1600 257 629 714 1600 6003 1997 2880 4780 20 Capacity Analysis Module: Vol/Sat: 0.27 0.27 0.18 0.04 0.04 0.04 0.04 0.31 0.31 0.21 0.20 0.20 0.04 OvlAdjV/S: Crit Moves: ****

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

10-4-2016											
Total Of Gameles Gameles Beauty											
Level Of Service Computation Report											
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											
Intersection #37 Willowbrook Ave W & El Segundo Blvd											

Cycle (sec): 100 Critical Vol./Cap.(X): 0.551 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx Optimal Cycle: 36 Level Of Service: A											
Loss Time (sec): 10 Average Delay (sec/ven): XXXXXX Optimal Cycle: 36 Level Of Service: A											
Optimal Cycle: 36 Level Of Service: A											
Approach: North Bound South Bound East Bound West Bound Movement: $L-T-R$ $L-T-R$ $L-T-R$											
MOVEMENT: H = 1 - K H =											
Control: Permitted Per	mitted Permitted Permitted										
Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include											
Rights: Include Include Include Include Min. Green: 0											
	.0 4.0 4.0 4.0 4.0 4.0 4.0										
	0 1 0 1 0 2 0 1 0 0 2 0 1										
Volume Module:											
	13 16 14 986 68 0 358 34										
Growth Adj: 1.01 1.01 1.01 1.01 1.											
3	14 16 14 996 69 0 362 34										
Added Vol: 0 6 0 5											
	7 0 0 20 0 0 11 0										
	25 16 14 1111 69 0 452 41										
User Adj: 1.00 1.00 1.00 1.00 1.	00 1.00 1.00 1.00 1.00 1.00 1.00										
PHF Adj: 1.00 1.00 1.00 1.00 1.0	00 1.00 1.00 1.00 1.00 1.00 1.00										
	25										
Reduct Vol: 0 0 0 0	0 0 0 0 0 0 0										
Reduced Vol: 24 112 9 39 13	25 16 14 1111 69 0 452 41										
PCE Adj: 1.00 1.00 1.00 1.00 1.0	00 1.00 1.00 1.00 1.00 1.00 1.00										
MLF Adj: 1.00 1.00 1.00 1.00 1.0	00 1.00 1.00 1.00 1.00 1.00 1.00										
FinalVolume: 24 112 9 39 13											
Saturation Flow Module:											
Sat/Lane: 1600 1600 1600 1600 160	00 1600 1600 1600 1600 1600 1600 1600										
Adjustment: 1.00 1.00 1.00 1.00 1.00											
Lanes: 1.00 0.92 0.08 1.00 0.8											
Final Sat.: 1600 1480 120 1600 14											
Capacity Analysis Module:											
Vol/Sat: 0.02 0.08 0.08 0.02 0.0											
Crit Moves: ****											
*********	**********										

10-4-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #38 Willowbrook Ave E & El Segundo Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.546 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 36 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: 0 981 44 Base Vol: 12 55 33 32 80 14 34 372 Initial Bse: 12 56 33 32 81 14 0 991 44 34 376 39 PHF Volume: 12 59 33 32 87 15 1 1110 44 34 472 39 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 12 59 33 32 87 15 1 1110 44 34 472 39 FinalVolume: 12 59 33 32 87 15 1 1110 44 34 472 39 Saturation Flow Module: Lanes: 1.00 0.64 0.36 1.00 0.85 0.15 0.01 1.99 1.00 1.00 1.85 0.15 Final Sat.: 1600 1020 580 1600 1362 238 3 3197 1600 1600 2953 247 Capacity Analysis Module: Vol/Sat: 0.01 0.06 0.06 0.02 0.06 0.06 0.00 0.35 0.03 0.02 0.16 0.16 Crit Moves: *********************

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

10-4-2016													
	Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #39 Mona Blvd & Imperial Hwy													

Cycle (sec): 100 Critical Vol./Cap.(X): 0.885 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx Optimal Cycle: 93 Level Of Service: D													
Loss Time (se	ime (sec): 10 Average Delay (sec/veh): xxxxxx												
Optimal Cycle	e. 93 Level Of Service: D											ח	
*******	5 . 		,,,,,,,,,			*****	*****	****	******	*****	*****	*****	
Approach:	1/10:	rtn B	ound - R	501	TCH BO	Juna	- E	ast bu	Juna	T WE	est bo	ouna -	
Movement:	, L	- 'T'	- R	, ш	- T	- R	ь -	- T	- R	, ш	- T	- R	
Control:	: Permitted Permitted Permitted Permitted												
Rights:	Include Include Include Include											ıde	
Min. Green:	0	0		0		0			0			0	
Y+R:	4.0	4.0	4.0 0 1	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lanes:	0	1 0	0 1	0 0	1!	0 0	1 (2	1 0	1 (2	1 0	
	t :		1	1									
Volume Module			,	1		1							
		67	247	54	68	72	9.4	1615	240	152	1110	43	
					1.01	1.01		1.01			1.01	1.01	
Growth Adj:						73					1121	43	
Initial Bse:				55	69		95	1631					
Added Vol:			5	0		0				8		0	
PasserByVol:				0	4	0	0	56	7	0	26	0	
Initial Fut:			254	55	73	73		1851			1271	43	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	189	75	254	55	73	73		1851	266	162	1271	43	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:			254	55	73	73		1851		162	1271	43	
PCE Adj:		1.00	1.00	1.00	1.00	1.00		1.00	1.00	1,00	1.00	1.00	
	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
FinalVolume:			254	55	73	73	95		266		1271	43	
rinarvorume:													
				1			1						
Saturation Fl				1.600	1.600	1.600	1.600	1.000	1.000	1.000	1.000	1.000	
Sat/Lane:		1600	1600		1600	1600		1600			1600		
Adjustment:			1.00		1.00	1.00		1.00			1.00	1.00	
Lanes:			1.00		0.37	0.36		2.62			2.90		
Final Sat.:	1147	453	1600	436		582		4196			4641	159	
Capacity Anal													
Vol/Sat:			0.16	0.03	0.12	0.12	0.06	0.44	0.44	0.10	0.27	0.27	
Crit Moves:	***				****			***		****			
****	****	****	*****	****	****	****	****	****	****	*****	****	*****	

3: Mona Blvd & 119th St- Existing+Project+ Cumulative Project PM

	•	*	•	• 🕇	1	4	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	M		ħ	†	ĵ.		
Volume (vph)	147	74	27	220	331	80	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Frt	0.955				0.974		
Flt Protected	0.968		0.950	10.05			
Satd. Flow (prot)	1722	0	1770	1863	1814	0	
Flt Permitted	0.968		0.950				
Satd. Flow (perm)	1722	0	1770	1863	1814	0	
Link Speed (mph)	30			30	30		
Link Distance (ft)	266			283	255		
Travel Time (s)	6.0			6.4	5.8		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	160	80	29	239	360	87	
Shared Lane Traffic (%)							
Lane Group Flow (vph)	240	0	29	239	447	0	
Enter Blocked Intersection	No	No	No	No	No	No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			12	12		
Link Offset(ft)	0			0	0		THE RESIDENCE OF THE PARTY OF
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	15	9	15			9	
Sign Control	Stop			Free	Free		
Intersection Summary							
	Other						
Control Type: Unsignalized	- A						
Intersection Capacity Utilizat	tion 41.8%			IC	CU Level o	of Service A	

Intersection Capacity Utilization 41.8%

Analysis Period (min) 15

9/14/2016 Baseline Synchro 8 Report Page 1

3: Mona Blvd & 119th St- Existing+Project+ Cumulative Project PM

Int Delay, s/veh	5.7					
	0 11 11 11					
Movement	EBL	EBR	NBL	NBT	SBT	SBF
Vol, veh/h	147	74	27	220	331	80
Conflicting Peds, #/hr	0	0	0	0	0	(
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None		None	i.	None
Storage Length	0		0	1 32 2 20		
Veh in Median Storage, #	0		-	0	0	
Grade, %	0			0	0	- 4
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	160	80	29	239	360	87
			AND STREET		Walter Brown	N. A. L.
Major/Minor	Minor2	a Stagnilla	Major1	N Subverse	Major2	
Conflicting Flow All	701	403	447	0		(
Stage 1	403					,
Stage 2	298	Martin to the		TE STANDER		
Critical Hdwy	6.42	6.22	4.12	-		-
Critical Hdwy Stg 1	5.42	TURNING REP				
Critical Hdwy Stg 2	5.42			-		
Follow-up Hdwy	3.518	3.318	2.218	and the Us for		
Pot Cap-1 Maneuver	405	647	1113			
Stage 1	675	1000			THE WAY OF LINE	
Stage 2	753		:::			
Platoon blocked, %				HITTER TOTAL		Mary 1
Mov Cap-1 Maneuver	394	647	1113	4		1
Mov Cap-2 Maneuver	394	Acces de la constante de la co	131 10		NAME OF TAXABLE PARTY.	
Stage 1	675	÷	•	3	•	
Stage 2	733				STORY OF THE	tel s
Approach	EB		NB.		SB	
HCM Control Delay, s	21.6		0.9		0	
HCM LOS	C					
Minor Lane/Major Mvmt	NBL	NBT EBLn1	SBT SBR	A Comment	(ta, = 23%, p =	To Torold
Capacity (veh/h)	1113	- 453				
HCM Lane V/C Ratio	0.026	- 0.53	nia e'V y e	"LIBERTY OF	The same of the same	110
HCM Control Delay (s)	8.3	- 21.6	.10			
HCM Lane LOS	0.5	- C				
HCM 95th %tile Q(veh)	0.1	- 3	(*) .*.			

Synchro 8 Report Page 2 9/14/2016 Baseline

Willowbrook Existing+Project+Cumulative - PM Peak Hour 10-4-2016

10-4-2016												
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
ICU 1	(Loss	as C	ycle Le	ength	*) Me	thod (F	uture	Volu	me Alte	rnativ	<i>re)</i>	
******							****	*****	*****	*****	****	*****
Intersection												

Cycle (sec): 100 Critical Vol./Cap.(X): 0.646 Loss Time (sec): 10 Average Delay (sec/veh): $xxxxxx$												
	Time (sec): 10 Average Delay (sec/veh): xxxxxx											
	ptimal Cycle: 44 Level Of Service: B											

		rth B									est Bo	
Movement:	L	- T	- R	L -	- T	- R	L ·	- T	- R	L -	- T	
				 								
Control: Permitted Permitted Permitted Permitted												ted
Rights:		Incl	ude		Incl	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	0	0 1!	0 0			0 1			1 0	1 () 1	1 0
Volume Module	e:		•	·			0.5					•
Base Vol:	82	112	62	18	88	40	38	351	54	47	957	32
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	83	113	63	18	89	40	38	355	55	47	967	32
Added Vol:	0		0	3	1	2	0	99	0	0	83	2
PasserByVol:	0	7	0	0	13	0	0	20	0	0	11	0
Initial Fut:	83	121	63	21	103	42	38	474	55	47	1061	34
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	83	121	63	21	103	42	38	474	55	47	1061	34
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	83	121	63	21	103	42	38	474	55	47	1061	34
	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
FinalVolume:			63	21	103	42	38	474	55	47	1061	34
Saturation Fl			4.7	6.5			4					
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:			0.23		0.83	1.00		1.79			1.94	0.06
Final Sat.:			376		1327	1600		2869			3100	100
Capacity Anal												
	_		0.17	0.01	0.08	0.03	0.02	0.17	0.17	0.03	0.34	0.34
Crit Moves:		****	0/	****			****				***	
*********	****	****	*****	*****	*****	*****	****	****	*****	*****	****	*****

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #43 Alameda St & 103rd St ****************** Critical Vol./Cap.(X): 0.884 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 93 Level Of Service: XXXXXX ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 115 736 0 0 1222 235 190 0 158 0 0 Base Vol: Initial Bse: 116 743 0 0 1234 237 192 0 160 0 0 PHF Adj: _____ Saturation Flow Module: Lanes: 1.00 2.00 0.00 0.00 1.67 0.33 0.56 0.00 0.44 0.00 0.00 0.00 Final Sat.: 1600 3200 0 0 2672 528 894 0 706 0 0 _____ Capacity Analysis Module: Vol/Sat: 0.08 0.25 0.00 0.00 0.48 0.48 0.13 0.00 0.23 0.00 0.00 0.00 Crit Moves: ****

10-4-2016												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #45 Alameda St & Imperial Hwy ************************************												
Cycle (sec): 100 Critical Vol./Cap.(X): 0.828												
-	ss Time (sec): 100 Critical Vol./Cap.(x): 0.828 ss Time (sec): 10 Average Delay (sec/veh): xxxxxx											
	timal Cycle: 73 Level Of Service: D											
Approach:		rth Bo			uth Bo			ast Bo			est Bo	
Movement:		- T				- R		- T			- Т	-
Control:												
Rights:	Include Ovl Include Include											ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	2	-		1 (2			1 (_	
Volume Module	e:											
Base Vol:	214	682	138	101	693	449	409	1282	199	102	653	65
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	216	689	139	102	700	453	413	1295	201	103	660	66
Added Vol:	5	1	0	0	1	38	54	104	11	0	89	0
PasserByVol:	0	0	0	0	0	12	37	23	0	0	15	0
Initial Fut:	221	690	139	102	701	503	504	1422	212	103	764	66
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
PHF Volume:	221	690	139	102	701	503	504	1422	212	103	764	66
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	221	690	139	102	701	503	504	1422	212	103	764	66
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:	221	690	139	102	701	503	504	1422	212	103	764	66
OvlAdjVol:						223						
	1											
Saturation F												
Sat/Lane:		1600	1600		1600	1600		1600	1600	1600		1600
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Lanes:		1.66	0.34	1.00		1.00		2.61	0.39	1.00		1.00
Final Sat.:		2662	538		3200	1600		4177	623	1600		1600
			,				1					
Capacity Anal	-			0.00	0 00	0 21	0 10	0.34	0 24	0.00	0 16	0 04
Vol/Sat:	0.08	0.26	0.26	0.06	0.22	0.31	0.18	0.34	0.34	0.06	0.16	0.04
OvlAdjV/S:		****		****		0.14		****		****		
Crit Moves:	·***		*****		****	****	****		****		****	****

10-4-2016													
Level Of Service Computation Report													
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #46 Alameda St & El Segundo Blvd													
Cycle (sec): 100													
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx													
Optimal Cycle: 119 Average Delay (sec/ven): xxxxxx Level Of Service: E													
Optimal Cycle: 119 Level Of Service: E													
Approach: North Bound South Bound East Bound West Bound													
Movement:			- R			- R			- R		- T		
	•			•			•						
Rights:	Control: Permitted Permitted Permitted Permitted Rights: Include Include Include												
Min. Green:	0	0	0	0	0	0	0		0	0		0	
Y+R:	4.0	_	4.0	-	4.0	4.0	_	4.0	4.0	-	-	4.0	
Lanes:			1 0			1 0			0 1	1 (
tancs.									!		, <u> </u>		
Volume Module	l .			1		1			I	1			
Base Vol:	102	717	98	107	699	43	50	258	95	182	699	190	
Growth Adi:		1.01	1.01		1.01	1.01		1.01	1.01	1.01		1.01	
Initial Bse:	103	724	99	108	706	43	51	261	96	184	706	192	
Added Vol:	37	724	0	100	12	-4-2	0	51	52	104	48	192	
PasserByVol:	8	0	0	0	0	0	0	5	15	0	3	0	
Initial Fut:	_	730	99	108	718	43	51	317	163	184	757	192	
User Adj:		1.00	1.00		1.00	1.00	1.00		1.00	1.00		1.00	
PHF Adj:		1.00	1.00		1.00	1.00	1.00		1.00	1.00		1.00	
PHF Volume:	148	730	99	108	718	43	51	317	163	184	757	192	
Reduct Vol:	140	730	0	100	0	4.2	0	317	103	104	0	0	
Reduced Vol:	148	730	99	108	718	43	51	317	163	184	757	192	
PCE Adi:		1.00	1.00		1.00	1.00	1.00		1.00	1.00		1.00	
~													
MLF Adj:		1.00	1.00		1.00	1.00	1.00		1.00	1.00		1.00	
FinalVolume:	148	730	99	108	718	43	51	317	163	184		192	
Zastansatans							800 m (000)			1,000			
Saturation Fl				1.600	7.600	1.600		1.500		4.500			
Sat/Lane:		1600	1600	1600		1600	1600		1600	1600		1600	
Adjustment:		1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	
Lanes:		1.76	0.24	1.00		0.11	1.00		1.00	1.00		1.00	
Final Sat.		2818	382		3017	183	1600		1600	1600	1600	1600	
Capacity Anal	_									_			
Vol/Sat:	0.09	0.26	0.26		0.24	0.24		0.10	0.10	0.11	0.47	0.12	
Crit Moves:		****		****			****				****		
******	****	*****	*****	*****	****	*****	****	****	*****	****	****	****	

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #52 El Segundo Blvd & San Pedro St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.646 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 44 Level Of Service: ************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Y+R: 1 0 1 1 0 1 0 1 1 0 2 1 0 1 0 2 1 0 _____ Volume Module: Base Vol: 101 322 51 86 228 85 146 1415 72 33 568 Initial Bse: 101 322 51 86 228 85 146 1415 72 33 568 85 PHF Volume: 103 324 51 88 230 88 148 1620 73 33 775 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 103 324 51 88 230 88 148 1620 73 33 775 FinalVolume: 103 324 51 88 230 88 148 1620 73 33 775 87 Saturation Flow Module: Lanes: 1.00 1.73 0.27 1.00 1.45 0.55 1.00 2.87 0.13 1.00 2.70 0.30 Final Sat.: 1600 2765 435 1600 2314 886 1600 4593 207 1600 4316 484 Capacity Analysis Module: Vol/Sat: 0.06 0.12 0.12 0.06 0.10 0.10 0.09 0.35 0.35 0.02 0.18 0.18 Crit Moves: **** ************

10-4-2016												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection #21 Compton Ave & El Segundo Blvd												

Cycle (sec): 100 Critical Vol./Cap.(X): 0.812 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx												
Optimal Cycle: 69 Level Of Service: D												

	vement: L - T - R L - T - R L - T - R											
Control: Permitted Permitted Permitted Permitted												
Rights:												
Min. Green:	Ω	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	-		4.0			4.0			4.0	_	4.0
Lanes:	1	0 1				1 0			1 0	1 (1 0
Volume Module			'	•		,						,
Base Vol:	67	31	16	111	64	152	235	1347	103	16	449	74
Growth Adj:	1.01	1.01	1.01	1.01	1,.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse:	68	31	16	112	65	154	237	1360	104	16	453	75
Added Vol:	0	4	0	33	4	115	73	50	0	0	56	19
PasserByVol:	0	12	0	0	23	29	10	0	0	0	0	0
Initial Fut:		47	16	145	92	298		1410	104	16	509	94
User Adj:		1.00	1.00	1.00		1.00		1.00	1.00		1.00	1.00
PHF Adj:		1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00
PHF Volume:	68	47	16	145	92	298		1410	104	16	509	94
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	68	4.7	16	145	92	298		1410	104	16	509	94
PCE Adj:		1.00	1.00 1.00	1.00		1.00		1.00	1.00		1.00	1.00
MLF Adj: FinalVolume:	68	1:00 47	1.00	1.00 145	92	298	1.00	1410	104	1.00		1.00 94
rinarvordine:		_					1	1410	104	1	309	94
Saturation Fl				I			}			1		1
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:			1.00	1.00		1.00		1.00	1.00	1.00		1.00
Lanes:		1.49	0.51	1.00		1.00	1.00		0.14	1.00		0.31
Final Sat.:		2385	815	1600		1600	1600		220	1600		497
							Q.			ii.		
Capacity Anal	ysis	Modu]	Le:	11.71		•				,		*
Vol/Sat:	_		0.02	0.09	0.06	0.19	0.20	0.47	0.47	0.01	0.19	0.19
Crit Moves:	****					***		****		***		
*******	****	*****	*****	*****	****	*****	****	****	****	*****	****	*****

Willowbrook

Willowbrook Existing+Project+Cumulative - PM Peak Hour

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #33 Wilmington Ave & Rosecrans Ave *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.962 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 145 Level Of Service: ************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Inclu _____ Volume Module: Base Vol: 153 674 153 147 475 135 114 1059 163 93 468 Initial Bse: 155 681 155 148 480 136 115 1070 165 94 473 115 Reduced Vol: 155 842 155 243 728 159 132 1089 165 94 486 186 FinalVolume: 155 842 155 243 728 159 132 1089 165 94 486 186 Saturation Flow Module: Lanes: 1.00 1.69 0.31 1.00 1.64 0.36 1.00 2.00 1.00 1.00 1.45 0.55 Final Sat.: 1600 2704 496 1600 2625 575 1600 3200 1600 1600 2313 887 Capacity Analysis Module: Vol/Sat: 0.10 0.31 0.31 0.15 0.28 0.28 0.08 0.34 0.10 0.06 0.21 0.21 Crit Moves: **** **** **** ****************

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #42 Willowbrook Ave & Rosecrans Ave *************** Critical Vol./Cap.(X): 0.760 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 59 Level Of Service: XXXXXX ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 Include< ______ Volume Module: Initial Bse: 30 108 16 133 80 27 15 1327 19 29 804
Added Vol: 0 0 0 4 0 0 88 0 0 70
PasserByVol: 0 1 0 6 2 0 0 20 0 0 11
Initial Fut: 30 109 16 143 82 27 15 1435 19 29 885 Reduced Vol: 30 109 16 143 82 27 15 1435 19 29 885 133 FinalVolume: 30 109 16 143 82 27 15 1435 19 29 885 133 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.02 0.10 0.10 0.09 0.16 0.16 0.01 0.45 0.45 0.02 0.32 0.32 Crit Moves: ****************

2-9-17

			(H)		2-9	-1/						
			Level O									
			ycle Le									
*****								****	*****	****	*****	*****
Intersection												
*****	****					*****	****	****	*****	****	*****	*****
Cycle (sec):		1	00 10 55			Critic					0.7	
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	XXX
Optimal Cycle	∋:		55			Level						C
*****	****	****	*****	****	****	*****	****	****	****	****	****	****
Approach:	No	rth B	ound	Sot	uth Bo	ound	Εä	ast Bo	ound	We	est Bo	ound
Movement:	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R	L ·	- T	- R
Control: Permitted Permitted Permitted Permitted												
Rights:		Incl	ude		Incl	ıde		Incl	ıde		Inclu	
	0				0	0_			0	0		0
Y+R:			4.0						4.0	-	-	_
Lanes:	1 (1 1	1 0	1 (1 0			0 0		1.5	
	l			l	J	1	1	J 1.		1		
Volume Module												
	151	513	69	39	368	68	0.0	. 270	213	12	68	26
_	1.00				1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		513	69	39	368	68	96		213	12	68	26
Added Vol:	0	0	0	0	0	0	0	51	0	0	48	0
PasserByVol:			0	0	0	0	0	5	0	0	3	0
Initial Fut:		513	69	39	368	68	96	326	213	12	119	26
User Adj:	1.00	1.00	1.00	1.00	1.00	1 00		1.00	1.00		1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00
PHF Volume:	151	513	69	39	368	68	96	326	213	12	119	26
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	151	513	69	39	368	68	96	326	213	12	119	26
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	151	513	69	39	368	68	96	326	213	12	119	26
Saturation F	Low Mo	odule	:	***		(*)	(5)					1/2
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:			0.24		1.69	0.31		0.51			0.76	0.16
Final Sat.:					2701	499		821		122		265
Capacity Anal	50											1
Vol/Sat:	_		0.18	0 02	0 14	0 14	0 06	0.40	0.40	0 01	0.10	0.10
Crit Moves:	****	0.10	0.10	0.02	****	0.17	0.00	****	0.10	****	3.10	0.10
**********	****	****	*****	****	****	*****	*****	****	*****	****	*****	*****

Existing+Project+Cumulative - PM Peak Hour 2-9-17 Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #56 Alameda St & Rosecrans Ave ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.641 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 44 Level Of Service: xxxxxx ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 2 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 Volume Module: Base Vol: 136 771 0 0 868 77 111 0 198 0 0 Initial Bse: 136 771 0 0 868 77 111 0 198 0 0 FinalVolume: 143 819 0 0 941 77 111 0 213 0 0 Saturation Flow Module: Lanes: 1.00 2.00 0.00 0.00 1.85 0.15 1.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1600 3200 0 0 2958 242 1600 0 1600 0 0 Capacity Analysis Module: Vol/Sat: 0.09 0.26 0.00 0.00 0.32 0.32 0.07 0.00 0.13 0.00 0.00 0.00 Crit Moves: **** ****

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
******							****	****	*****	****	****	
Intersection					-		****	****	*****	****	****	****
Cycle (sec):		1	00			Critic					0.8	
Loss Time (se	ec):	:	10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	CXX
Optimal Cycle			76			Level						D

Approach:	No	rth B			ith Bo			ast Bo			est Bo	
Movement:	. L .	_	- R	, ь .	_	- R	. L	_	- R	_ L -	_	- R
			,						,	1		100
Control:]	Permi		1	ermit?]	Permi		I	ermit?	
Rights:			Include Include Include Include 0 0 0 0 0 0 0 0 0									
Min. Green:	0		0	0		0			0			0
Y+R:	4.0	4.0	4.0	4.0		4.0	4.0		4.0	4.0		4.0
Lanes:	1 (-		1 (1 (_	1161	1 (1 0
	1											
Volume Module		=					100	006	001	0.0	250	100
Base Vol:	125	725	114	171	577	98	102	886	201	90	352	126
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:	125	725	114	171	577	98	102	886	201	90	352	126
Added Vol:	0	93	0	3	125	0	0	0 1	0	0	0	1
PasserByVol:	0	8	0	0	14	1	_	_	_	0 90	_	0
Initial Fut:	125	826	114	174	716	99	103	887	201		353	127
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Adj:		1.00	1.00		1.00	1.00	1.00	1.00	1.00 201	1.00	353	1.00 127
PHF Volume:	125	826	114	174	716	99				90		127
Reduct Vol:	125	0	0	0 174	0 716	0 99	0 103	0 887	0 201	90	0 353	127
Reduced Vol:	125	826	114					1.00	1.00	1.00		1.00
PCE Adj: MLF Adi:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:	125	1.00	114	174	716	99	103	887	201	90	353	127
rinarvorume:	v .								1	TAIL TO SEE	333	
Saturation Fl							1					er-o-strain (
Sat/Lane:		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Lanes:		1.76	0.24		2.00	1.00		2.00	1.00		1.47	0.53
Final Sat.:		2812	388		3200	1600		3200	1600		2353	847
rinar sac	411	-	u	22.62			W			1		
Capacity Anal	57		::	1		n•			1			1
Vol/Sat:	0.08	0.29	0.29	0.11	0.22	0.06	0.06	0.28	0.13	0.06	0.15	0.15
Crit Moves:		***		***				***		****		
******	****	****	*****	****	****	*****	****	****	*****	****	*****	*****

2-9-17													
Level Of Service Computation Report													
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #58 Wilmington Ave & W Compton Blvd													
	****			*****						****			
Cycle (sec):	,		00			Critic					0.8		
Loss Time (se			10			_		-	ec/veh)	:	XXXX		
Optimal Cycle		,	99			Level			-			D	
_	Approach: North Bound South Bound East Bound West Bound												
Approach:													
Movement:			- R		- T				- R		- T		
3													
Control: Protected Protected Protected Protected													
Rights:	Include Include Include Include												
Min. Green:	0	-	0	0	0	0	0	0	0	0	0	0	
Y+R:	4.0			4.0			4.0		4.0	4.0		4.0	
Lanes:			0 1			1 0			1 0	1125) 2	0 1	
Volume Module	e:												
Base Vol:	106	793	155	150	544	82	132	898	109	140	451	172	
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Initial Bse:	106	793	155	150	544	82	132	898	109	140	451	172	
Added Vol:	0	122	0	0	173	0	0	3	0	0	1	0	
PasserByVol:	0	31	0	8	60	1	1	0	0	0	0	5	
Initial Fut:	106	946	155	158	777	83	133	901	109	140	452	177	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	106	946	155	158	777	83	133	901	109	140	452	177	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	106	946	155	158	777	83	133	901	109	140	452	177	
PCE Adi:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	106	946	155	158	777	83	133	901	109	140	452	177	
Saturation F	low Mo	odule	:	20		175				OW.		92	
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	2.00	1.00	1.00	1.81	0.19	1.00	1.78	0.22	1.00	2.00	1.00	
Final Sat.:		3200	1600		2891	309		2855	345	1600	3200	1600	
	40					1							
Capacity Anal	No.			1						SW.			
Vol/Sat:		0.30	0.10	0.10	0.27	0.27	0.08	0.32	0.32	0.09	0.14	0.11	
Crit Moves:		***		***				****		****			
******	****	****	*****	****	****	*****	****	****	*****	****	****	****	

	2-9-17											
Level Of Service Computation Report												
						_		_			,	
ICU 1	(Loss	as Cy	cle Le	ngth a	t) Met	inod (F	uture	Volur	ne Alte	rnativ	re)	
******								****	*****	****	****	*****
Intersection												
*****	****			****	****							
Cycle (sec):		10	00			Critic	al Vol	L./Car	o (X):		0.4	:57
Cycle (sec): Loss Time (se	ec):	:	L 0			Averag	e Dela	ay (se	ec/veh)	:	XXXX	XX
Optimal Cycle						Level						A

Approach:	Noi	rth Bo	ound			ound					est Bo	
Movement:			- R	ь -	- T	- R	L -	- T	- R	L -		
Control: Permitted Permitted Protected Permitted												
Rights:	Include Include Include Include										ıde	
Min. Green:	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	0 (1!	0 0	0 (0 0	1 0	1 (2	1 0	0 () 1	1 0
Value Madula												
Volume Module	€:											
Base Vol:	15	112	15	0	112	38	15	1052	69	0	710	61
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	15	112	15	0	112	38	15	1052	69	0	710	61
Added Vol:	0	0	0	0	0	0	0	3	0	0	1	0
PasserByVol:	2	1	0	0	2	0	0	2	6	0	1	0
Initial Fut:	17	113	15	0	114	38	15	1057	75	0	712	61
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	17	113	15	0	114	38	15	1057	75	0	712	61
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	17	113	15	0	114	38	15	1057	75	0	712	61
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:		113		0						0		61
								:				
Saturation Fi	Low Mo	odule	:									
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	0.12	0.78	0.10	0.00	0.75	0.25	1.00	2.80	0.20	0.00	1.84	0.16
		1247		0		400			318		2947	253
Capacity Anal				.ti.		,						111
	_			0.00	0.10	0.10	0.01	0.24	0.24	0.00	0.24	0.24
Crit Moves:	****				****		***				***	
*****	****	****	*****	****	****	*****	****	****	*****	****	****	*****

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***** Intersection #60 Central Ave & Alondra Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.918 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 110 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 2 0 1 Volume Module: Base Vol: 119 782 148 180 632 65 115 969 132 65 334 Initial Bse: 119 782 148 180 632 65 115 969 132 65 334 158 0 0 158 0 158 FinalVolume: 119 878 148 180 762 66 116 970 132 65 335 158 -----||-----||-----| Saturation Flow Module: Lanes: 1.00 1.71 0.29 1.00 1.84 0.16 1.00 1.76 0.24 1.00 2.00 1.00 Final Sat.: 1600 2738 462 1600 2945 255 1600 2817 383 1600 3200 1600 _____ Capacity Analysis Module: Vol/Sat: 0.07 0.32 0.32 0.11 0.26 0.26 0.07 0.34 0.34 0.04 0.10 0.10 Crit Moves: **** **** **** *******************

2-9-17

2-9-17												
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
***********												*****
Intersection #												
******								****	*****	****	*****	*****
Cycle (sec):			00			Critic					0.9	
Loss Time (sec	. (Averag						
Optimal Cycle:			16			Level				•	111111	E
******				****	****					****	****	*****
Approach:	Noı	rth Bo	ound	Sou	ith Bo	ound	Ea	ast Bo	ound	₩e	est Bo	und
			- R			- R			- R	L -	- T	- R
MOVEMENT.												
Control: Protected Protected Protected Protected												
Rights: Include Include Include Include												ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 (0 1	1 0	1 (1	1 0	1 (2	0 1	1 () 1	1 0
Lanes: 1 0 1 1 0 1 0 1 1 0 1 0 2 0 1 1 0 1 1 0												
Volume Module:				•		•			,			,
Base Vol:	79	894	113	129	569	70	107	1012	159	105	425	158
Growth Adj: 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Bse:	79	894	113	129	569	70	107	1012	159	105	425	158
Added Vol:	0	122	0	0	173	0	0	0	0	0	0	0
PasserByVol:	0	24	0	8	47	1	1	0	0	0	0	3
Initial Fut:	79	1040	113	137	789	71	108	1012	159	105	425	161
User Adj: 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 1	.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	79	1040	113	137	789	71	108	1012	159	105	425	161
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	79	1040	113	137	789	71	108	1012	159	105	425	161
PCE Adj: 1	.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
	.00	1.00	1.00	1.00		1.00		1.00	1.00		1.00	1.00
		1040	113	137		71		1012	159		425	161
			1									
Saturation Flo												
		1600	1600	1600		1600		1600	1600		1600	1600
-		1.00	1.00	1.00		1.00		1.00	1.00		1.00	1.00
		1.80	0.20	1.00		0.17		2.00	1.00		1.45	0.55
and the second second		2886	314		2936	264		3200	1600		2321	879
Capacity Analy										0 0-		
,	.05	0.36	0.36	0.09	0.27	0.27	0.07	0.32	0.10	0.07	0.18	0.18
Crit Moves:			esta de la composición dela composición de la composición de la composición dela composición dela composición dela composición de la composición dela c				andrae e e	***	Edical Science		nana ese e	
*****	***	****	*****	*****	*****	*****	****	****	*****	****	****	*****

......

Willowbrook Existing+Project+Cumulative - PM Peak Hour

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************** Intersection #62 Wilmington Ave & Greenleaf Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0 956 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 139 Level Of Service: xxxxxx ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 2 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 0 Volume Module: Base Vol: 70 970 330 148 564 19 45 532 34 98 224 Initial Bse: 70 970 330 148 564 19 45 532 34 98 224 169 0 0 FinalVolume: 70 1110 330 150 773 19 45 532 34 98 224 170 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 1.95 0.05 1.00 0.94 0.06 1.00 0.57 0.43 Final Sat.: 1600 3200 1600 1600 3123 77 1600 1504 96 1600 910 690 Capacity Analysis Module: Vol/Sat: 0.04 0.35 0.21 0.09 0.25 0.25 0.03 0.35 0.35 0.06 0.25 0.25

Crit Moves:

Willowbrook Existing+Project+Cumulative - PM Peak Hour

2-9-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #63 Wilmington Ave & Walnut St ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.829 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 74 Level Of Service: xxxxxx ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 54 1153 85 34 627 25 152 451 184 34 63 63 Initial Bse: 54 1153 85 34 627 25 152 451 184 34 63 63 0 0 Added Vol: 0 122 0 0 173 0 0 0 0 PasserByVol: 0 19 0 0 37 0 0 0 0 Final Volume: 54 1294 85 34 837 25 152 451 184 34 63 63 Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 1600 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.03 0.40 0.05 0.02 0.26 0.02 0.10 0.28 0.12 0.02 0.04 0.04 Crit Moves: **** **** **** *****************

	2-9-17											
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
******							****	****	*****	****	*****	*****
Intersection												
******	****	****	*****	****	****					****	*****	*****
Cycle (sec):		10	00			Critic					0.7	
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	:	XXXX	CXX
Optimal Cycle	∋:	į	50			Level	Of Ser	cvice	:			C
*******	****	****	*****	****	****	*****	****	****	*****	****	****	*****
Approach:	No	rth Bo	ound	Sot	ith Bo	ound	Ea	ast Bo	ound	We	est Bo	ound
Movement:	L	- T	- R			- R	L ·	- T	- R	L ·	- T	- R
Control: Permitted Protected Protected Protected												
Rights:		Inclu			Inclu			Inclu			Inclu	ıde
Min. Green:	0 0 0 0 0 0 0 0 0 0										0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:			0 1			0 0			0 0		0 0	
			-									
Volume Module	•		1	1		1	t .					1
Base Vol:	0	866	326	311	507	0	0	0	0	68	0	169
Growth Adj:	-	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:	0	866	326	311	507	0	0	0	0	68	0	169
Added Vol:	0	93	0	0	125	0	0	0	0	0	0	0
PasserByVol:	0	3	0	0	5	0	0	0	0	0	0	0
Initial Fut:	0	962	326	311	637	0	0	0	. 0	68	0	169
User Adi:	_	1.00	1.00		1.00	1.00	-	1.00	1.00		1.00	1.00
					1.00	1.00		1.00	1.00		1.00	
PHF Volume:	1.00	962	1.00 326	311	637	0	1.00	0.1.00	0	68	0	1.00 169
	_			211		_	0					
Reduct Vol:	0	0	0		0	0		0	0	0	0	0
Reduced Vol:		962	326	311	637	0	0	0	0	68	0	169
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:		962	326	311	637	0	, 0	0	0	68	0	169
Saturation Fl												
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600
_	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00
Lanes:		2.00	1.00		2.00	0.00		0.00	0.00		0.00	1.00
Final Sat.:		3200	1600		3200	0		0	0	ar -	0	1600
Capacity Anal												
Vol/Sat:	0.00	0.30	0.20		0.20	0.00	0.00	0.00	0.00	0.04	0.00	0.11
Crit Moves:		***		****								****
******	****	****	*****	****	*****	*****	****	*****	*****	****	****	*****

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #65 Willowbrook Ave & Alondra Blvd ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.530 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 53 Level Of Service: XXXXXX ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Permitted Permitted Protected Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 16 89 13 35 67 20 18 1056 20 0 571 Initial Bse: 16 89 13 35 67 20 18 1056 20 0 571 39 FinalVolume: 16 92 13 35 75 20 18 1065 20 0 574 39 Saturation Flow Module: Lanes: 0.13 0.76 0.11 0.27 0.58 0.15 1.00 2.00 1.00 0.00 1.87 0.13 Final Sat.: 212 1217 172 431 923 246 1600 3200 1600 0 2996 204 Capacity Analysis Module: Vol/Sat: 0.01 0.08 0.08 0.02 0.08 0.08 0.01 0.33 0.01 0.00 0.19 0.19 Crit Moves: **** ****

					2-3	-т,							
			1 .	5 0-		~ · · · · · · ·							
T. CTT - 1	/ T					Computa							
1CU 1						thod (F							
								****	****	****	****	*****	
Intersection													
	****			****	****					****			
Cycle (sec):	1	1	00			Critic					0.7		
Loss Time (se			10 57						ec/veh)	:	XXXX		
Optimal Cycle						Level						C	
Approach:			ound			ound		ast Bo			est Bo		
Movement:			- R			- R			- R		- T		
										-			
Control:	Pro	ot+Pe:		Pro		rmit	P:			Pi	rotect		
Rights:			ıde			ıde			ıde		Inclu		
Min. Green:	0		0		0	0			0	0	_	0	
Y+R:		4.0				4.0				4.0			
Lanes:			1 0			1 0			1 0) 1		
Volume Module													
Base Vol:	84	546	219	61	646	83	93	599	80	208	211	43	
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Initial Bse:		546	219	61	646	83	93	599	80	208	211	43	
Added Vol:	0	40	0	0	58	0	0	0	0	0	0	0	
PasserByVol:	0		0	0	30	0	0	2	0	0	1	0	
Initial Fut:			219	61	734	83	93	601	80	208		43	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
PHF Adj:		1.00	1.00	201	1.00	1.00		1.00	1.00		1.00	1.00	
PHF Volume:	84	601	219	61	734	83	93	601	80	208	212	43	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:			219	61	734	83	93	601	80	208	212	43	
PCE Adj:		1.00	1.00	0.0	1.00	1.00		1.00	1.00		1.00	1.00	
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
FinalVolume:		601	219		734	83	93		80		212	43	
	Į.												
Saturation F													
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600	
Adjustment:			1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Lanes:	1.00		0.53		1.80	0.20		1.77			1.00	1.00	
Final Sat.:		2345	855		2875	325	21	2824	376		1600	1600	
Capacity Anal	-												
Vol/Sat:		0.26	0.26	0.04		0.26	0.06	0.21	0.21		0.13	0.03	
Crit Moves:	****				****			****		****			
*****	*****	*****	*****	****	*****	*****	****	*****	*****	****	****	*****	

10-4-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #44 Alameda St & Abbott Rd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.657
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 45 Level Of Service: B ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Split Phase Split Phase Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 0 687 236 201 1116 0 6 24 2 229 1 136 Initial Bse: 0 694 238 203 1127 0 6 24 2 231 1 137 FinalVolume: 0 765 259 206 1171 0 6 24 2 239 1 140 Saturation Flow Module: Lanes: 0.00 1.49 0.51 1.00 2.00 0.00 0.19 0.75 0.06 1.99 0.01 1.00 Final Sat.: 0 2390 810 1600 3200 0 300 1200 100 3187 13 1600 Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.32 0.13 0.37 0.00 0.02 0.02 0.02 0.08 0.08 0.09 Crit Moves:

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #53 Imperial Hway & Fernwood Ave **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.794 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 65 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 95 70 7 104 90 9 44 1264 221 7 789 143 Initial Bse: 95 70 7 104 90 9 44 1264 221 7 789 143 FinalVolume: 95 70 7 104 90 9 44 1391 221 7 893 143 Saturation Flow Module: Lanes: 0.55 0.41 0.04 0.52 0.44 0.04 1.00 1.73 0.27 1.00 1.72 0.28 Final Sat.: 884 651 65 820 709 71 1600 2761 439 1600 2758 442 Capacity Analysis Module: Vol/Sat: 0.06 0.11 0.11 0.07 0.13 0.13 0.03 0.50 0.50 0.00 0.32 0.32 Crit Moves: **** **** ****

2-9-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************* Intersection #54 Imperial Hwy & State St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.823 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 72 Level Of Service: D ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 Lanes: Volume Module: 72 326 30 116 718 Initial Bse: 51 454 339 1047 123 124 Added Vol: 0 0 0 0 0 0 0 104 0 0 89
PasserByVol: 0 0 0 0 0 1 9 0 14 0 14
Initial Fut: 51 454 123 72 326 125 348 1151 44 116 821 0 PHF Adj: PHF Volume: 51 454 123 72 326 125 348 1151 44 116 821 76 0 0 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 51 454 123 72 326 125 348 1151 44 116 821 FinalVolume: 51 454 123 72 326 125 348 1151 44 116 821 76 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.18 0.18 0.05 0.14 0.14 0.22 0.37 0.37 0.07 0.28 0.28 Crit Moves: **** **** ****

Intersections LOS Analysis Sheets

Existing + Project + Mitigation

11-8-2016 ------Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #10 Central Ave & El Segundo Blvd ******************************* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10
Optimal Cycle: 77 Average Delay (sec/veh): Level Of Service: ********** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 204 659 194 125 687 209 89 400 76 170 965 Initial Bse: 206 666 196 126 694 211 90 404 77 172 975 86 Added Vol: 0 10 34 0 7 0 0 66
PasserByVol: 0 29 0 0 12 3 16 15 0 21 45 0 0 0 10 Initial Fut: 206 705 230 126 713 214 106 485 77 193 1030 Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3200 1600 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.13 0.22 0.14 0.08 0.22 0.13 0.07 0.15 0.05 0.12 0.32 0.05 Crit Moves: **** **** ****************************

11-8-2016 ______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************ Intersection #11 Central Ave & Rosecrans Ave ********************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.795 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 66 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 135 571 71 95 644 207 121 346 125 117 979 153 Initial Bse: 136 577 72 96 650 209 122 349 126 118 989 155 Added Vol: 0 33 0 0 22 6 10 7 0 0 7 0 PasserByVol: 0 20 0 0 8 2 5 5 0 0 2 0 Initial Fut: 136 630 72 96 680 217 137 361 126 118 998 155 PHF Volume: 136 630 72 96 680 217 137 361 126 118 998 155 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 2.22 0.78 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3557 1243 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.09 0.20 0.04 0.06 0.21 0.14 0.09 0.10 0.10 0.07 0.31 0.10

Willowbrook Existing+Project+TMG Mitigation AM Peak 11-8-2016

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.824 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 72 Level Of Service: ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 2 0 3 0 0 0 0 2 0 2 1 0 1! 0 1 0 0 0 0 Lanes: Volume Module: 0 0 655 481 407 0 532 Base Vol: 325 644 0 0 0 662 486 Initial Bse: 328 650 411 0 537 0 0 0 Added Vol: 98 180 0 0 185 27 4 0 125 0 0 PasserByVol: 53 73 0 0 219 0 0 0 79 0 0 Initial Fut: 479 903 0 0 1066 513 415 0 741 0 0 PHF Volume: 479 903 0 0 1066 513 415 0 741 0 0 Ω FinalVolume: 479 903 0 0 1066 513 415 0 741 0 0 0 Saturation Flow Module: ______ Capacity Analysis Module: Vol/Sat: 0.15 0.19 0.00 0.00 0.33 0.16 0.24 0.00 0.24 0.00 0.00 0.00 Crit Moves: **** ****

Willowbrook

Existing+Project+TMG Mitigation AM Peak 11-8-2016

11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #32 Wilmington Ave & El Segundo Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.782 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 63 Level Of Service: XXXXXX *********************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 1 0 1 1 0 1 0 1 1 0 1 0 2 0 1 1 0 2 0 1 Lanes: Volume Module: 173 744 54 123 640 92 393 135 258 56 557 Base Vol: 93 397 261 57 563 Initial Bse: 175 751 55 0 124 646 136 Added Vol: 26 172 0 32 113
PasserByVol: 0 102 0 11 42 11 6 3 15 0 8 0 0 0 0 0 0 Initial Fut: 201 1025 55 167 801 147 99 400 276 57 571 167 PHF Volume: 201 1025 55 167 801 147 99 400 276 57 571 167 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 201 1025 55 167 801 147 99 400 276 57 571 167 FinalVolume: 201 1025 55 167 801 147 99 400 276 57 571 167 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.34 0.34 0.10 0.30 0.30 0.06 0.12 0.17 0.04 0.18 0.10 Crit Moves: *** *** *** *** ******************

					11-8-	-2016							
			T arra 1 . O	f Com	rian (70001150	tion I		-				
T (717 1	Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												

Intersection													
*********								****	*****	****	****	*****	
Cycle (sec):		1	00			Critic						307	
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	:	XXX	CXX	
Optimal Cycle	 :∶		68			Level	Of Se	rvice	:			D	
******	****	****	*****	****	****	*****	****	****	*****	****	****	*****	
Approach:	No	rth B	ound	Soi	uth Bo	ound	Εá	ast Bo	ound	₩e	est Bo	ound	
			- R			- R					- T		
Control: Split Phase Split Phase Protected Protected													
Rights:			ude		Inclu	ıde		Ovl			Incl	ıde	
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lanes:	2	1 0	0 1	0 (1!	0 0	1 (3	1 1	2 (2	1 0	
Volume Module	:		1000	101		·			·				
Base Vol:	534	11	136	7	34	67	50	1002	222	735	1333	13	
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	
Initial Bse:	539	11	137	7	34	68	51	1012	224	742	1346	13	
Added Vol:	178	9	1	0	0	0	7	70	107	2	100	4	
PasserByVol:	116	0	11	0	0	0	0	19	32	0	42	0	
Initial Fut:	833	20	149	7	34	68	58	1101	363	744	1488	17	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	833	20	149	7	34	68	58	1101	363	744	1488	17	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	833	20	149	7	34	68	58	1101	363	744	1488	17	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	833	20	149	7	34	68	58	1101	363	744	1488	17	
OvlAdjVol:									0				
Saturation Fl	ow Mo	odule	:										
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	2.93	0.07	1.00	0.06	0.31	0.63	1.00	3.76	1.24	2.00	2.97	0.03	
Final Sat.:	4218	102	1600	104	504	993	1600	6016	1984	2880	4745	55	
Capacity Anal				-								15.7.1.	
Vol/Sat:	0.20	0.20	0.09	0.07	0.07	0.07	0.04	0.18	0.18	0.26	0.31	0.31	
OvlAdjV/S:									0.00				
Crit Moves:	****			***				****		****			
*****	****	****	*****	****	*****	*****	*****	****	*****	*****	****	*****	

11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************** Intersection #45 Alameda St & Imperial Hwy ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.792 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 65 Level Of Service: Average Delay (sec/veh): XXXXXX ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Ovl
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Y+R:
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 2 0 1 1 0 1 0 2 0 2 2 0 2 1 0 1 0 3 0 1 Lanes: Volume Module: 74 641 540 357 536 169 Base Vol: 209 643 82 85 1226 361 541 171 86 1238 Initial Bse: 211 649 75 647 83 545 Added Vol: 6 0 0 0 0 44 30 37 4 0 55
PasserByVol: 0 0 0 0 18 12 8 0 0 23 0 0 Initial Fut: 217 649 83 75 647 607 403 586 175 86 1316 36 PHF Volume: 217 649 83 75 647 607 403 586 175 86 1316 36 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 217 649 83 75 647 607 403 586 175 86 1316 36 FinalVolume: 217 649 83 75 647 607 403 586 175 86 1316 36 OvlAdjVol: 160 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.23 0.23 0.05 0.20 0.19 0.14 0.16 0.16 0.05 0.27 0.02 OvlAdjV/S: 0.05 Crit Moves: **** **** ******************

*******	***********************												
Approach:	No	rth B	ound	So	uth Bo	ound	E	ast B	ound	We	est Bo	ound	
Movement:													
Control:		Permi	tted		Permi	ted		Permi	tted	1	Permit	ted	
Rights:		Incl	ude		Incl	ıde		Incl	ude		Incl	ıde	
Rights: Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lanes:	1	0 1	1 0	1	0 1	1 0	1	0 2	0 1	1 (0 1	
Volume Module				•		'	'		'				
Base Vol:	172	102	27	136	69	276	148	594	93	12	927	111	
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	
Initial Bse:	174	103	27	137	70	279	149	600	94	12	936	112	
Added Vol:	0	0	0	18	0	53	93	6	0	0	13	32	
PasserByVol:	0	18	0	0	8	10	15	0	0	0	0	0	
Initial Fut:	174	121	27	155	78	342	257	606	94	12	949	144	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:			27	155	78	342	257			12	949	144	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	174	121	27	155	78	342	257	606	94	12	949	144	
PCE Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:				155			257				949	144	

Saturation Fl													
Sat/Lane:				1600		1600		1600		1600	1600	1600	
Adjustment:					1.00	1.00		1.00		1.00	1.00	1.00	
Lanes:					1.00	1.00		2.00		1.00	2.00	1.00	
Final Sat.:	1600	2612	588		1600				1600		3200		
Capacity Anal	4												
Vol/Sat:		0.05	0.05	0.10	0.05			0.19	0.06	0.01	0.30	0.09	
0110 110 100 1	****					***	****				***		
******	****	****	*****	*****	*****	*****	****	****	*****	*****	*****	*****	

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #33 Wilmington Ave & Rosecrans Ave ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.927 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 116 Level Of Service: ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 0 1 1 0 1 0 2 0 1 1 0 1 1 0 Volume Module: Initial Bse: 96 620 120 139 821 191 100 467 104 125 909 Added Vol: 0 141 PasserByVol: 0 61 0 30 92 9 26 6 7 5 11 0 0 0 0 0 0 0 0 21 Initial Fut: 96 822 120 178 939 202 118 467 104 125 909 PHF Volume: 96 822 120 178 939 202 118 467 104 125 909 170 0 0 0 0 0 0 0 0 0 Reduct Vol: Reduced Vol: 96 822 120 178 939 202 118 467 104 125 909 170 Saturation Flow Module:

Vol/Sat: 0.06 0.26 0.08 0.11 0.36 0.36 0.07 0.15 0.07 0.08 0.34 0.34 Crit Moves: **** **** ****

Capacity Analysis Module:

Willowbrook Existing+Project+Mitigation Conditions - AM Peak

1-30-17														
- 1 - 6 - 7														
T.O.I. 1	Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													
******												*****		
Intersection														
*******	**		_					*****	*****	****	*****	*****		
Cycle (sec):			00			Critic					0.8			
Loss Time (se	ec) .		10						ec/veh)					
Optimal Cycle			70			Level				•	AAAA	D		
******				****	****					****	****	-		
Approach:		rth Bo			ıth Bo		Ea				est Bo			
Movement:												- R		
Control:	*.	rotect			rotect			cotect			cotect			
Rights: Include Include Include Include														
Min. Green:												0		
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lanes:	1 (0 1	1 0	1 (1	1 0) 2	0 1	1 () 2	0 1		
Volume Module	:		,	1.4.										
Base Vol:	104	444	142	170	833	87	100	498	105	137	850	142		
Growth Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Initial Bse:	104	444	142	170	833	87	100	498	105	137	850	142		
Added Vol:	0	141	0	0	92	0	0	0	0	0	0	0		
PasserByVol:	- 0	38	0	2	15	0	1	0	0	0	0	5		
Initial Fut:	104	623	142	172	940	87	101	498	105	137	850	147		
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
PHF Volume:	104	623	142	172	940	87	101	498	105	137	850	147		
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0		
Reduced Vol:	104	623	142	172	940	87	101	498	105	137	850	147		
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
FinalVolume:	104	623	142	172	940	87	101	498	105	137	850	147		
	7000													
Saturation Fl	Low Mo	odule	:											
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600		
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Lanes:	1.00	1.63	0.37	1.00		0.17	1.00		1.00	1.00	2.00	1.00		
Final Sat.:	1600	2606	594	1600	2929	271	1600	3200	1600	1600	3200	1600		
Capacity Anal	_													
Vol/Sat:		0.24	0.24	0.11	0.32	0.32	0.06	0.16	0.07	0.09	0.27	0.09		
Crit Moves:	***				****		****				****			
********	****	****	*****	****	****	*****	****	****	*****	****	****	****		

Willowbrook Existing+Project+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #10 Central Ave & El Segundo Blvd ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.908 Average Delay (sec/veh): Level Of Service: Loss Time (sec): 10 Optimal Cycle: 104 ********************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: -----|-----||-------||-------||-------| Volume Module: Base Vol: 82 634 213 178 655 153 195 1238 145 86 483 Initial Bse: 83 640 215 180 662 155 197 1250 146 87 488 80 25 0 12 0 0 53 0 36 73 0 0 36 11 11 10 0 0 29 0 36 73 0 9 Added Vol: 0 PasserByVol: 0 19 Initial Fut: 83 668 240 180 710 166 208 1313 146 123 590 PHF Volume: 83 668 240 180 710 166 208 1313 146 123 590 80 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3200 1600 1600 3200 1600 _____ Capacity Analysis Module: Vol/Sat: 0.05 0.21 0.15 0.11 0.22 0.10 0.13 0.41 0.09 0.08 0.18 0.05 Crit Moves: **** **** **** ********************

11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************************* Intersection #17 Compton Ave & Imperial Hwy ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.954 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 137 Level Of Service: XXXXXX ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 2 1 0 1 0 2 0 1 Lanes: Volume Module: Base Vol: 98 304 167 214 257 101 78 1434 86 63 735 169 216 260 Initial Bse: 99 307 102 79 1448 87 64 742 234 Added Vol: 169 42 PasserByVol: 5 42 69 4 30 0 0 40 103 51 39 0 0 23 0 0 11 2 0 21 3 Initial Fut: 273 391 238 220 313 102 79 1499 192 115 802 237 PHF Volume: 273 391 238 220 313 102 79 1499 192 115 802 237 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 273 391 238 220 313 102 79 1499 192 115 802 237 FinalVolume: 273 391 238 220 313 102 79 1499 192 115 802 237 Saturation Flow Module: _____ Capacity Analysis Module: Vol/Sat: 0.17 0.24 0.15 0.14 0.26 0.26 0.05 0.35 0.35 0.07 0.25 0.15 *************

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #27 Wilmington Ave & I-105 e/b Ramps ********************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.711 Loss Time (sec): 10
Optimal Cycle: 51 Average Delay (sec/veh): Level Of Service: *********************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: -----|
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include</t Lanes: 2 0 3 0 0 0 0 2 0 2 1 0 1! 0 1 0 0 0 0 0 Volume Module: Base Vol: 326 902 0 0 529 421 328 0 179 0 0 Initial Bse: 329 911 0 0 534 0 0 425 331 0 181 0 60 3 0 Added Vol: 150 247 0 185 0 125 0 0 PasserByVol: 160 219 0 0 137 0 0 0 48 0 0 Initial Fut: 639 1377 0 0 856 485 334 0 354 0 0 PHF Volume: 639 1377 0 0 856 485 334 0 354 0 0 Saturation Flow Module: Lanes: 2.00 3.00 0.00 0.00 2.00 2.00 1.46 0.00 1.54 0.00 0.00 0.00 Final Sat.: 3200 4800 0 0 3200 3200 2332 0 2468 0 0 Capacity Analysis Module: Vol/Sat: 0.20 0.29 0.00 0.00 0.27 0.15 0.14 0.00 0.14 0.00 0.00 0.00

Crit Moves: **** ****

Willowbrook

Willowbrook Existing+Project+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #28 Wilmington Ave & 118th St ************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.907 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 103 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Added Vol: 147 39 29 64 17 230 315 2 203
PasserByVol: 0 379 0 0 186 0 0 0 19 2. 0 0 Ω Initial Fut: 175 1420 114 197 755 262 424 53 254 56 46 182 PHF Volume: 175 1420 114 197 755 262 424 53 254 56 46 182 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 175 1420 114 197 755 262 424 53 254 56 46 182 FinalVolume: 175 1420 114 197 755 262 424 53 254 56 46 182 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.32 0.32 0.07 0.32 0.32 0.27 0.30 0.16 0.04 0.06 0.11

	11-8-2016												
	Level Of Service Computation Report												
TCII 1 (ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
********												*****	
Intersection													
*******								****	*****	****	*****	*****	
Cycle (sec):		10	20			Critic	al Vo	1./Car	o.(X):		0.6	85	
Loss Time (se	c):		00 L0 18						ec/veh)				
Optimal Cycle		-	18						:		111111	В	
******											*****	_	
Approach:	No	rth Bo	ound	So	ith Bo	ound	E	ast Bo	ound	W	est Bo	ound	
Movement:				L	- Т	- R	L	- T	- R				
Movement: L - T - R L - T - R L - T - R - T - R - T - R													
Control: Permitted Permitted Split Phase Split Phase													
Rights: Include Include Include Include													
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0	
			4.0	4.0	4.0				4.0	4.0	4.0	4.0	
Lanes:	1 (0 1	1 0	1 (0 1	1 0	2 (0 1	4.0 0 1	0	0 1!	0 0	
Volume Module	:		,	'			•		'	'		(181)	
Base Vol:	8	807	17	35	707	16	53	2	14	2	0	15	
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	
Initial Bse:	8		17	35	714	16	54	2	14	2	0	15	
Added Vol:	0	190	2	6	246	0	0	0	0	1	0	5	
PasserByVol:	113	0	0	0	0	100	289	47	215	0	24	0	
Initial Fut:	121	1005	19	41	960	116	343	49	229	3	24	20	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	121	1005	19	41	960	116	343	49	229	3	24	20	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	121	1005	19	41	960	116	343	49	229	3	24	20	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:			19	41		116	343			3		20	
											- -		
Saturation Fl	ow Mo	odule:	:										
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Lanes:	1.00	1.96	0.04			0.22	2.00	1.00	1.00	0.06	0.51	0.43	
Final Sat.:			60		2855	345		1600				683	
Capacity Anal													
Vol/Sat:		0.32	0.32	0.03		0.34	0.12	0.03		0.03	0.03	0.03	
CIIC MOVED.	****				****				***		***		
*****	****	*****	*****	****	****	*****	****	*****	*****	****	*****	*****	

Willowbrook Existing+Project+TMG Mitigation PM Peak

Crit Moves: **** **** ****

Willowbrook Existing+Project+TMG Mitigation PM Peak

		EXI	sting+	Projec		3 Mitig -2016	ation	PM Pe	еак		
						Computa					
										rnative)	
******								*****	*****	*****	******
Intersection								****	*****	*****	*****
Cycle (sec):		10	00			Critic	al Vo	l./Car	o.(X):	(0.827
Loss Time (se	ec):	1	LO			Averag	e Dela	ay (se	ec/veh)	; x:	cxxxx
Optimal Cycle	∋:	7	73			Level	Of Se	rvice:	:		D
******	*****	*****	*****							*****	******
Approach:	Nor	th Bo	ound		ith Bo			ast Bo		West	Bound
Movement:	L -	_	- R		- T			- T			r – R
			,			1.7				•	
Control:	Spl	it Ph		Sp.	lit Pl		P:	rotect	ted		ected
Rights:		Inclu			Incl			Ovl			clude
Min. Green:	0	0	0	0	0	0	0	0	0	0	0 0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0 4	
Lanes:		. 0			0 1!		1 (-	1 1	2 0 2	2 1 0
Volume Module											
Base Vol:	544	8	271	9	22	25	47	1612	339	596 83	12 1
Growth Adj:	1.01		1.01		1.01	1.01		1.01	1.01	1.01 1.0	
Initial Bse:	549	8	274	9	22	25		1628	342	602 82	
Added Vol:	146	7	3	0	0	0	18	130	158		77 3
PasserByVol:	71	0	7	0	0	0	0	56	95	0 2	26 0
Initial Fut:	766	15	284	9	22	25		1814	595	604 92	23 4
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	00 1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.0	00 1.00
PHF Volume:	766	15	284	9	22	25	65	1814	595	604 92	23 4
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0 0
Reduced Vol:	766	15	284	9	22	25	65	1814	595	604 92	23 4
PCE Adj:	1.00		1.00		1.00	1.00		1.00	1,.00	1.00 1.0	
MLF Adj:	1.00		1.00		1.00	1.00		1.00	1.00	1.00 1.0	
FinalVolume:	766	15	284	9	22	25	65	1814	595	604 92	23 4
OvlAdjVol:				V			Lacoron		238	¥0	
			4								
Saturation Fl				1.000	1.000	1.000	1.000	1600	1.000	1600 160	1600
Sat/Lane:	1600		1600		1600	1600		1600	1600 1.00	1600 160	
Adjustment: Lanes:	0.90		1.00		1.00	1.00		3.76	1.24		
Final Sat.:	4237	83	1600	257	629	714		6023	1.24	2.00 2.9 2880 47	
			V	207		(2)	201		- 0		
Capacity Anal				C.			Ų.		3		
Vol/Sat:	0.18		0.18	0.04	0.04	0.04	0.04	0.30	0.30	0.21 0.3	9 0.19
OvlAdjV/S:		•							0.12		
Crit Moves:	***					****		****		***	,
******	*****	****	*****	*****	****	*****	****	*****	*****	*****	*****

Willowbrook Existing+Project+TMG Mitigation PM Peak 11-8-2016

11-8	-2016													
Level Of Service Computation Report														
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)														

	Intersection #43 Alameda St & 103rd St													

Cycle (sec): 100														
2														
Loss Time (sec): 10	Average Delay (sec/veh):	C												
Optimal Cycle: 59	Level Of Service:	•												
Approach: North Bound South E		West Bound L - T - R												
Movement: L - T - R L - T														
		· · · · · · · · · · · · · · · · · · ·												
Control: Permitted Permi		Permitted												
2	ude Include 0 0 0 0	Include												
		0 0 0												
Y+R: 4.0 4.0 4.0 4.0 4.0		4.0 4.0 4.0												
Lanes: 1 0 2 0 0 0 0 1		0 0 0 0 0												
*														
Volume Module:	225 100 0 150	0 0 0												
Base Vol: 115 736 0 0 1222		0 0 0												
Growth Adj: 1.01 1.01 1.01 1.01 1.01		.01 1.01 1.01												
Initial Bse: 116 743 0 0 1234		0 0 0												
Added Vol: 0 49 0 0 36		0 0 0												
PasserByVol: 0 16 0 0 4		0 0 0												
Initial Fut: 116 808 0 0 1274		0 0 0												
User Adj: 1.00 1.00 1.00 1.00 1.00		.00 1.00 1.00												
PHF Adj: 1.00 1.00 1.00 1.00 1.00		.00 1.00 1.00												
PHF Volume: 116 808 0 0 1274		0 0 0												
Reduct Vol: 0 0 0 0 0		0 0 0												
Reduced Vol: 116 808 0 0 1274		0 0 0												
PCE Adj: 1.00 1.00 1.00 1.00		.00 1.00 1.00												
MLF Adj: 1.00 1.00 1.00 1.00		.00 1.00 1.00												
FinalVolume: 116 808 0 0 1274		0 0 0												
	=													
Saturation Flow Module:														
Sat/Lane: 1600 1600 1600 1600 1600		600 1600 1600												
Adjustment: 1.00 1.00 1.00 1.00 1.00		.00 1.00 1.00												
Lanes: 1.00 2.00 0.00 0.00 1.68		.00 0.00 0.00												
Final Sat.: 1600 3200 0 0 2682		0 0 0												
Capacity Analysis Module:														
Vol/Sat: 0.07 0.25 0.00 0.00 0.48		.00 0.00 0.00												
Crit Moves: ****														
**********	******	******												

Willowbrook Existing+Project+TMG Mitigation PM Peak 11-8-2016

				11-8-	-2016						
Torral Of General Computation Deposit											
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											
	1CU I(Loss as Cycle Length %) Method (Future Volume Alternative)										
							*****	*****	*****	****	*****
Intersection #2											
******			****	****							
Cycle (sec):	. 1	00					, _	o.(X):		0.7	
Loss Time (sec)		10			_		_	ec/veh)	:	XXXX	
Optimal Cycle:		58			Level						C

Approach:	North B		Sou				ast Bo			est Bo	
	L - T				- R			- R		T	
		1									
Control:	Permi				ted]			E	ermit	
Rights:	Incl			Inclu			Inclu			Inclu	
	0 0	_	_	0	0	_	0	0	0	0	0
	1.0 4.0		4.0			4.0			4.0		4.0
	1 0 1				1 0			0 1		2	
Volume Module:											
Base Vol:	67 31		111	64	152		1347	103	16	449	74
Growth Adj: 1			1.01		1.01		1.01	1.01	1.01		1.01
Initial Bse:	68 31		112	65	154		1360	104	16	453	75
Added Vol:	0 0	_	33	0	98	63	15	0	0	11	19
_	0 12		0	23	29	10	0	0	0	0	0
Initial Fut:	68 43		145	88	281		1375	104	16	464	94
,	.00 1,00		1.00		1.00		1.00	1.00	1.00		1.00
PHF Adj: 1			1.00		1.00		1.00	1.00	1.00		1.00
PHF Volume:	68 43		145	88	281		1375	104	16	464	94
	0 0	-	0	0	0	0	0	0	0	0	0
Reduced Vol:	68 43		145	88	281		1375	104	16	464	94
-	.00 1.00		1.00		1.00		1.00	1.00	1.00		1.00
MLF Adj: 1	.00 1.00	1,00	1.00	1.00	1.00		1.00		1.00		1.00
FinalVolume:	68 43		145	88	281		1375	104	_	464	94
Saturation Flow	v Module	•									
Sat/Lane: 16	500 1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment: 1	.00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes: 1.	.00 1.46	0.54	1.00	1.00	1.00	1.00	2.00	1.00	1.00	2.00	1.00
	500 2330		1600		1600		3200	1600	1600		1600
Capacity Analysis Module:											
Vol/Sat: 0.	.04 0.02	0.02	0.09	0.05		0.19	0.43	0.07	0.01	0.15	0.06
CIIC MOVED.	***				***		****		****		
******	*****	*****	****	****	*****	****	*****	*****	****	****	*****

Willowbrook Existing+Project+TMG Mitigation PM Peak 11-8-2016

Willowbrook

Existing+Project+Mitigation Conditions - PM Peak

1-30-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #61 Wilmington Ave & Alondra Blvd **************** Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 114 Level Of Service: Critical Vol./Cap.(X): 0.924 ***** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R _____ Control: Protected Protected Protected Protected Protected Rights: Include Include Include Include Include On Ontology On Onto Volume Module: Base Vol: 79 894 113 129 569 70 107 1012 159 105 425 158 Initial Bse: 79 894 113 129 569 70 107 1012 159 105 425 158 FinalVolume: 79 1029 113 137 771 71 108 1012 159 105 425 161 Saturation Flow Module: Lanes: 1.00 1.80 0.20 1.00 1.83 0.17 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1600 2883 317 1600 2930 270 1600 3200 1600 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.05 0.36 0.36 0.09 0.26 0.26 0.07 0.32 0.10 0.07 0.13 0.10 Crit Moves:

Existing+Project+Mitigation Conditions - PM Peak 1-30-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************ Intersection #63 Wilmington Ave & Walnut St ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.742 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 56 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Protected
 Protected
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 _____ Volume Module: Base Vol: 54 1153 85 34 627 25 152 451 184 34 63 63 Initial Bse: 54 1153 85 34 627 25 152 451 184 34 63 63 FinalVolume: 54 1283 85 34 819 25 152 451 184 34 63 63 _____ Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.42 0.58 1.00 1.00 1.00 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 2273 927 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.03 0.40 0.05 0.02 0.26 0.02 0.10 0.20 0.20 0.02 0.04 0.04 Crit Moves: **** **** **** **************

Willowbrook Existing+Project+Mitigation Conditions - PM Peak

1-30-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #54 Imperial Hwy & State St ********************** Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 61 Level Of Service: ************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Movement: Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 2 0 1 1 0 2 0 1 1 0 1 1 0 1 1 0 Volume Module: Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Initial Bse: 51 454 123 72 326 124 339 1047 30 116 718 76 Reduced Vol: 51 454 123 72 326 125 348 1108 44 116 777 76 FinalVolume: 51 454 123 72 326 125 348 1108 44 116 777 76 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.92 0.08 1.00 1.82 0.18 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3078 122 1600 2915 285 Capacity Analysis Module: Vol/Sat: 0.03 0.14 0.08 0.05 0.10 0.08 0.22 0.36 0.36 0.07 0.27 0.27 Crit Moves: **** **** ****

Intersections LOS Analysis Sheets

Existing + Project + Cumulative + Mitigation

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak 11-8-2016

11-8-2016													
	Tanal Of Cambias Committee Bound												
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													
********												المستميسية	
								****	****	****	****	****	
Intersection													
	****			****	****					****			
Cycle (sec):	\		00			Critic						374	
Loss Time (se			10			Averag				:	XXX		
Optimal Cycle			88			Level						D	
Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R													
				•					,				
Control:	Pro	ot+Pe:		Pro		rmit		Permi]	Permit		
Rights:		Incl			Incl			Incl			Incl		
Min. Green:	0	0	0	0	-	0	0	0	0	0	0	0	
Y+R:	4.0		4.0		4.0	4.0		4.0			4.0	4.0	
Lanes:			0 1		0 2			0 2			2		
	1									***			
Volume Module													
Base Vol:	204	659	194	125	687	209	89	400	76	170	965	85	
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01		1.01	1.01	
Initial Bse:	206	666	196	126	694	211	90	404	77	172	975	86	
Added Vol:	18	23	34	0	30	13	15	87	15	22	65	0	
PasserByVol:	0	29	0	0	12	3	16	15	0	0	10	0	
Initial Fut:	224	718	230	126	736	227	121	506	92	194	1050	86	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	224	718	230	126	736	227	121	506	92	194	1050	86	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	224	718	230	126	736	227	121	506	92	194	1050	86	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
FinalVolume:	224	718	230	126	736	227	121	506	92	194	1050	86	
Saturation F	low Mo	dule	1.5				1		1	1		,	
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	
Adjustment:	1.00		1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Lanes:	1.00		1.00		2.00	1.00		2.00	1.00		2.00	1.00	
Final Sat.:	1600		1600		3200	1600		3200	1600		3200	1600	
												1	
Vol/Sat:	0.14		0.14	0 08	0.23	0.14	0 08	0.16	0.06	0.12	0 33	0.05	
Crit Moves:	****	V.ZZ	0.14	5.00	****	0.14	****	0.10	0.00	0.12	****	0.00	
**********		****	*****	****		*****		****	*****	****		*****	

Existing+Project+Cumulative+TMG Mitigation AM Peak

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
*******												*****
Intersection		_		-		-	****	****	*****	****	****	*****
Cycle (sec):		10	00			Critic	al Vo	l./Caj	o.(X):		1.0	75
Loss Time (se		-							ec/veh)	:	XXX	
Optimal Cycle			30		b - b - b - b - b	Level						F
Approach:	I NO	rth Bo	- R		ith Bo - T	- R		ast Bo	- R		est Bo - T	
Movement:	_			_						_	_	
Control:		Permit			Permit]				Permit	
Rights:		Incl		•	Incl			Incl			Incl	
Min. Green:	0		0	0		0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1 (0 1	0 1	1 (0 0	1 0	1 (2	1 0	1 (2	0 1
Volume Module	e:											
Base Vol:	114	332	167	113	289	134	75	660	171	190	1489	161
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01		1.01	1.01
Initial Bse:		335	169	114	292	135	76	667	173		1504	163
Added Vol:	95	26	40	5	42	0	1	49	172	87	26	3
PasserByVol:	2	14	0	0	34	0	0	17	3	0	7	0
Initial Fut:		375	209	119	368	135	77	733	348		1537	166
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00	100	1.00	1.00		1.00	1.00
PHF Volume:	212	375	209	119	368	135	77	733 0	348	2/9	1537	166
Reduct Vol: Reduced Vol:	0 212	0 375	0 209	0 119	0 368	0 135	0 77	733	0 348		1537	0 166
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	212	375	209	119	368	135	77	733	348		1537	166
Saturation F	low Mo	odule	: '	1		'	<u>*</u>)		1.0			
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	1.00	1.00	1.00	0.73	0.27	1.00	2.03	0.97	1.00	2.00	1.00
Final Sat.:	1600	1600	1600	1600	1170	430	1600	3255	1545	1600	3200	1600
Capacity Ana	_											
Vol/Sat:		0.23	0.13	0.07	0.31	0.31		0.23	0.23	0.17	0.48	0.10
Crit Moves:	****				****		****				***	
*****	****	*****	*****	****	****	*****	****	****	*****	****	****	*****

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak 11-8-2016

				11-8	-2016						
Level Of Service Computation Report											
T.CTT 1 /T -					_		_			- \	
ICU 1(Lo											
									*****		*****
Intersection #2		_				-					
Cycle (sec):		_00			Critic					0.8	
Loss Time (sec)		10						ec/veh)			
Optimal Cycle:	•	82			Level		_		•	~~~	D
*********	******		****	****					*****	****	_
	North E			ıth Bo			ast Bo			st Bo	
F F	- T				- R			- R		Т	
Control:	Protec		2.1		ted	•	rotect			otect	.1,71
Rights:	Incl			Incl			Incl			Inclu	
Min. Green:	0 0		0	0	0	0	0	0	0	0	0
	.0 4.0		4.0			4.0			4.0	_	4.0
Lanes: 2	0 3	0 0	0 (2	0 2	1 (1!	0 1	0 0	0	0 0
Volume Module:		,	'						•		100
Base Vol: 3	25 644	. 0	0	655	481	407	0	532	0	0	0
Growth Adj: 1.	01 1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
Initial Bse: 3	28 650	0	0	662	486	411	0	537	0	0	0
Added Vol:	98 201	. 0	0	219	28	4	0	144	0	0	0
PasserByVol:	53 73	0	0	219	0	0	0	79	0	0	0
Initial Fut: 4	79 924	. 0	0	1100	514	415	0	760	0	0	0
User Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj: 1.	00 1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume: 4	79 924	. 0	0	1100	514	415	0	760	0	0	0
Reduct Vol:	0 0	0	0	0	0	0	0	0	0	0	0
	79 924			1100	514	415	0	760	0	0	0
3	00 1.00		1.00		1.00		1.00	1.00	1.00		1.00
_	00 1.00		1.00		1.00		1.00	1.00	1.00		1.00
	79 924			1100	514	415	0	760	0	0	0
						2					
Saturation Flow											
	00 1600			1600	1600		1600	1600	1600		1600
_	00 1.00		1.00		1.00		1.00	1.00	1.00		1.00
	00 3.00			2.00	2.00		0.00	1.94	0.00		0.00
	80 4800			3200	3200	1695	-	3105	0	0	0
Conscitu Analys									5.5555		
	Capacity Analysis Module: Vol/Sat: 0.17 0.19 0.00 0.00 0.34 0.16 0.24 0.00 0.24 0.00 0.00 0.00										
- 1		0.00	0.00	****	0.16	U.∠4 ****	0.00	0.24	0.00	0.00	0.00
Crit Moves: **	******	*****	***	****	*****	****	****	*****	****	****	*****
on on the second of the second of the second											

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #28 Wilmington Ave & 118th St ***************** Critical Vol./Cap.(X): 1.098 Cycle (sec): 100 Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: F ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Movement: _____ Control: Protected Protected Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 130 851 61 93 948 166 60 18 81 20 39 214 1 139 Added Vol: 209 36 8 17 19 326 214 1 139 22 2 PasserByVol: 0 125 0 0 298 0 0 0 0 0 0 1 1011111 Fut: 339 1012 69 110 1265 492 274 19 220 42 41 49 0 0 0 106 PHF Volume: 339 1012 69 110 1265 492 274 19 220 42 41 106 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 Reduced Vol: 339 1012 69 110 1265 492 274 19 220 42 41 106 FinalVolume: 339 1012 69 110 1265 492 274 19 220 42 41 106 ______ Saturation Flow Module: Capacity Analysis Module:

Vol/Sat: 0.21 0.23 0.23 0.04 0.55 0.55 0.17 0.18 0.14 0.03 0.05 0.07 Crit Moves: **** ****

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************** Intersection #32 Wilmington Ave & El Segundo Blvd ****************** Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 65 Level Of Service: ************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| Control: Protected Protected Prot+Permit Prot+Permit Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Initial Bse: 175 751 55 124 646 136 93 397 261 57 563 Added Vol: 34 185 0 36 117 11 6 11 18 0 17 PasserByVol: 0 102 0 11 42 0 0 0 0 0 0 0 Initial Fut: 209 1038 55 171 805 147 99 408 279 57 580 62 178 PHF Volume: 209 1038 55 171 805 147 99 408 279 57 580 178 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 209 1038 55 171 805 147 99 408 279 57 580 178 FinalVolume: 209 1038 55 171 805 147 99 408 279 57 580 178 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.34 0.34 0.11 0.30 0.30 0.06 0.13 0.17 0.04 0.18 0.11 Crit Moves: **** **** **** ******************

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak 11-8-2016

					11-8	-2016						
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
												s concensio un
*****								****	*****	****	****	*****
Intersection		-	_			_						
******	****			****	****					*****		
Cycle (sec):	,	_	00			Critic			-		0.8	
Loss Time (se			10			_		_	ec/veh)	:	XXXX	
Optimal Cycle			69			Level						D
Approach:		rth B			ıth Bo			ast Bo			est Bo	
Movement:			- R						- R		- T	
G b 1												
Control:	Sp.		hase	Sp.			P.		tea	Pi	rotect	
Rights:		Incl		0	Inclu		_	Ovl		•	Inclu	
Min. Green:	0		0		0	0		0	0	_	0	0
Y+R:	4.0			4.0			4.0				4.0	4.0
Lanes:	2 :					0 0			1 1	2 (
Volume Module				_								
Base Vol:	534	11	136	7	34	67		1002	222		1333	13
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01		1.01	1.01
Initial Bse:	539	11	137	7	34	68		1012	224		1346	13
Added Vol:	181	9	1	0	0	0	7	89	112	2	131	4
PasserByVol:	116	0	11	0	0	0	0	19	32	0	42	0
Initial Fut:	836	20	149	7	34	68		1120	368		1519	17
User Adj:		1.00	1.00		1.00	1,00		1.00	1.00	1.00		1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	836	20	149	7	34	68		1120	368		1519	17
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	836	20	149	7	34	68		1120	368		1519	17
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1,00		1.00	1.00	1.00		1.00
FinalVolume:	836	20	149	7	34	68	58	1120	368	744	1519	17
OvlAdjVol:	2								0	12		20.
Saturation Fl	Low Mo	odule										
Sat/Lane:	1600	1600	1600	1600	1600	1600		1600	1600		1600	1600
Adjustment:	0.90	0.90	1.00	1.00	1.00	1.00		1.00	1.00		1.00	1.00
Lanes:		0.07	1.00		0.31	0.63		3.76	1.24	2.00		0.03
Final Sat.:			1600	104		993		6021	1979	2880		54
	•											
	Capacity Analysis Module:											
Vol/Sat:	0.20	0.20	0.09	0.07	0.07	0.07	0.04	0.19	0.19	0.26	0.32	0.32
OvlAdjV/S:									0.00			
Crit Moves:		****		***				***		****		
******	****	****	*****	****	****	*****	****	****	*****	*****	****	*****

Willowbrook
Existing+Project+Cumulative+TMG Mitigation AM Peak

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************* Intersection #45 Alameda St & Imperial Hwy ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.798 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 66 Level Of Service: ************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include
 Include
 Include
 Include
 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Initial Bse: 211 649 83 75 647 545 361 541 171 86 1238 Added Vol: 6 1 0 0 0 48 31 55 4 0 82 PasserByVol: 0 0 0 0 0 18 12 8 0 0 23 Initial Fut: 217 650 83 75 647 611 404 604 175 86 1343 0 36 PHF Volume: 217 650 83 75 647 611 404 604 175 86 1343 36 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 Reduced Vol: 217 650 83 75 647 611 404 604 175 86 1343 36 FinalVolume: 217 650 83 75 647 611 404 604 175 86 1343 36 OvlAdjVol: 163 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.23 0.23 0.05 0.20 0.19 0.14 0.16 0.16 0.05 0.28 0.02 OvlAdjV/S: 0.05 Crit Moves: ****

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak 11-8-2016

****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R L - T - R
 Control:
 Permitted
 Permitted
 Permitted
 Permitted

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: 153 632 50 78 759 109 105 417 153 40 361 103 Base Vol: Initial Bse: 155 638 51 79 767 110 106 421 155 40 365 104 FinalVolume: 214 645 51 79 771 110 106 446 189 40 404 104 Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3200 1600 1600 1600 1600 Capacity Analysis Module: Vol/Sat: 0.13 0.20 0.03 0.05 0.24 0.07 0.07 0.14 0.12 0.03 0.25 0.07 Crit Moves: **** **** **** *****************

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak

	EXI	scing.	+FIOJeC	c+Cuiii		-2016	MILIY	acion	AM Pea	.κ.		
T.CTT 1	(T 0.55					Computa		_		wnatin	\	
*******									ne Alte			******
Intersection												
*****		-			_			****	*****	****	*****	*****
Cycle (sec):		10	00			Critic	al Vo	l./Car	o.(X):		0.8	395
Loss Time (se	ec):	-	10						ec/veh)	:	XXXX	cxx
Optimal Cycle	e:	9	98			Level		_				D
******		****	*****	****	****	*****	****	****	*****	****	*****	*****
Approach:	No	rth Bo	ound	So	uth Bo	ound	Εā	ast Bo	ound	We	est Bo	ound
Movement:		- T			- T				- R	L -		- R
Control:		Permit			Permit		1	Permit		I	Permit	
Rights:		Incl			Inclu			Inclu			Inclu	ıde
Min. Green:	0	_	0	0	_	0	0	0	0	0	0	0
Y+R:	4.0		4.0	4.0		4.0	4.0		4.0		4.0	4.0
Lanes:	46	0 1		1 (1 0	1 (-	0.00	1 (_	0 1
Madan Madal							1					
Volume Module Base Vol:		100	27	126	60	276	140	E04	0.3	10	007	111
Growth Adj:	172	102	27 1.01	136	69 1.01	276 1.01	148	594 1.01	93 1.01	12	927 1.01	111 1.01
Initial Bse:	174		27	137	70	279	149	600	94	12	936	112
Added Vol:	1/4	103	0	18	2	58	105	16	0	0	29	32
PasserByVol:	0	_	0	0	8	10	15	0	0	0	0	0
Initial Fut:	174		27	155	80	347	269	616	94	12	965	144
User Adj:		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:	174	122	27	155	80	347	269	616	94	12	965	144
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	174	122	27	155	80	347	269	616	94	12	965	144
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
FinalVolume:	174	122	27	155	80	347	269	616	94	12	965	144
Saturation Fl												
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Lanes:		1.63	0.37		1.00	1.00		2.00	1.00		2.00	1.00
Final Sat.:	Hr.	2615	585		1600	1600		3200	1600	¥1	3200	1600
Capacity Anal	10											
Vol/Sat:	-		0.05	0 10	0.05	0.22	0 17	0.19	0.06	0.01	0 30	0.09
Crit Moves:	****	0.05	0.03	0.10	0.03	****	****	U.13	0.00	0.01	****	0.05
*******		*****	*****	****	*****	****	****	*****	*****	****	****	*****

Willowbrook Existing+Project+Cumulative+TMG Mitigation AM Peak

11-8-2016

T. CT. 1	/-					Computa					,	
1CU 1									me Alte			
Intersection									****			
*******			_					****	*****	****	****	*****
Cycle (sec):			00			Critic						935
Loss Time (se	ec):		10						ec/veh)	12		
Optimal Cycle	e:	1:	21			Level		_				E
*****	****	****	*****	****	****	*****	****	****	*****	*****	****	*****
Approach:	No	rth B	ound	So	uth B	ound	E	ast B	ound	We	est Bo	ound
Movement:		_	- R			- R			- R		_	- R
	141		,									
Control:	P	rotec		P:	rotec		P:	rotec		Pı	rotect	
Rights:		Incl			Incl			Incl			Inclu	
Min. Green: Y+R:	0 4.0	_	0 4.0	0 4.0	0	0 4.0	0		0 4.0	0	0	0
Lanes:		0 2	0 1		4.0 0 1		4.0	0 2		4.0	4.0	4.0 1 0
nanes.	_	-							I	1	_	
Volume Module	1			I		1	ı			1		
Base Vol:	95	614	119	138	813	189	99	462	103	124	900	98
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01		1.01
Initial Bse:	96	620	120	139	821	191	100	467	104	125	909	99
Added Vol:	0	152	0	34	96	6	7	9	0	0	10	60
PasserByVol:	0	61	0	9	26	5	11	0	0	0	0	21
Initial Fut:	96	833	120	182	943	202	118	476	104	125	919	180
User Adj:		1.00	1.00		1.00	1.00			1.00	1.00		1.00
PHF Adj:	-	1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
PHF Volume:	96	833	120	182	943	202	118	476	104	125	919	180
Reduct Vol: Reduced Vol:	0 96	0	0	0	0	0	0	0	0	0	0	0
PCE Adi:		833	120 1.00	182	943	202 1.00	118	476 1.00	104 1.00	125 1.00	919	180 1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
FinalVolume:	96	833	120	182	943	202	118	476	104	125	919	180
							141	•				
Saturation F	low M	odule	:				1.00		1	1		
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
Adjustment:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lanes:	1.00	2.00	1.00	1.00	1.65	0.35	1.00	2.00	1.00	1.00	1.67	0.33
Final Sat.:		3200	1600		2636	564		3200	1600	1600	2676	524
Capacity Anal	_											
Vol/Sat:	0.06	0.26	0.08	0.11	0.36	0.36	0.07	0.15	0.07	0.08	0.34	0.34
Crit Moves:				*****							****	

Willowbrook

Existing+Project+Cumulative+Mitigation Conditions - AM Peak

1-24-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) Intersection #61 Wilmington Ave & Alondra Blvd ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.816 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: 105 137 850 142 Base Vol: 104 444 142 170 833 87 100 498 Initial Bse: 104 444 142 170 833 87 100 498 105 137 850 142 Added Vol: 0 152 0 0 96 0 0 0 0 0 0 0 0 PasserByVol: 0 38 0 2 15 0 1 0 0 0 5 Initial Fut: 104 634 142 172 944 87 101 498 105 137 850 147 PHF Volume: 104 634 142 172 944 87 101 498 105 137 850 147 Saturation Flow Module: Lanes: 1.00 1.63 0.37 1.00 1.83 0.17 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1600 2614 586 1600 2930 270 1600 3200 1600 1600 3200 1600 _____| Capacity Analysis Module: Vol/Sat: 0.07 0.24 0.24 0.11 0.32 0.32 0.06 0.16 0.07 0.09 0.27 0.09 Crit Moves: **** ****

Existing+Project+Cumulative+TMG Mitigation PM Peak

11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************* Intersection #3 Avalon Blvd & El Segundo ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.884 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 92 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 1 0 2 0 1 1 0 2 0 1 1 0 2 1 0 1 0 2 1 0 Volume Module: 170 102 461 149 536 94 135 1384 7 19 0 0 184 0 16 0 0 20 149 53. 7 19 0 0 16 0 0 20 571 94 135 1588 Initial Bse: 122 711 172 105 103 466 59 174 18 8 65 0 7 0 Added Vol: 4 PasserByVol: 0 0 38 Initial Fut: 126 737 237 112 162 678 117 PHF Adj: PHF Volume: 126 737 237 156 571 94 135 1588 112 162 678 117 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 126 737 237 156 571 94 135 1588 112 162 678 117 FinalVolume: 126 737 237 156 571 94 135 1588 112 162 678 117 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.08 0.23 0.15 0.10 0.18 0.06 0.08 0.35 0.35 0.10 0.17 0.17 Crit Moves: **** **** ****

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak

	EXI	scing-	+Projec	t+Cum		-2016	місід	ation	РМ Реа	ıĸ		
	Level Of Service Computation Report											
TOTI 1	/T 055		revel C							rnati	· ()	
********												*****
Intersection												
Cycle (sec):	****		00	****	****				o.(X):		0.9	
Loss Time (se	201.		10						ec/veh)			
Optimal Cycle			24			Level				•	<i>XXX</i> 2	E
******				****	****					****	*****	_
Approach:	No	rth Bo	ound	So	uth Bo	ound	E	ast Bo	ound	We	est Bo	ound
Movement:	L	- T	- R	L	- T	- R	L	- Т	- R	L ·	- T	- R
			-11-11-	2222								
Control:	Pr	ot+Pei	rmit	Pro	ot+Per	cmit	77	Permit	ted]	Permit	ted
Rights:		Inclu			Incl			Inclu			Inclu	ıde
Min. Green:	0	-	0	0	-	0	-	0	0	_	0	0
Y+R:	4.0		4.0	4.0		4.0	4.0		4.0		4.0	4.0
Lanes:	1			1	-	0 1	1 (_		1 (_	0 1
77-1 M-4-1-	1								[
Volume Module		C24	212	170	655	1.50	105	1000	145	0.0	402	7.0
Base Vol: Growth Adj:	82	634 1.01	213 1.01	178	655 1.01	153 1.01		1238	145 1.01	86	483	79
Initial Bse:	83		215	180	662	155		1250	1.01	87	488	1.01 80
Added Vol:	53	57	213	0	36	36	25	96	37	38	133	0
PasserByVol:	0		0	0	36	11	11	10	0	0	29	0
Initial Fut:	_	716	242	180	734	202		1356	183	125	650	80
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
PHF Volume:	136	716	242	180	734	202	233	1356	183	125	650	80
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0
Reduced Vol:	136	716	242	180	734	202	233	1356	183	125	650	80
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
FinalVolume:	136		242	180	734	202		1356	183	125	650	80
	1.5											
Saturation Fl				1.000	7.600	1.000	1.000	1.600	1.600	1.000	1.600	1.600
Sat/Lane:		1600	1600 1.00		1600	1600 1.00		1600	1600 1.00		1600	1600 1.00
Adjustment: Lanes:		1.00	1.00		1.00	1.00			1.00			1.00
Final Sat.:												
Final Sac.:			. 1	21-	3200				1			
Capacity Anal	KII.		· .	I.S.			1		I			
Vol/Sat:	-	0.22	0.15	0.11	0.23	0.13	0.15	0.42	0.11	0.08	0.20	0.05
Crit Moves:		****	;u = -	***		-		***		***		
*****	****	*****	*****	****	*****	*****	****	****	*****	****	****	*****

Willowbrook

Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************** Intersection #11 Central Ave & Rosecrans Ave ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.816 Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 70 Level Of Service: XXXXXX ***************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____ Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 2 0 1 1 0 2 0 1 1 0 2 1 0 1 0 2 0 1 Volume Module: Base Vol: 138 567 111 181 706 107 148 1164 177 109 466 114 Initial Bse: 139 573 112 183 713 108 149 1176 179 110 471 115 Added Vol: 8 86 0 13 116 41 24 15 12 0 16 Reduced Vol: 147 672 112 196 853 154 176 1194 191 110 492 121 FinalVolume: 147 672 112 196 853 154 176 1194 191 110 492 121 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 2.59 0.41 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 4139 661 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.09 0.21 0.07 0.12 0.27 0.10 0.11 0.29 0.29 0.07 0.15 0.08 Crit Moves: **** **** **** ***************

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #17 Compton Ave & Imperial Hwy **************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.967 10 Average Delay (sec/veh):
151 Level Of Service: Loss Time (sec): Optimal Cycle: ********************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ______ Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 Y+R: 1 0 1 0 1 1 0 0 1 0 1 0 2 1 0 1 0 2 0 1 _____ Volume Module: Base Vol: 98 304 167 214 257 101 78 1434 86 63 735 Initial Bse: 99 307 169 216 260 102 79 1448 87 64 742 234 Reduced Vol: 284 396 240 222 315 103 80 1505 200 118 810 239 FinalVolume: 284 396 240 222 315 103 80 1505 200 118 810 239 Saturation Flow Module: Lanes: 1.00 1.00 1.00 1.00 0.75 0.25 1.00 2.65 0.35 1.00 2.00 1.00 Final Sat.: 1600 1600 1600 1600 1205 395 1600 4237 563 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.18 0.25 0.15 0.14 0.26 0.26 0.05 0.36 0.36 0.07 0.25 0.15 Crit Moves: ******************

Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************** Intersection #27 Wilmington Ave & I-105 e/b Ramps ***************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.751 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 57 Level Of Service: ***************** Control: Protected Protected Protected Protected Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 _____ Volume Module: Base Vol: 326 902 0 0 529 421 328 0 179 0 0 Initial Bse: 329 911 0 0 534 425 331 0 181 0 0 FinalVolume: 639 1464 0 0 907 489 334 0 364 0 0 Saturation Flow Module: Lanes: 2.00 3.00 0.00 0.00 2.00 2.00 1.44 xxxx 1.56 0.00 0.00 0.00 Final Sat.: 2880 4800 0 0 3200 3200 2299 0 2501 0 0 Capacity Analysis Module:

Vol/Sat: 0.22 0.31 0.00 0.00 0.28 0.15 0.15 0.00 0.15 0.00 0.00 0.00

Crit Moves: **** ****

Willowbrook

Existing+Project+Cumulative+TMG Mitigation PM Peak

Crit Moves: **** ****

Willowbrook Evisting - Project - Cumulative - TMG Mitigation PM Deak

Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #30 Wilmington Ave & 120th St (East) *********** Cycle (sec): 100 Critical Vol./Cap.(X): 0.697 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 50 Level Of Service: ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 8 807 17 35 707 16 53 2 14 Initial Bse: 8 815 17 35 714 16 54 2 14 2 0 15 Added Vol: 0 212 2 6 284 0 0 0 0 1 0 PasserByVol: 113 0 0 0 0 100 289 47 215 0 24 Initial Fut: 121 1027 19 41 998 116 343 49 229 3 24 1 0 5 0 2.0 PHF Adj: PHF Volume: 121 1027 19 41 998 116 343 49 229 3 24 0 0 0 0 0 0 0 19 41 998 116 343 49 0 0 229 3 Reduct Vol: 0 0 0 Reduced Vol: 121 1027 24 3 24 20 Saturation Flow Module: Lanes: 1.00 1.96 0.04 1.00 1.79 0.21 2.00 1.00 1.00 0.06 0.51 0.43 Final Sat.: 1600 3141 59 1600 2866 334 2880 1600 1600 102 814 683 Capacity Analysis Module: Vol/Sat: 0.08 0.33 0.33 0.03 0.35 0.35 0.12 0.03 0.14 0.03 0.03 0.03 **************

Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************ Intersection #32 Wilmington Ave & El Segundo Blvd ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.832 xxxxxx Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 75 Level Of Service: ****************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R - T - R
 Control:
 Protected
 Protected
 Prot+Permit
 Prot+Permit

 Rights:
 Include
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0< _____ Volume Module: Base Vol: 144 579 83 101 480 86 182 927 326 44 296 68 Initial Bse: 145 585 84 102 485 87 184 936 329 44 299 69 FinalVolume: 181 803 84 203 821 95 198 962 371 44 330 133 Saturation Flow Module: Lanes: 1.00 1.81 0.19 1.00 1.79 0.21 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1600 2897 303 1600 2868 332 1600 3200 1600 1600 3200 1600 Capacity Analysis Module: Vol/Sat: 0.11 0.28 0.28 0.13 0.29 0.29 0.12 0.30 0.23 0.03 0.10 0.08 Crit Moves: **** **** ****

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak

11-8-2016

						2010					
			Level (of Serv	vice (omputa	tion 1	Report	-		
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)											
******											*****
Intersection	#36	Imper	ial Hwy	7 & I−1	105 w.	/b Ramp	s				
******								****	*****	*****	*****
Cycle (sec):		1	00			Critic	al Vo	l./Car	o.(X):	0.	837
Loss Time (se	ec):		10			Averag	e Dela	ay (se	ec/veh)	: xxx	xxx
Optimal Cycle			76			Level		_			D
******		****	*****	****	****	*****	****	****	*****	*****	*****
Approach:	No	rth B	ound	Sou	uth Bo	ound	Ea	ast Bo	ound	West E	ound
Movement:	L	- T	- R	L ·	- T	- R	L ·	- Т	- R	L - T	- R
Control:	Sp.	lit P	hase .	Sp.	lit Ph	nase	P	rotect	ced	Protec	ted
Rights:	_	Incl	ude		Incl	ıde		Ovl		Incl	ude
Min. Green:	0	0	0	0	0	0	0	0	0	0 0	0
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0 4.0	4.0
Lanes:	2	1 0	0 1	0 (0 1!	0 0	1 (0 3	1 1	2 0 2	1 0
										22222222	
Volume Module	e :										
Base Vol:	544	8	271	9	22	25	47	1612	339	596 812	1
Growth Adj:	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01 1.01	1.01
Initial Bse:	549	8	274	9	22	25	47	1628	342	602 820	1
Added Vol:	150	7	3	0	0	0	18	178	182	2 123	3
PasserByVol:	71	0	7	0	0	0	0	56	95	0 26	0
Initial Fut:	770	15	284	9	22	25	65	1862	619	604 969	4
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
PHF Volume:	770	15	284	- 9	22	25	65	1862	619	604 969	4
Reduct Vol:	0	0	0	0	0	0	0	0	0	0 0	0
Reduced Vol:	770	15	284	9	22	25	65	1862	619	604 969	4
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	1.00
MLF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00 1.00	
FinalVolume:	770	15	284	9	22	25	65	1862	619	604 969	4
OvlAdjVol:									256		

Saturation Fl	ow Mo	odule									
Sat/Lane:	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600 1600	1600
Adjustment:	0.90	0.90	1.00	1.00	1.00	1.00		1.00	1.00	1.00 1.00	
Lanes:	2.94	0.06	1.00	0.16	0.39	0.45		3.75	1.25	2.00 2.99	
Final Sat.:			1600	257		714		6003	1997	2880 4780	
			,								
Capacity Anal											
Vol/Sat:	0.18	0.18	0.18	0.04	0.04	0.04	0.04	0.31	0.31	0.21 0.20	0.20
OvlAdjV/S:									0.13		
Crit Moves:	***					***		****		***	
*****	****	****	*****	*****	****	*****	****	****	*****	*****	*****

 ω

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

Level Of Service Computation Report													
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													
						****	****	****	*****	****	****	*****	
Intersection #43 Alameda St & 103rd St													
Cycle (sec):		1	00		Critical Vol./Cap.(X):							769	
Loss Time (se		Average Delay (sec/veh): xx							xxx C				
Optimal Cycle		Level Of Service:											

Approach:		rth B			uth Bo			ast Bo			est Bo		
Movement:	L		- R			- R		_	- R	L ·		- R	
	b.			1			1			D			
Control:		Permi		Permitted			J	ermit?		Permitted Include			
Rights:	0	Incl	uae 0	Include 0 0 0			0	Incl	ude 0	0 0 0			
Min. Green: Y+R:	4.0	_	=	0 4.0	_	0 4.0	_	4.0	4.0	4.0	•	4.0	
Lanes:		0 2			0 1		1 (0 0	0 0	
		-				1.20				1			
Volume Module:													
Base Vol:	115	736	0	n	1222	235	190	0	158	0	0	0	
Growth Adj:		1.01	1.01		1.01	1.01		1.01	1.01	_	1.01	1.01	
Initial Bse:	116	743	0		1234	237	192	0	160	0	0	0	
Added Vol:	4	54	- 0	0	38	6	7	0	4	0	0	0	
PasserByVol:	0	16	0	0	4	9	8	0	0	0	0	0	
Initial Fut:	120	813	0	0	1276	252	207	0	164	0	0	0	
User Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
PHF Volume:	120	813	0	0	1276	252	207	0	164	0	0	0	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	120	813	0	0	1276	252	207	0	164	0	0	0	
PCE Adj:	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
MLF Adj:	1.00	1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
FinalVolume:	120	813	0	. 0	1276	252	207	0	164	. 0	0	0	
					- -						7.00		
Saturation Fl				1.5									
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600	
Adjustment:		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Lanes:		2.00	0.00		1.67	0.33		0.00	0.88		0.00	0.00	
Final Sat.:		3200	0		2672	528	1787	0	1413	0	0	0	
Capacity Analysis Module:													
	-			0 00	0.40	0 40	0 10	0 00	0 10	0 00	0 00	0 00	
Vol/Sat:	****	0.25	0.00	0.00	0.48	0.48	U.⊥∠	0.00	0.12	0.00	0.00	0.00	
Crit Moves: ****													

Vol/Sat: 0.09 0.23 0.06 0.07 0.22 0.03 0.03 0.10 0.10 0.11 0.47 0.12 Crit Moves: **** **** ****

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak

11-8-2016													
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #21 Compton Ave & El Segundo Blvd													
Cycle (sec):		10	00	Critical Vol./Cap.(X):						0.779			
Loss Time (se	Average Delay (sec					ec/veh)	c/veh): xxxxxx						
Optimal Cycle	52	Level Of Service:							C				

Approach:	pproach: North Bound				uth Bo	ound	Εa	ast Bo	ound	West Bound			
Movement:		- T			- T		L ·		- R		- T		
Control:		Permit	ted]	Permit	ted]	Permit	ted	Permitted			
Rights:	Include			Include				Inclu	ıde	Include			
Min. Green:	0	0	0	0	0	0		0	0	0	0	0	
Y+R:	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0	4.0	
Lanes:		-	1 0	1 () 1	1 0	1 (1 (2	0 1	
Volume Module													
Base Vol:	67	31	16	111	64	152	235	1347	103	16	449	74	
Growth Adj:	1.01	1.01	1.01		1.01	1.01		1.01	1.01		1.01	1.01	
Initial Bse:	68	31	16	112	65	154		1360	104	16	453	75	
Added Vol:	0	4	0	33	4	115	73	50	0	0	56	19	
PasserByVol:	0	12	0	0	23	29	10	0	0	0	0	0	
Initial Fut:	68	47	16	145	92	298		1410	104	16	509	94	
,		1.00	1 00		1.00	1.00		1.00	1.00	1.00		1.00	
_		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Volume:	68	47	16	145	92	298		1410	104	16	509	94	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:	68	47	16	145	92	298		1410	104	16	509	94	
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
MLF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
FinalVolume:	68	47	16	145	92	298	320	1410	104	16	509	94	
Saturation Fl													
Sat/Lane:		1600	1600		1600	1600		1600	1600		1600	1600	
3		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00	
Lanes:		1.49	0.51		1.00	1.00		2.00	1.00	1.00		1.00	
Final Sat.:		2385	815		1600	1600		3200	1600		3200	1600	

Capacity Anal	-												
Vol/Sat:		0.02	0.02	0.09	0.06	0.19	0.20	0.44	0.07	0.01	0.16	0.06	
Crit Moves:	****					****							
******	****	*****	*****	****	*****	*****	****	*****	*****	*****	*****	*****	

Willowbrook Existing+Project+Cumulative+TMG Mitigation PM Peak 11-8-2016

11-8-2016													
Total Of Complete Complete Description													
Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)													

Intersection #33 Wilmington Ave & Rosecrans Ave													
Cycle (sec):	\	Τ.	J O			CITCIC	ar vo.	1./Car). (A):		0.714		
Loss Time (sec): 10 Optimal Cycle: 108					Averag	:	XXXX	XX.					
Optimal Cycle	Critical Vol./Cap.(X): 0.914 Average Delay (sec/veh): xxxxxx Level Of Service: E												
						West Bound							
L L	North Bound L - T - R			South Bound East Bound L - T - R L - T - R							L - T - R		
Movement:	ь.	- T	- R	ъ.	- 1	- K	Ę	- 1	- R				
Control: Protected Protected Protected Protected													
Control:	Ρ.			P			P.						
Rights:	0	Incl		Include 0 0 0			0	Inclu		Include			
Min. Green:	0	-	0			-	0	_	0	0	0	0	
Y+R:	4.0			4.0			4.0	4.0	4.0	4.0			
Lanes:			0 1			1 0			0 1) 1		
M-d-1													
Volume Module		684	1.50	2.45	475	125	114	1050	1.60	0.3	4.60	114	
Base Vol:		674	153	147	475	135		1059	163	93		114	
Growth Adj:		1.01	1.01		1.01	1.01		1.01		1.01		1.01	
Initial Bse:		681	155	148	480	136		1070	165	94	473	115	
Added Vol:	0	122	0	69	173	9	9	19	0	0	13	57	
PasserByVol:	0	39	0	26	75	14	8	0	0	0	0	14	
Initial Fut:		842	155	243	728	159		1089		94	486	186	
User Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
PHF Volume:	155	842	155	243	728	159		1089	165	94	486	186	
Reduct Vol:	0	0	0	0	0	0	0	0	0	0	0	0	
Reduced Vol:		842	155	243	728	159		1089		94	486	186	
PCE Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	
MLF Adj:		1.00	1.00		1.00	1.00			1.00	1.00		1.00	
FinalVolume:		842	155	243	728	159		1089	165		486	186	
						-7-07-	EEE.	20072					
Saturation Fl													
Sat/Lane:		1600	1600		1600	1600		1600	1600	1600		1600	
Adjustment:			1.00		1.00	1.00		1.00	1.00	1.00		1.00	
	1.00		1.00		1.64	0.36		2.00		1.00		0.55	
Final Sat.:		3200	1600		2625	575		3200		1600		887	
Capacity Anal	_												
Vol/Sat:	0.10	0.26	0.10		0.28	0.28	0.08	0.34	0.10		0.21	0.21	
Crit Moves:		****		****				***		****			

Willowbrook

Existing+Project+Cumulative+Mitigation - PM Peak Hour

1-31-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #57 Central Ave & W Compton Bvld ****************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 67 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 125 725 114 171 577 98 102 886 201 90 352 Initial Bse: 125 725 114 171 577 98 102 886 201 90 352 126 Added Vol: 0 93 0 3 125 0 0 0 0 PasserByVol: 0 8 0 0 14 1 1 1 0 0 0 1 0 1 Initial Fut: 125 826 114 174 716 99 103 887 201 90 353 127 PHF Volume: 125 826 114 174 716 99 103 887 201 90 353 127 127 90 353 FinalVolume: 125 826 114 174 716 99 103 887 201 _____ Saturation Flow Module: Final Sat.: 1600 3200 1600 1600 3200 1600 1600 3200 1600 1600 2353 847 Capacity Analysis Module: Vol/Sat: 0.08 0.26 0.07 0.11 0.22 0.06 0.06 0.28 0.13 0.06 0.15 0.15

Crit Moves: **** **** ****

Willowbrook

Existing+Project+Cumulative+Mitigation - PM Peak Hour 1-24-17

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) **************** Intersection #60 Central Ave & Alondra Blvd ********************** Loss Time (sec): 10 Average Delay (sec/veh): Optimal Cycle: 88 Level Of Service: ******************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include</t ______ Volume Module: Base Vol: 119 782 148 180 632 65 115 969 132 65 334 158 Initial Bse: 119 782 148 180 632 65 115 969 132 65 334 158 Added Vol: 0 93 0 0 125 0 0 0 0 PasserByVol: 0 3 0 0 5 1 1 1 0 0 0 0 0 1 0 Initial Fut: 119 878 148 180 762 66 116 970 132 65 335 158 PHF Volume: 119 878 148 180 762 66 116 970 132 65 335 158 FinalVolume: 119 878 148 180 762 66 116 970 132 65 335 158 Saturation Flow Module: Lanes: 1.00 2.00 1.00 1.00 2.00 1.00 1.00 1.76 0.24 1.00 2.00 1.00 Final Sat.: 1600 3200 1600 1600 3200 1600 1600 2817 383 1600 3200 1600

Vol/Sat: 0.07 0.27 0.09 0.11 0.24 0.04 0.07 0.34 0.34 0.04 0.10 0.10

Crit Moves: **** **** ****

Capacity Analysis Module:

Willowbrook

Existing+Project+Cumulative+Mitigation - PM Peak Hour

1-31-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************** Intersection #61 Wilmington Ave & Alondra Blvd *************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.928 Loss Time (sec): 10 Average Delay (sec/veh):
Optimal Cycle: 116 Level Of Service: **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 79 894 113 129 569 70 107 1012 159 105 425 Initial Bse: 79 894 113 129 569 70 107 1012 159 105 425 158 Added Vol: 0 122 0 0 173
PasserByVol: 0 24 0 8 47 Initial Fut: 79 1040 113 137 789 71 108 1012 159 105 425 161 PHF Volume: 79 1040 113 137 789 71 108 1012 159 105 425 161 FinalVolume: 79 1040 113 137 789 71 108 1012 159 105 425 80 OvlAdiVol: Saturation Flow Module: Lanes: 1.00 1.80 0.20 1.00 1.83 0.17 1.00 2.00 1.00 1.00 2.00 1.00 Final Sat.: 1600 2886 314 1600 2936 264 1600 3200 1600 1600 3200 1600 ______ Capacity Analysis Module: Vol/Sat: 0.05 0.36 0.36 0.09 0.27 0.27 0.07 0.32 0.10 0.07 0.13 0.10 0.05 0.02 OvlAdjV/S: Crit Moves:

**** ***

Willowbrook

Existing+Project+Cumulative+Mitigation - PM Peak Hour

1-31-17

					1-31	1-17						
						 	eeeee					
TOIT 1 /	T					Computa		-	t ne Alte	~no+i-	· · · · ·	
**********												******
Intersection												
*********							****	****	*****	****	****	*****
Cycle (sec):		1 (0.0			Critic	al Vo	/Car	o. (X) +		0.7	745
Loss Time (se	ec):					Averag	e Dela	av (se	ec/veh)	:		
Optimal Cycle			56			Level				•		C
******				****	****	*****	****	****	*****	****	****	*****
Approach:	No	rth Bo	ound	Sor	uth Bo	ound	Εā	ast Bo	ound	We	est Bo	ound
Movement:			- R	L ·	- T	- R		- T	- R	L ·	- T	- R
Control:	P	rotect	ted	P:	rotect	ted "	-31	?ermi	tted	. 1	Permit	ted
Rights:		Incl	ıde		Inclu	ıde		Incl	ıde		Inclu	ıde
Min. Green:	0	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0	4.0	4.0	4 . 0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lanes:	1	0 2	0 1	1 (2	0 1	1 () 1	1 0	1 (0 1	1 0
Volume Module	:											
Base Vol:	54	1153	85	34	627	25	152	451	184	34	63	63
3		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
Initial Bse:		1153	85	34	627	25	152	451	184	34	63	63
Added Vol:	0		0	0	173	0	0	0	0	0	0	0
PasserByVol:	0		0	0	37	0	0	0	0	0	0	0
Initial Fut:		1294	85	34	837	25	152	451	184	34	63	63
		1.00	1.00	70	1.00	1.00		1.00	1.00		1 . 00	1.00
_		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
PHF Volume:		1294	85	34	837	25	152	451	184	34	63	63
Reduct Vol:	0	-	0	0	0	0	0	0	0	0	0	0
Reduced Vol:		1294	85	34	837	25	152	451	184	34	63	63
		1.00	1.00		1.00	1.00		1.00	1.00		1.00	1.00
3		1.00	1.00		1.00	1.00		1.00	1.00		1:00	1.00
FinalVolume:		1294	85	34	837	25	152	451	184	34	63	63
Saturation Fl							1	17.555				
		1600	1600	1600	1600	1600	1600	1600	1600	1600	1600	1600
•			1.00		1.00	1.00		1.00			1.00	1.00
3		1.00	1.00		2.00	1.00		1.42	0.58		1.00	1.00
Final Sat.:			1600		3200	1600		2273	927		1600	1600
Final Sac.:												
Capacity Anal				- Contraction		The second second				· ·		
	_	0.40	0.05	0.02	0.26	0.02	0.10	0.20	0.20	0.02	0.04	0.04
Crit Moves:		****		****	- •			****		****	-	
*********	****	****	*****	****	*****	*****	****	****	*****	****	****	*****

Willowbrook

Existing+Project+Cumulative+Mitigation - PM Peak Hour

1-24-17 Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #54 Imperial Hwy & State St ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.785
Loss Time (sec): 10 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 63 Level Of Service: C ******************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Permitted Permitted Permitted Permitted Rights: Include Include Include Include Min. Green: 0 0 0 0 0 0 0 0 0 0 0 0

 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4 Volume Module: Base Vol: 51 454 123 72 326 124 339 1047 30 116 718 76 Initial Bse: 51 454 123 72 326 124 339 1047 30 116 718 76 0 0 89 0 14 14 0 1 44 116 821 PHF Volume: 51 454 123 72 326 125 348 1151 Reduct Vol: 0 0 0 0 0 0 0 0 44 116 821 0 0 0 0 0 0 0 0 0 Reduced Vol: 51 454 123 72 326 125 348 1151 44 116 821 76 FinalVolume: 51 454 123 72 326 125 348 1151 44 116 821 76 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.14 0.08 0.05 0.10 0.08 0.22 0.37 0.37 0.07 0.28 0.28 **** **** ***

Crit Moves:

Intersection LOS Analysis Sheets
City of Los Angeles

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #	: North-South Street: Avalon	3lvd			Yea	r of Count:	2016	Amb	ient Grov	/th: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016	
1	East-West Street: Imperia	Hwy			Projec	ction Year:	2035		Pea	ık Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
0	No. of Phases pposed Ø'ing: N/S-1, E/W-2 or Both-3?			4 0			4 0			0.0	4 0		0	CD.	4 0	NB	0	SB	4 0 0
Rigi	nt Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SB 0 WE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	LB-	VI D.	1 0	LD.	0 772	1 0	25		- ara	2				2				2 0
		EXISTI	NG CONDI	TION	EXIST	NG PLUS PF	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	E CONDIT	ON W/ PRO	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left	137	1	137	0	137	137	3	153	1	153	0	153	1	153		153	1	153
Z	Left-Through		0			607	000	40	600	0	400	11	700	0	415		700	0	415
<u>8</u>	† Through	616	1	360	11	627	369	13	689	1	406	11	700	1	415		700	1	410
NORTHBOUND	Through-Right Right	104	0	104	7	111	111	8	122	Ó	122	7	129	Ó	129		129	0	129
K	← Left-Through-Right	104	0	101				Ů		0				0				0	
Z	Left-Right	1	0							0				0				0	
			1				1000		005	18 5 E B	La Contract		000		000	M Paris	2000		000
□	Left	209	1	209	31	240	240	6	235	1	235	31	266	1 0	266		266	1	266
\(\frac{1}{2} \)	↓ Left-Through ↓ Through	591	1	334	12	603	340	17	666	1	375	12	678	1	381		678	1	381
8	→ Through-Right		i	001	'-	000			• • • • • • • • • • • • • • • • • • • •	1	20	·-		1				1	- 7-3
上	Right	76	0	76	0	76	76	0	83	0	83	0	83	0	83		83	0	83
SOUTHBOUND	← ← Left-Through-Right		0					İ		0				0				0	
100	人、Left-Right	1	0	-	-			10000000	- TO - CO	0			90 10519	U		EIGE	L-STA		and the same of
1000	Left	112	1	112	0	112	112	0	123	1	123	0	123	1	123		123	1	123
9	→ Left-Through		0							0				0				0	
5	→ Through	548	2	209	66	614	231	14	615	2	236	66	681	2	258		681	2	258
l ĕ	Through-Right	70	1	79	0	79	79	5	92	1	92	0	92	1 0	92		92	0	92
EASTBOUND	Right Left-Through-Right	79	0	79	0	79	19)	92	0	92	"	92	0	32		32	0	32
ш ш	Left-Right		o							0				0				0	
E(1)2	States ranker symposis with							TOTAL TO	Part I	DO EN	The state of			Total S	Contract of the last	CONTRACTOR OF THE PARTY OF THE	112		440
	€ Left	125	1	125	3	128	128	9	146	1	146	3	149	1	149		149	1	149
		1096	0	442	42	1138	462	12	1215	2	491	42	1257	2	511		1257	2	511
WESTBOUND	Through-Right	1030	1	772	72	1100	402	'-	1210	1	-	'-		1				1	
ST	Right	231	0	231	16	247	247	6	259	0	259	16	275	0	275		275	0	275
×	Left-Through-Right		0							0				0				0	D.
	├─ Left-Right	— .,	0	E60	-	-th Court	609		No	0 th-South:	641		Nor	th-South:	681		Nor	th-South:	681
1	CRITICAL VOLUMES		rth-South: ast-West:	569 554		rth-South: East-West:	574			ast-West:	614			ur-souur: ast-West:	634			ast-West:	634
	ONTIONE FOLDINGS		SUM:			SUM:	1183			SUM:	1255			SUM:	1315			SUM:	1315
	VOLUME/CAPACITY (V/C) RATIO:			0.817			0.860				0.913				0.956				0.956
∥ ,	//C LESS ATSAC/ATCS ADJUSTMENT:			0.747			0.790				0.813				0.856				0.856
	LEVEL OF SERVICE (LOS):			C			C				D				D				D

PROJECT IMPACT

Change in v/c due to project: 0.043 $\Delta v/c$ after mitigation: 0.043 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Avaion E	3lvd			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016	
2	East-West Street: 120th St				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
	No. of Phases losed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0	SB	2 0 0	NB	0 SE		NB	0	SB	2 0 0	NB	0.	SB	2 0 0	NB	0	SB	2 0 0
Kigiit		EB 0	WB	0	EB	0 WE	3 0	EB	0	WB	0	EB	0	WB	0 2	EB	0	WB	0 2
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			1			0				2				0				0
		EXISTI	NG CONDI	TION	EXIST	ING PLUS PI	ROJECT	FUTURI	E CONDITI	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PRO	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
٥	Left	70	1	70	0	70	70	2	79	1	79	0	79	1 0	79		79	1	79
NORTHBOUND	←↑ Left-Through ↑ Through ↑ Through-Right	569	0 1 1	368	7	576	379	21	645	0 1 1	416	7	652	1	427		652	1	427
F.F.	Right	166	Ó	166	15	181	181	4	186	0	186	15	201	0	201		201	0	201
Š	← Left-Through-Right ← Left-Right ← L		0				312			0		Name and Address of the Owner, where		0			to the same of	0	
	Left	90	1	90	16	106	106	4	103	1	103	16	119	1	119		119	1	119
SOUTHBOUND	→ Left-Through	070	0	260		670	264	24	766	0	411	3	769	0 1	412		769	0	412
<u>B</u>	↓ Through	676	1	362	3	679	364	24	700	1	411	3	709	1	412		709	1	412
🕏	Right	48	0	48	0	48	48	2	55	0	55	0	55	0	55		55	0	55
S S	→ Left-Through-Right Left-Right		0							0				0 0				0	
	Left	60		60	0	60	60	2	68	1	68	0	68	1	68	000000	68	1	68
9	→ Left-Through	"	ó	- 00	ľ	00			00	ò				Ó				Ó	
	→ Through	323	1	323	51	374	374	6	360	1	360	51	411	1 0	411		411	1	411
EASTBOUND	↑ Through-Right → Right	53	1	18	0	53	18	4	62	1	23	0	62	1	23		62	1	23
E	→ Left-Through-Right		0							0				0				0	100
actions.	│ -		0	-				100000		0			1000	0	No.	In the same	Markey	0	District of
	€ Left	132	1	132	8	140	140	0	145	1	145	8	153	1	153		153	1	153
	Captage Captage	475	0	475	27	502	502	3	524	0	524	27	551	0	551		551	0	551
<u>8</u>	Through-Right	4/3	0	4/3	21	302	302		JZ-1	Ó	324	"		Ó				0	
WESTBOUND	t Right	84	1	39	12	96	43	2	94	1 0	43	12	106	1	47		106	1	47
>	Left-Through-Right Left-Right		0							0				0				0	
	CRITICAL VOLUMES		rth-South: ast-West: SUM:	535		orth-South: East-West: SUM:	485 562 1047			th-South: ast-West: SUM:	519 592 1111			th-South: ast-West: SUM:	546 619 1165			th-South: ast-West: SUM:	546 619 1165
	VOLUME/CAPACITY (V/C) RATIO:	†	30M.	0.662		30111.	0.698			30	0.741				0.777				0.777
V/0	LESS ATSAC/ATCS ADJUSTMENT:	1		0.592			0.628				0.641				0.677				0.677
	LEVEL OF SERVICE (LOS):			Α			В				В				В				В
U															ECT IN				

PROJECT IMPACT

Change in v/c due to project: 0.036 Δv/c after mitigation: 0.036
Significant impacted? NO Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Central /	Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	9	9/30/2016	
5	East-West Street:	103rd St				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
Орр	No. o oosed Ø'ing: N/S-1, E/W-2 or	of Phases r Both-3?		0.5	2 0		0.05	0		0	0.5	0		0	0.5	0		0	0.0	0
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 WE		NB EB	0	SB WB	0	NB EB	0 0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+	ATCS-2?		-11-150	1			1				2				2				2
	Override	Capacity			0			0				0				0				0
	MOVEMENT		EXISTI	NG CONDI			NG PLUS PF				ON W/O PR				ION W/ PR				CT W/ MITI	
4	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		43	1	43	0	43	43	0	47	1	47	0	47	1	47		47	1	47
5	←↑ Left-Through ↑ Through		1159	0 2	457	39	1198	470	19	1291	0 2	508	39	1330	0 2	521		1330	0 2	521
&	↑ Through-Right		1139	1	437] 39	1150	470	15	1231	1	300	39	1330	1	321		1550	1	521
NORTHBOUND	Right		211	0	211	0	211	211	0	232	Ó	232	0	232	0	232		232	0	232
2	← Left-Through-Right			0							0				0				0	15.00
	← Left-Right			0							0				0			1 53 * 6 1	0	and the same
Section.	Left		110	1	110	0	110	110	0	121	1	121	0	121	1	121	STEED STREET,	121	1	121
₽	Left-Through		110	Ö			110				Ó	12.			Ö	-00			Ó	
፩	Through		1155	2	578	60	1215	608	27	1294	2	647	60	1354	2	677		1354	2	677
SOUTHBOUND	Through-Right		10	0	0	0	18	0	0	20	0	0	0	20	0	0		20	0	0
5	Right Left-Through-Right		18	0	U	"	18	U	0	20	0	0	U	20	0	U		20	0	0
N N	ل Left-Right			0							0				0				0	
			- BOOK	-		S 5 6 1		20 E E E		80 8	Street, Section		SPER.	As Its	USE S	THE REAL PROPERTY.	139.00		200	E3-19
	→ Left → Left-Through		44	1 0	44	0	44	44	0	48	1 0	48	0	48	1	48		48	1	48
EASTBOUND	→ Through		192	1	192	2	194	194	4	215	1	215	2	217	1	217		217	1	217
8	↑ Through-Right			0		_			· ·		0		_		0				0	
AST	Right		49	1	28	0	49	28	0	54	1	31	0	54	1	31		54	1	31
9	Left-Through-Right			0 0							0 0				0				0	
1000	Leit-Right	W TOPIN			THE REAL PROPERTY.	-	T 6.5 . 1		100	JP			W. Transier	1-30		-				STATE OF
	← Left		188	1	188	0	188	188	0	206	1	206	0	206	1	206		206	1	206
	Left-Through			0	- 510		0.4				0			0.40	0	45		0.40	0	
∥ ଜୁ ∣	← Through ← Through-Right		216	0	396	1	217	397	4	241	0	439	1	242	0	440		242	0	440
WESTBOUND	Right Left-Through-Right		180	Ó	0	0	180	0	0	198	0	0	0	198	Ó	0		198	0	0
	A			0					_		0				0				0	
	├ Left-Right		<u></u>	0	004		41.0 11	054			0	004			0	704			0	704
	CRITICAL V	OLUMES		th-South: ast-West:	621 440		rth-South: East-West:	651 441			th-South: ast-West:	694 487			th-South: ast-West:	724 488			th-South: ast-West:	724 488
	ONTIONE V			SUM:	1061	<u> </u>	SUM:	1092			SUM:	1181			SUM:	1212			SUM:	1212
	VOLUME/CAPACITY (V/C) RATIO:			0.707			0.728				0.787				0.808				0.808
V/C	LESS ATSAC/ATCS ADJUS	STMENT:	l		0.637			0.658				0.687				0.708				0.708
	LEVEL OF SERVICE	CE (LOS):			В			В		3		В				С				С

PROJECT IMPACT

Change in v/c due to project: 0.021
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.021 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Central	Ave		1	Yea	r of Count	2016	Amb	ient Grow	/th: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		9/30/2016	
6	East-West Street:	Imperial	Hwy			Proje	ction Year	2035		Pea	ık Hour:	AM		wed by:			Project:	w	illowbro	ok
Ор	No. o posed Ø'ing: N/S-1, E/W-2 o	of Phases r Both-3?			4 0			4 0				4 0				4 0				4 0
Right	t Turns: FREE-1, NRTOR-2 o	r OLA-3?	NB 3 EB 0	SB WB	0	NB EB	3 SE 0 WE		NB EB	3	SB WB	0	NB EB	3	SB WB	0	NB EB	3	SB WB	0
	ATSAC-1 or ATSAC+ Override	ATCS-27 Capacity			1		V	1			-6.71	2				2			V 1 40 111	2
			EXISTI	NG CONDI	TION	EXIST	NG PLUS PR	ROJECT	FUTUR	E CONDITION	ON W/O PF	OJECT	FUTUR	E CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		340	2	187	4	344	189	2	375	2	206	4	379	2	208		379	2	208
3	← Left-Through		4074	0	507	10	4000	545		4400	0	507	40	4000	0	005		4000	0	
8	↑ Through ↑ Through-Right		1074	2	537	16	1090	545	14	1193	2	597	16	1209	2	605		1209	2	605
NORTHBOUND	Right		284	1	197	63	347	244	0	312	1	216	63	375	1	263		375	1	263
6	Left-Through-Right			0							o				0				0	
-	Left-Right			0							0				0				0	
STUNE		1 3 4	21500	- 1	WATER OF THE PARTY			THE STATE OF		N SHIP	VERE			To Sand	N. S	THE STATE OF		2 300	THE STATE OF	
9	Left		74	2	41	51	125	69	6	87	2	48	51	138	2	76		138	2	76
SOUTHBOUND			518	0	259	18	536	268	20	588	0	294	18	606	0	303		606	0	303
8	Through-Right		316	0	209	10	550	200	20	500	0	254	10	000	0	303		000	0	303
1 🗧	Right		262	1	198	0	262	198	2	289	1	218	0	289	1	218		289	1	218
ĕ	← Left-Through-Right			0							0				0		1		0	5 5 1
0,	↓↓ Left-Right			0							0				0				0	
Inerio.	→ Left		1 224	2	129	0	234	129	2	259	2	442	0	259	2	142		259	2	142
∥⋴	→ Left-Through		234	0	129	"	234	129	2	239	0	142	0	239	0	142		259	0	142
EASTBOUND	→ Through		1061	2	411	103	1164	448	10	1174	2	455	103	1277	2	492		1277	2	492
8	→ Through-Right			1							1				1				1	
E	Right		171	0	171	9	180	180	2	190	0	190	9	199	0	199		199	0	199
10	Left-Through-Right			0					l		0				0				0	
CHICAGO.	│ -		-	0	-		THE RESERVE		-	-	0	-	Section Property	-	0		HOME THE		0	-
	€ Left	2 12 15	159	2	87	29	188	103	0	174	2	96	29	203	2	112	and the second	203	2	112
9	T Left-Through			0	100		,,,,				0	- 33			0	- 3			0	
WESTBOUND	← Through		1141	2	402	61	1202	431	7	1259	2	445	61	1320	2	474		1320	2	474
l ĕ	Through-Right			1				100			1				1	100	1		1	
ES	Right		66	0	66	26	92	92	3	75	0	75	26	101	0	101		101	0	101
3	Left-Through-Right			0							0				0				0	150
	L 1		Nor	th-South:	578	No	rth-South:	614		Non	th-South:	645		Non	th-South:	681		Non	th-South:	681
	CRITICAL V	OLUMES	E	ast-West:	531	1	East-West:	560		E	ast-West:	587		E	ast-West:	616		E	ast-West:	616
				SUM:	1109		SUM:	1174			SUM:	1232			SUM:	1297			SUM:	1297
	VOLUME/CAPACITY (V/C) RATIO:			0.807			0.854				0.896				0.943				0.943
V/	C LESS ATSAC/ATCS ADJU	STMENT:			0.737			0.784				0.796		9		0.843				0.843
	LEVEL OF SERVICE	CE (LOS):			С			С				С				D				D

PROJECT IMPACT

Change in v/c due to project: 0.047 Δv/c after mitigation: 0.047
Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Central	Ave			Year	r of Count	2016	Amb	ient Grow	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		9/30/2016	
7	East-West Street: I-105 w/l	Ramps			Projec	ction Year	2035	_	Pea	k Hour:	AM	Revie	wed by:			Project:	W	illowbrod	ok
1	No. of Phases osed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0	SB	3 0 0	NB	0 SE		NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	EB 0	WB	0 1 0	EB	0 WE	3 0 1 0	EB	0	WB	0 2 0	EB	0	WB	0 2 0	EB	0	WB	2
13	overlied departing	EXISTI	NG CONDI		EXISTI	NG PLUS PR	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
QND	← Left Left-Through	301	0	166	29	330	182	5	335	0	184	29	364	0	200		364	0	200
NORTHBOUND	↑ Through ↑ Through-Right ♂ Right	1119	2 0 0	560	83	1202	601	16 0	1244	2 0 0	622	83	1327	2 0 0	664		1327	2 0 0	664
NON RO	← Left-Through-Right ← Left-Right		0							0				0				0	
9	└- Left ├- Left-Through	0	0	0	0	0	0	0	0	0	0	0	0	0	0	E GERNAN	0	0	0
SOUTHBOUND	↓ Through	1086	2	543	30	1116	558	22	1214	2 0	607	30	1244	2	622		1244	2	622
SOUT	→ Right → Left-Through-Right → Left-Right	734	1 0 0	734	26	760	760	1	806	1 0 0	806	26	832	1 0 0	832		832	1 0 0	832
9	ノ Left → Left-Through	0	0	0	E 1811	0	0	0	0	0	0	0	0	0	0		0	0	0
EASTBOUND	→ Through Through-Right	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
EAS	Right Left-Through-Right Left-Right	0	0 0	0		0	0	0	0	0 0 0	0	0	0	0	0		0	0 0 0	U
	€ Left * Left-Through	116	1	60	0	116	60	24	151	1	78	0	151	1	78		151	1	78
WESTBOUND	Through Through-Right	4	0	60	0	4	60	0	4	0	78	0	4	0	78		4	0	78
WEST	Right Left-Through-Right Left-Right	372	1 0 0	372	0	372	372	0	408	1 0 0	408	0	408	1 0 0	408		408	1 0 0	408
	CRITICAL VOLUMES		th-South: ast-West: SUM:	900 372 1272		rth-South: East-West: SUM:	942 372 1314			th-South: ast-West: SUM:	990 408 1398			th-South: ast-West: SUM:	1032 408 1440			th-South: ast-West: SUM:	1032 408 1440
	VOLUME/CAPACITY (V/C) RATIO:			0.893			0.922				0.981				1.011				1.011
V/C	LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.823 D			0.852 D				0.881 D				0.911 E				0.911 E

5

PROJECT IMPACT

Change in v/c due to project: 0.030 Δv/c after mitigation: 0.030 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

Through Right Set Volume Lanes Volume I/S #:	North-South Street:	Central A	lve			Yea	r of Count	2016	Amb	ient Grow	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016		
Right Turns: FREE-1, NRTOR 2 or Data 72	8	East-West Street:	I-105 e/b	Ramps			Proje	ction Year	2035		Pea	ık Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
Control Cont	١	posed Ø'ing: N/S-1, E/W-2 or E	Both-3?			0			0 I 0				0				0		•		3 0 0 0
MOVEMENT Movement									1 0								2				2
Thirting Thirting				EXISTI	NG CONDI	TION .	EXIST	NG PLUS PF	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PRO	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
Left Through 768 3 256 55 823 274 18 861 3 287 55 916 3 305 916 3 3 3 3 3 3 3 3 3		MOVEMENT		Volume		Volume	Traffic		Volume		Volume	Lanes	Volume	Volume	Volume	Lanes	Volume		Volume	Lanes	Lane Volume
Carter C	OND	← Left-Through			0							0			_	0				0	305
Carter C	тнво	Through-Right										0				-				_	383
Comparison Com	NOR	← Left-Through-Right ::						333		,,,						_				•	
Section Sect	9			567		312	0	567	312	0	622		342	0	622		342		622		342
Section Sect	HBOU	↓ Through	-	669	2	335	30		350			2		30		2 0				2	405
Company Comp	SOUT	◆ Left-Through-Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
Left-Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9			664	•	405	56	720	449	3	732		449	56	788		494		788	1	494
Ceft-Right	TBOU	→ Through-Right			_							0								•	494 0
Value Valu	EAS	Left-Through-Right		538	1 0		11	013		12	602	1	U	,,,	0/9	1 0			0/3	1 0	
Value Valu	200					SA SALEY					PRODUCTION			STATE OF THE PARTY		Side line					0
CRITICAL VOLUMES	ON D				0	1.55		_	Far.			0		_		-				0	0
CRITICAL VOLUMES	ESTBO	Through-Right Right			0			0	0	0	0	0	0	0	0	0	0		0	0	0
CRITICAL VOLUMES East-West: SUM: 405 UM: East-West: SUM: 449 UM: East-West: SUM: 449 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 494 UM: East-West: SUM: 50M: 50M: 50M: 50M: 50M: 50M: 50M: 50M: 60M: 60M: <td>× ×</td> <td></td> <td></td> <td></td> <td>ő</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>705</td> <td></td> <td>.,</td> <td>Ö</td> <td>705</td> <td></td> <td>a4-</td> <td>0</td> <td>705</td>	× ×				ő							0	705		.,	Ö	705		a 4-	0	705
		CRITICAL VO	DLUMES		ast-West:	405		East-West:	449			ast-West:	449			ast-West:	494			ast-West:	725 494 1219
V/C LESS ATSAC/ATCS ADJUSTMENT: 0.669 0.600 0.724		VOLUME/CAPACITY (V/C)	RATIO:						0.769				0.824				0.855				0.855
LEVEL OF SERVICE (LOS): B B C C	V/0					0.668			0.699				0.724 C				0.755 C				0.755 C

PROJECT IMPACT

Change in v/c due to project: 0.031 Significant impacted? NO

∆v/c after mitigation: 0.031 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Central A	Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	(3/30/2016	
9	East-West Street:	120th St				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
-		f Phases			2			2				2				2				2
Op	oosed Ø'ing: N/S-1, E/W-2 o	r Both-3?		1 1	0			0				0			1	0			1 1	0
Right	Turns: FREE-1, NRTOR-2 o	r OLA-3?	NB 0	SB	0	NB	0 SE		NB	0	SB	0	NB	0	SB	0	NB	0 0	SB	0
1	ATSAC-1 or ATSAC+	ATCS-22	EB 0	WB	1	EB	0 WE	3 0	EB	0	WB	0	EB	U	WB	2	EB	U	WB	0 2
l .		Capacity			o			0				0				0				0
			EXISTI	NG CONDI	TION	EXIST	NG PLUS PR	ROJECT	FUTUR	E CONDITI	ON W/O PF	OJECT	FUTUE	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left		67	1	67	0	67	67	0	74	1	74	0	74	1	74		74	1	74
∥ ¥	+ ← Left-Through			0							0				0				0	
∥ ପୁ	↑ Through		686	1	410	7	693	450	20	773	1	465	7	780	1	504		780	1	504
NORTHBOUND	↑ Through-Right			1				= 0 E.	_		1		l		1	=05			1	
	→ Right		134	0	134	72	206	206	9	156	0	156	72	228	0	228		228	0	228
2	Left-Through-Right			0							0				0				0	
-	← Left-Right	V IDEAL		0		THE REAL PROPERTY.	- CONTRACTOR	-		1011 P #	0		learning to	-	0		N. Contract	The same of	0	-
A STATE OF THE PARTY OF	Left		176	1	176	112	288	288	0	193	1	193	112	305	1	305		305	1	305
SOUTHBOUND	→ Left-Through			Ó	- 3				ľ	,,,,	Ó				Ó				0	
8	Through		856	1	477	3	859	479	26	965	1	553	3	968	1	555		968	1	555
空	← Through-Right			1							1				1				1	
5	Right		98	0	98	0	98	98	33	141	0	141	0	141	0	141		141	0	141
ြုလ္တ	Left-Through-Right			0							0				0				0	
-	لم Left-Right	N. Carrier	and the second	U		and the same of			HE HENDS	100		Annual States		1500000			The same	00000000		of states
Helien.	J Left		119	1	119	0	119	119	13	144	1	144	0	144	1	144	- CWADIN	144	1	144
9	→ Left-Through		, , ,	Ó	F a 15	ľ					Ó	I H			Ó			1.00.00	0	100
EASTBOUND	→ Through		464	1	255	91	555	300	6	515	1	282	91	606	-1	328		606	1	328
l ĕ	→ Through-Right			1							1				1				1	
SA	Right		45	0	45	0	45	45	0	49	0	49	0	49	0	49		49	0	49
Э	Left-Through-Right			0							0				0				0	Hi i
(COLOR)	-{ Left-Right	CONTRACTOR OF THE PARTY OF THE		U		Name of Street			NO PERSONAL PROPERTY.	-			II E COSTO	N		Section 1	HELD FOLD	SAME DIVING		and the same
	√ Left		126	1	126	24	150	150	10	148	1	148	24	172	1	172	-	172	1	172
2				0							0				0				0	7.5
WESTBOUND	← Through		530	1	530	50	580	580	3	585	1	585	50	635	1	635		635	1	635
ΙĚ	Through-Right			0							0	- 21			0	5			0	
ES.	Right		212	1	124	53	265	121	0	233	1	137	53	286	1	134		286	1	134
	Left-Through-Right Left-Right			0							0				0				0	
	↓ Leit-Right		Nor	th-South:	586	No	rth-South:	738		Nor	th-South:	658		Nor	th-South:	809		Non	th-South:	809
	CRITICAL V	OLUMES		ast-West:	649		East-West:	699			ast-West:	729			ast-West:	779			st-West:	779
				SUM:	1235		SUM:	1437			SUM:	1387			SUM:	1588			SUM:	1588
	VOLUME/CAPACITY (V/C) RATIO:			0.823			0.958				0.925				1.059				1.059
V/	LESS ATSAC/ATCS ADJU	STMENT:			0.753			0.888				0.825				0.959				0.959
	LEVEL OF SERVI	CE (LOS):			C			D				D				E				E

PROJECT IMPACT

Change in v/c due to project: 0.134 $\Delta v/c$ after mitigation: 0.134 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Compton	ı Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016	
14	East-West Street:	103rd St				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
Орр	No. o osed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 o ATSAC-1 or ATSAC+.	r OLA-3?	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SE 0 WE		NB EB	0	SB WB	2 0 0 0 2	NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2
	Override	Capacity			0			0				0				0			A= 10// 00/=1/	0
			EXISTI	NG CONDI			ING PLUS PI			E CONDITI					ION W/ PRO				CT W/ MITI	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through Through-Right		103 423	1 0 1 1	103 256 88	29	106 452 88	106 270 88	3	113 467 97	1 0 1 1	113 282 97	3 29	116 496 97	1 0 1 1	116 297 97		116 496 97	1 0 1 1	297 97
NOR			88	0 0				de la val			0				0				0	7 (S)(4)
SOUTHBOUND	Left Left-Through Through-Right Right Left-Through-Right Left-Right		65 444 76	1 0 1 1 0 0	65 260 76	0 49 0	65 493 76	65 285 76	0 4 0	71 491 83	1 0 1 1 0 0	71 287 83	0 49 0	71 540 83	1 0 1 1 0 0	71 312 83		71 540 83	1 0 1 1 0 0	71 312 83
EASTBOUND	J Left J Left-Through → Through-Right Right Left-Through-Right Left-Right		100 265 122	0 1 0 0 1 0	100 365 71	0 0 8	100 265 130	100 365 77	0 4 0	110 295 134	0 1 0 0 1 0	110 405 78	0 0 8	110 295 142	0 1 0 0 1 0	110 405 84	Benches	110 295 142	0 1 0 0 1 0	110 405 84
WESTBOUND	← Left ← Left-Through ← Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right		75 351 122	0 0 0 0 0 1	75 548 0	0 0	75 351 122	75 548 0	0 4 0	82 389 134	0 0 0 0 0 0	82 605 0	0 0	82 389 134	0 0 0 0 0 1	82 605 0		82 389 134	0 0 0 0 0 1	82 605 0
	CRITICAL V			rth-South: last-West: SUM:	648 1011		orth-South: East-West: SUM:	391 648 1039			th-South: ast-West: SUM:	400 715 1115			th-South: ast-West: SUM:	1143			th-South: ast-West: SUM:	428 715 1143
V/C	VOLUME/CAPACITY (V/C C LESS ATSAC/ATCS ADJU LEVEL OF SERVIC	STMENT:			0.674 0.604 B			0.693 0.623 B				0.743 0.643 B				0.762 0.662 B				0.762 0.662 B

PROJECT IMPACT

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

No. of Phases NB O NB	SB WB DITION W/ PROJE No. of L Lanes Vo	2 0 0 0 2 0 JECT	Project: NB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No. of Lanes 0 0 0 0	2 0 0 2 0 IGATION Lane Volume 27
Composed & Wing: N/S-1, E/W-2 or Both-3? NB- 0 SB- 0 SB- 0 NB- 0 SB- 0 SB- 0 NB- 0 SB- 0 S	WB DITION W/ PROJE No. of Lanes Vo 0 0 0 0 1	O O O O O O O O O O O O O O O O O O O	FUTURE W/ PROJ Added Volume Volume 27	WB JECT W/ MIT No. of Lanes 0 0 0 0	O O 2 O FIGATION Lane Volume 27
Right Turns: FREE-1, NRTOR-2 or OLA-3? NB 0 SB 0 NB	WB DITION W/ PROJE No. of Lanes Vo 0 0 0 0 1	0 0 2 0 JECT Lane Volume 27	FUTURE W/ PROJ Added Volume Volume 27	WB JECT W/ MIT No. of Lanes 0 0 0 0	O O 2 O FIGATION Lane Volume 27
Right Turns: FREE-1, NRTOR-2 or OLA-3? EB- 0 WB- 0 EB-	WB DITION W/ PROJE No. of Lanes Vo 0 0 0 0 1	UECT Lane Volume 27	FUTURE W/ PROJ Added Volume Volume 27	WB JECT W/ MIT No. of Lanes 0 0 0 0	0 2 0 FIGATION Lane Volume 27
ATSAC-1 or ATSAC+ATCS-27	No. of Lanes Vo	2 0 DECT Lane Volume 27	FUTURE W/ PROJ Added Total Volume Volume 27 721	No. of Lanes 0 0 0 0	2 0 FIGATION Lane Volume 27
No. of Lane Volume Vol	No. of Lanes Vo	UECT Lane Volume 27	Added Volume Volume 27 721	No. of Lanes 0 0 0 0 0	IGATION Lane Volume 27
No. of Lane Volume Vol	No. of Lanes Vo	Lane Volume 27 824	Added Volume Volume 27 721	No. of Lanes 0 0 0 0 0	Lane Volume 27 824
Volume Lanes Volume Traffic Volume Volume Volume Volume Volume Lanes Volume Volume Volume Volume Lanes Volume Vo	0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0	27 824	Volume 27 721	0 0 0 0	27 824
Comparison Co	0 0 0 0 0	27 824	27 721	0 0 0 0	27 824
C C C C C C C C C C	0 0 0 0 0	824	721	0 0 0	824
No. Control	0 0 0 1	200		0 0	
Through 622 0 714 35 657 751 3 686 0 787 35 721	0 0 1	200		0	
HEAD ↑ Through-Right 0 Q ↑ Right 69 0 0 69 0 0 76 0 0 0 0 76 Q ↑ Left-Through-Right 1 1 1 1 1 0	0	0	76	•	
	1	U.	70	Ω	0
Y Left-Right 0	0	3 7		1	U
1 Y Leit-right	AS I RET			0	
		at and the	market of the	STORY AND	The same of
Left 47 0 47 0 47 0 52 0 52 0 52	. 0	52	52	0	52
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	0	77.0		0	
3 Through 513 0 608 61 574 669 4 567 0 672 61 628		733	628	0	733
Through-Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	0	53	0	0
Right 48 0 0 0 48 0 0 53 0 0 0 53	1	U	53	1	U
	Ó			Ó	
Leit-Right	NAME OF TAXABLE	THE REAL PROPERTY.		W 019	CHILDREN OF THE PARTY OF THE PA
Left 60 0 60 0 60 0 66 0 66 0 66	0	66	66	0	66
	0	3 7		0	
5 → Through 67 0 150 0 67 156 0 74 0 165 0 74		171	74	0	171
Q	0		24	0	0
Right 23 0 0 6 29 0 0 25 0 0 6 31	0	0	31	1	U
Left-Through-Right 1 1 0	Ó	. 1		Ó	
Consideration of the Constant	State State	37.37.3			STATE OF
C Left 77 0 77 0 77 0 84 0 84 0 84	0	84	84	0	84
Through 130 0 278 1 131 279 0 143 0 305 1 144	0			0	
		306	144	0	306
Through-Right 0 0 0 71 0 0 78 0 0 78	0	0	78	0	- 0
71 0 0 0 71 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 78 0 0 0 0	1	U	/*	1	0
Eft-right 0	o 📔			Ö	
	orth-South:	876	No	orth-South:	
CRITICAL VOLUMES East-West: 338 East-West: 339 East-West: 371	East-West:	372		East-West:	
SUM: 1099 SUM: 1137 SUM: 1210	SUM:	1248		SUM:	
VOLUME/CAPACITY (V/C) RATIO: 0.733 0.807	C	0.832			0.832
V/C LESS ATSAC/ATCS ADJUSTMENT: 0.663 0.688 0.707	C	0.732			0.732
LEVEL OF SERVICE (LOS): B C		С			С

PROJECT IMPACT

Change in v/c due to project: 0.025
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.025 Fully mitigated? N/A

	۶	-	*	•	—	*	4	†	1	-	1	1
Lane Group	EBL.	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	23	4	36	17	13	23	33	556	18	9	506	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0	(2)	0	0		0	0		0	0		0
Storage Lanes	0		0	0		0	0		0	0		0
Taper Length (ft)	25			25			25			25		
Satd. Flow (prot)	0	1688	0	0	1725	0	0	1850	0	0	1850	0
Flt Permitted		0.982			0.984			0.997			0.999	
Satd. Flow (perm)	0	1688	0	0	1725	0	0	1850	0	0	1850	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Confl. Peds. (#/hr)												
Confl. Bikes (#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Heavy Vehicles (%)	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%	2%
Bus Blockages (#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (#/hr)												
Mid-Block Traffic (%)		0%			0%			0%			0%	32
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	68	0	0	57	0	0	660	0	0	585	0
Sign Control		Stop			Stop			Free			Free	
Intersection Summary		with t		July 12	100	17 F	80.70	100	The L	W 17		
Area Type:	Other											
Control Type: Unsignalized	darii - Trak											W
Intersection Capacity Utiliz	ation 60.5%			IC	CU Level	of Service	В					
Analysis Period (min) 15												

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection		des.		200			Ar. wh	1	T. S	100	HVC 1
Int Delay, s/veh	3							1819			
Movement	EBL	EBT	EBR	17.75	WBL	WBT	WBR		NBL	NBT	NBF
Vol, veh/h	23	4	36	183	17	13	23		33	556	18
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	(
Sign Control	Stop	Stop	Stop	1100	Stop	Stop	Stop		Free	Free	Free
RT Channelized	-1	ė	None		181	-	None		920	4	None
Storage Length		and a		ATT NO.	-	1 1	-			22	
Veh in Median Storage, #	90	0	-			0		-		0	
Grade, %	7 35 A 17 E	0				0			- 11 m	0	
Peak Hour Factor	92	92	92		92	92	92		92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2
Mvmt Flow	25	4	39		18	14	25		36	604	20
	75 TO 151				2 90.			Ur'	19-18		
Major/Minor	Minor2	100			Minort	17 - 18	all s		Major1	EL W	
Conflicting Flow All	1287	1278	563	W 1	1290	1281	614		575	0	(
Stage 1	582	582	-		686	686	-		150		
Stage 2	705	696	Yelevier!		604	595			1 35	120	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	9#2	
Critical Hdwy Stg 1	6.12	5.52	37.75		6.12	5.52				*:	
Critical Hdwy Stg 2	6.12	5.52	-		6.12	5.52	- 4		247	(#)	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218		
Pot Cap-1 Maneuver	141	166	526		140	166	492		998	*	
Stage 1	499	499	100		438	448	VIII.		U S		3 13
Stage 2	427	443			485	492					
Platoon blocked, %											1.83
Mov Cap-1 Maneuver	118	155	526		120	155	492		998		9
Mov Cap-2 Maneuver	118	155			120	155	1		100	-	
Stage 1	472	492	141		414	423	2		125	248	-
Stage 2	370	419			438	485			0.28	100	
Approach	EB	W/LS		100	WB				NB	-,4,179	L CTY
HCM Control Delay, s	28.9				31				0.5		
HCM LOS	D				D						
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	77.75	JAN 3	2 15.0
Capacity (veh/h)	998	MEZI	-	218	195	957	-	-			
HCM Lane V/C Ratio	0.036	511 21	11, 12	0.314	0.295	0.01	8 1				
HCM Control Delay (s)	8.7	0	10	28.9	31	8.8	0				
HCM Lane LOS	0.7 A	A		20.9 D	D	Α.δ	A			911	
I IOIVI Lalle LOS	0.1	A	0.75	1.3	1.2	0	A	911			

Synchro 8 Report Page 2 9/14/2016 Baseline

Int Delay, s/veh						
Movement	SBL	SBT	SBR	100	ĺ	W.V.
Vol, veh/h	9	506	23	100		
Conflicting Peds, #/hr	0	0	0			
Sign Control	Free	Free	Free	1055		
RT Channelized		-	None			
Storage Length			EV.			
Veh in Median Storage, #	š	0	-			
Grade, %	The second	0	W			
Peak Hour Factor	92	92	92			
Heavy Vehicles, %	2	2	2			
Mvmt Flow	10	550	25			
			L PRIVE			
Major/Minor	Major2	10/2 (14 F. C	15.00	The little	
Conflicting Flow All	624	0	0			
Stage 1		38				
Stage 2		1 3	W 1 34			
Critical Hdwy	4.12	7 7 8				
Critical Hdwy Stg 1	To The Late		OF YES	100		
Critical Hdwy Stg 2	:=:	9-0				
Follow-up Hdwy	2.218	48		2 m 2		
Pot Cap-1 Maneuver	957	-	14			
Stage 1	1 1 1 1 1 1 1	120	1 12 12			
Stage 2		-				
Platoon blocked, %			17.10			
Mov Cap-1 Maneuver	957	:=0				
Mov Cap-2 Maneuver		F - 1/2				
Stage 1	:=:		-			
Stage 2		i e st	B.0125		The state of	
c.ago L						
Approach	SB	-	dh i ti		11. 11.	M
HCM Control Delay, s	0.1					
HCM LOS						

Synchro 8 Report Page 3 9/14/2016 Baseline

	۶	→	*	•	←	4	•	†	-	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			44			4	
Volume (vph)	23	4	43	20	13	23	36	593	20	9	573	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.917			0.945			0.996			0.995	
Flt Protected		0.984			0.982		- part	0.997			0.999	
Satd. Flow (prot)	0	1681	0	0	1729	0	0	1850	0	0	1852	0
Flt Permitted		0.984			0.982			0.997			0.999	- F
Satd. Flow (perm)	0	1681	0	0	1729	0	0	1850	0	0	1852	0
Link Speed (mph)	100	30	- 11	Y IS	30			30			30	33 12
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	اجتريت
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	25	4	47	22	14	25	39	645	22	10	623	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	76	0	0	61	0	0	706	0	0	658	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0		2 3111	0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		1000										SV.
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	5.00	9	15		9	15	G.E.	9	15		9
Sign Control		Stop			Stop			Free			Free	
Environmental and accommodate											-	-

Intersection Summary

Area Type:

Other

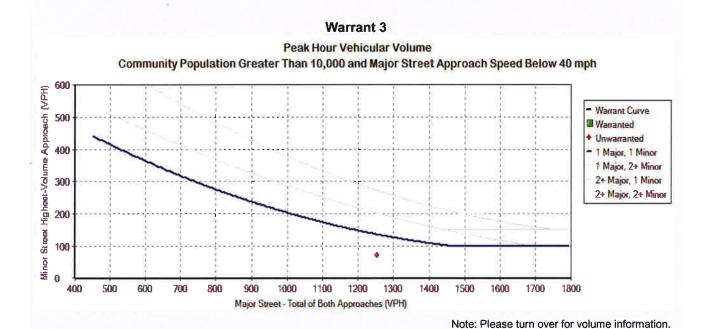
Control Type: Unsignalized

Intersection Capacity Utilization 65.1%

ICU Level of Service C

Analysis Period (min) 15

Intersection			MANINES	Therese	M CONTRACTOR	Mark Control		t - mersing -	MA A		172
Int Delay, s/veh	3.8	11.1			11 1					V 1 40	
Movement	EBL	EBT	EBR	Wite.	WBL	WBT	WBR		IBL	NBT	NBF
Vol, veh/h	23	4	43		20	13	23	None and	36	593	20
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	(
Sign Control	Stop	Stop	Stop	N. S.	Stop	Stop	Stop	11.11	ree	Free	Free
RT Channelized	0#€	1960	None			3#2	None			-	None
Storage Length	15 17 15 17		The second		11.5						
Veh in Median Storage, #	3€	0			2	0	5 = 5		¥	0	9
Grade, %		0		Name of	100	0				0	SIVE
Peak Hour Factor	92	92	92		92	92	92		92	92	92
Heavy Vehicles, %	2	2	2	1100	2	2	2		2	2	2
Mvmt Flow	25	4	47		22	14	25		39	645	22
	1 -50 (10-17)				W. W.	1004			1	True f	
Major/Minor	Minor2		100	THE ST	Minor1	310		Ma	orf		
Conflicting Flow All	1408	1400	635		1414	1401	655		648	0	(
Stage 1	655	655	349		734	734	-		*	: •:	
Stage 2	753	745	100		680	667				2-17/10	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4	.12	V#	- 1
Critical Hdwy Stg 1	6.12	5.52	-		6.12	5.52	415		3	18	
Critical Hdwy Stg 2	6.12	5.52	: 10		6.12	5.52	٠			4.5	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.	218		100
Pot Cap-1 Maneuver	116	140	478		115	140	466		938		
Stage 1	455	463	-		412	426	Vivi 👟		21	9	200
Stage 2	402	421	- 1		441	457	7 4 2		*	120	9
Platoon blocked, %										10 (6)	W.
Mov Cap-1 Maneuver	94	129	478		95	129	466		938	•	
Mov Cap-2 Maneuver	94	129	140 60		95	129				N. J.	1 8
Stage 1	425	455	540		385	398	5.5			*	
Stage 2	343	393	in the	-200	387	449	As disell				- ,
Approach	EB		A U	Julyan	WB			VIII G	NB	18 T.	1.88
HCM Control Delay, s	35.8				42.5			7 AU 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5		
HCM LOS	33.6 E				42.5	-			0.5		4113
TICIVI LOS	L			_0.65		N III					
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	-4	178	ři.
Capacity (veh/h)	938	3.58	(*)	191	155	923	2.5				
HCM Lane V/C Ratio	0.042			0.398	0.393	0.011	7 Y U.S	1071 Y			, 745 T
HCM Control Delay (s)	9	0	:•)	35.8	42.5	8.9	0				
HCM Lane LOS	Ä	A	T Had	E	E	Α	A		11 5		
HCM 95th %tile Q(veh)	0.1	-		1.8	1.7	0	3 5 5 5 1				


Synchro 8 Report Page 2 9/14/2016 Baseline

Intersection	THE RESERVE		MILEN	
Int Delay, s/veh				
			400	
Movement	SBL	SBT	SBR	
Vol, veh/h	9	573	23	
Conflicting Peds, #/hr	0	0	0	
Sign Control	Free	Free	Free	
RT Channelized	-:	0,43	None	
Storage Length		-		
Veh in Median Storage, #	-	0		
Grade, %	N/ 5 37 7 34	0	L O	
Peak Hour Factor	92	92	92	
Heavy Vehicles, %	2	2	2	
Mvmt Flow	10	623	25	
Major/Minor	Major2		i, ik i	
Conflicting Flow All	666	0	0	
Stage 1	2	1/20	140	
Stage 2				The state of the s
Critical Hdwy	4.12	(-	197	
Critical Hdwy Stg 1		1 1/2-	-	
Critical Hdwy Stg 2	-	() = (; e :	
Follow-up Hdwy	2.218	- n-		
Pot Cap-1 Maneuver	923	7(4)	145	
Stage 1	1 . 3	10	200	
Stage 2			•	
Platoon blocked, %	3111 3-715	100	FIFE U	
Mov Cap-1 Maneuver	923	(.		
Mov Cap-2 Maneuver	ger little	- I (e)	100	
Stage 1	-	0¥:	:•):	
Stage 2				
0				
Approach	SB	157		
HCM Control Delay, s	0.1			
HCM LOS	T-102 TV			DECEMBER OF STREET

Minor Lane/Major Mvmt

Synchro 8 Report Page 3 9/14/2016 Baseline

1: Compton & 112th -EWP - AM

	•	-	•	•	•	*		†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	25	4	40	19	14	25	36	609	20	10	556	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.922			0.942			0.996			0.994	
Flt Protected		0.982			0.984			0.997	113		0.999	
Satd. Flow (prot)	0	1687	0	0	1727	0	0	1850	0	0	1850	0
Flt Permitted		0.982			0.984		W7 5 1	0.997		H 70	0.999	St
Satd. Flow (perm)	0	1687	0	0	1727	0	0	1850	0	0	1850	0
Link Speed (mph)		30			30			30			30	THE REAL PROPERTY.
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	27	4	43	21	15	27	39	662	22	11	604	27
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	74	0	0	63	0	0	723	0	0	642	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0		100	0			0	0 H E
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												PRES.
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 65.4%

Analysis Period (min) 15

ICU Level of Service C

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection	LICENSON.			A 110						
Int Delay, s/veh	4		150 %	Till Silver			400	No.	11.00	
Movement	EBL	EBT	EBR	W. 275	WBL	WBT	WBR	NBL	NBT	NBF
Vol, veh/h	25	4	40	F., 7.	19	14	25	36	609	20
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	(
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free
RT Channelized	()=:		None		*	-	None	5.	10.00	None
Storage Length	-	100	0.00		CILL					
Veh in Median Storage, #	846	0			=	0	547	÷.	0	59
Grade, %	S) Carl Cyre	0	o year		FULLY	0	T THE		0	1111
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2
Mvmt Flow	27	4	43		21	15	27	39	662	22
	STATE YES	1 1 1 1 1 1	7 5° N	100	ri, wi		Websit?	de a de la		1200
Major/Minor	Minor2		15/16	18.74	Minort	A. Ox		Major1	- 8 I F II	TEST (A)
Conflicting Flow All	1412	1402	618	27	1415	1404	673	632	0	0
Stage 1	640	640	- 1		751	751	8=0	=	X#5	-
Stage 2	772	762		-	664	653	1,20	Transfer in	100	25.
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	94	
Critical Hdwy Stg 1	6.12	5.52	T.W.	7.0	6.12	5.52	ALC: OF		1	
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	: •			
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	-	4 3 5
Pot Cap-1 Maneuver	116	140	489		115	140	455	951	30 0 0	
Stage 1	464	470	# 10 Th		403	418			15 78	200
Stage 2	392	414	- 12		450	464		2	8 4 3	3
Platoon blocked, %	AND DESIGNATION	VV-			100	The same		A 500 au	T 0 /45	
Mov Cap-1 Maneuver	93	128	489		96	128	455	951		-
Mov Cap-2 Maneuver	93	128			96	128		100	V 15.	ALC:
Stage 1	433	461			376	390	-3		(
Stage 2	331	387	/EVS. +1	, N - 1	398	455				44.5
Approach	EB		المطاوية	norther	WB	1-1-11	11 st.	NB	FE 31	y 81
HCM Control Delay, s	38.3				41.4			0.5		
HCM LOS	E				E	1000			100	
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	COLUMN TO SERVICE STATE OF THE PERSON NAMED IN COLUMN TO SERVICE STATE OF THE PERSON NAMED STATE OF THE PERSON NAMED STATE OF THE PERSON NAMED STATE OF THE PERSON NAM	F-128
Capacity (veh/h)	951			181	160	909			and the second	
		9 7 8	-	0.414	0.394	0.012	: * /			
HCM Cantrol Dalay (a)	0.041	•					0			
HCM Control Delay (s)	8.9	0	-	38.3	41.4	9	0			I I I I I
HCM Lane LOS	A	Α	- 1	E	E 1.7	A	Α			
HCM 95th %tile Q(veh)	0.1	-	2	1.9	1.7	0	-	2		

Synchro 8 Report Page 2 9/14/2016 Baseline

Minor Lane/Major Mvmt

nt Delay, s/veh						
		T NO.			SECTION 1	STEEL STEEL STEEL
Movement	SBL	SBT	SBR	West,	115	
Vol, veh/h	10	556	25	200	5-1-77	S. C. O. C. O. W.
Conflicting Peds, #/hr	0	0	0			
Sign Control	Free	Free	Free	0.00	100	The second
RT Channelized	0) = (-	None			
Storage Length		1012		38 7 5	1111	STATE OF THE PARTY.
Veh in Median Storage, #	(a=	0	- 4			
Grade, %	STEEL THE STEEL	0	A 2/4	4.00	-18	18.
Peak Hour Factor	92	92	92			
Heavy Vehicles, %	2	2	2			a trade la
Mvmt Flow	11	604	27			
	No. 113 to b	Service.		, Y 15		
Major/Minor	Major2		A Series			J. J. J. J. J. J. J. J. J. J. J. J. J. J
Conflicting Flow All	684	0	0			
Stage 1	re)	120				
Stage 2		1				W VINCES
Critical Hdwy	4.12	1.70				
Critical Hdwy Stg 1		Til ia		12/3/11/14		2.00
Critical Hdwy Stg 2	S-0		-			
Follow-up Hdwy	2.218	- 1 (es		100		
Pot Cap-1 Maneuver	909	143	-			
Stage 1	B) 9,32	g ki 🖭		BY THE	Ī	71
Stage 2		16				
Platoon blocked, %	MAN NOT	411.00	10	100		MI.
Mov Cap-1 Maneuver	909					
Mov Cap-2 Maneuver	Security 4	- 181	-			27/
Stage 1	1=0	-				
Stage 2	n in the	170/				10
Approach	SB	4 161	Page 50	- Lije 1876	H	47
HCM Control Delay, s	0.2					
HCM LOS		(VI		III.	T S	

Synchro 8 Report Page 3 9/14/2016 Baseline

3: Compton Ave & 112th St- Existing + Project+ Cumulative AM

	•	→	\rightarrow	•	←	*	1	†		1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	25	4	47	22	14	25	39	646	22	10	623	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.916			0.945			0.996			0.995	
Fit Protected		0.984			0.982			0.997			0.999	100
Satd. Flow (prot)	0	1679	0	0	1729	0	0	1850	0	0	1852	0
Flt Permitted		0.984			0.982			0.997	100		0.999	
Satd. Flow (perm)	0	1679	0	0	1729	0	0	1850	0	0	1852	0
Link Speed (mph)		30			30			30		New Line	30	A CIN
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	27	4	51	24	15	27	42	702	24	11	677	27
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	82	0	0	66	0	0	768	0	0	715	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0	nan'a'		0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												State of
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15	طهمتني	9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

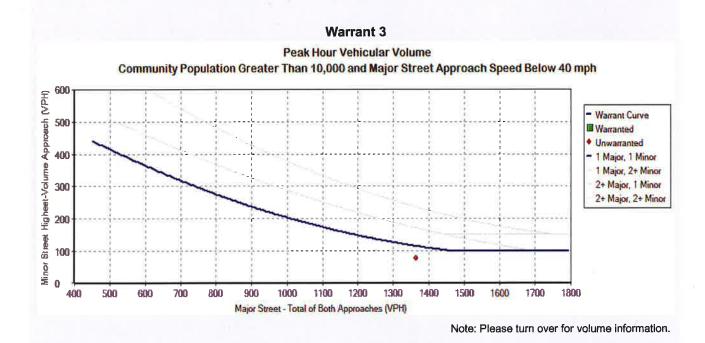
Control Type: Unsignalized

Intersection Capacity Utilization 70.1%

Analysis Period (min) 15

ICU Level of Service C

Synchro 8 Report 9/14/2016 Baseline


Intersection	5.4		100	A, II O	0,0/0,0					
Int Delay, s/veh	5.4									
Movement	EBL	EBT	EBR	50 W.	WBL	WBT	WBR	NBL	NET	NBF
Vol, veh/h	25	4	47		22	14	25	39	646	2:
Conflicting Peds, #/hr	0	0	0		0	0	0	C		
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free
RT Channelized	20	2	None		**	1911	None	34		None
Storage Length		17/25	901		71.3	100		of Street Live		W. La
Veh in Median Storage, #		0				0		8	0	
Grade, %		0	Mary Is		, I I A SU	0	Ph. 31	ALC: NO	. 0	37 76
Peak Hour Factor	92	92	92		92	92	92	92	92	9:
Heavy Vehicles, %	2	2	2	100	2	2	2	2	2	0.00
Mvmt Flow	27	4	51		24	15	27	42	702	2
		Henry	1 - 3	THE SALE	F-1	my Sy		Barrier Fred		
Major/Minor	Minor2	1150.5		بعظريان	Minor1			Majort		
Conflicting Flow All	1533	1524	691		1539	1525	714	704	0	
Stage 1	713	713	7.		799	799	-			
Stage 2	820	811			740	726		and the second	- 11 10	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12		
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52			er er	
Critical Hdwy Stg 2	6.12	5.52	2		6.12	5.52	14	10	991	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218		
Pot Cap-1 Maneuver	95	118	445		94	118	431	894	:	
Stage 1	423	435			379	398	The second	ALCOHOL: N		
Stage 2	369	393	5		409	430	- 5	7.5		
Platoon blocked, %										
Mov Cap-1 Maneuver	73	106	445		75	106	431	894	· (*)	
Mov Cap-2 Maneuver	73	106	. Cine		75	106				7 P
Stage 1	390	426	별		349	367	-	93	e 340	
Stage 2	305	362			351	421				
				W 05	Wife	=5 N/L1		MO		
Approach	EB	110			WB		- 1 - M	NB O F		
HCM Control Delay, s	51.5				61.6			0.5		
HCM LOS	Figure 19		September 1		-		DO L'A		10. 10.	
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	1100	HIZY
Capacity (veh/h)	894	-	-	156	126	877	-			
HCM Lane V/C Ratio	0.047	1		0.53	0.526	0.012		SUS BIR		X
HCM Control Delay (s)	9.2	0		51.5	61.6	9.2	0	2		
HCM Lane LOS	A.	A		51.5 F	F	A	A			
HCM 95th %tile Q(veh)	0.1	А		2.6	2.5	0				

Synchro 8 Report Page 2 9/14/2016 Baseline

Int Delay, s/veh							
					7.12	100	. 1
Movement	SBL	SBT	SBR	E M		100	¥.
Vol, veh/h	10	623	25				
Conflicting Peds, #/hr	. 0	0	0				
Sign Control	Free	Free	Free				
RT Channelized		H	None				
Storage Length			Marie 1				
Veh in Median Storage, #	<u></u>	0					
Grade, %		0					
Peak Hour Factor	92	92	92				
Heavy Vehicles, %	2	2	2		100		
Mvmt Flow	11	677	27				
	(C. 10)	1000	100	1 - v	SIL SAY	10.0	
Major/Minor	Major2					3/11/2	į
Conflicting Flow All	726	0	0				
Stage 1	:•:						
Stage 2		Tale.		W 125 Y	1000	EV.	
Critical Hdwy	4.12	*	-				
Critical Hdwy Stg 1	10	1	1013				
Critical Hdwy Stg 2		-	-				
Follow-up Hdwy	2.218	15		8-12 PM	-44		
Pot Cap-1 Maneuver	877						
Stage 1	B I I I I	yal de l	5 . A		1784		
Stage 2							
Platoon blocked, %	112 15 19		ij, e:	1 2 4		111817	
Mov Cap-1 Maneuver	877	2	2				
Mov Cap-2 Maneuver	STATE OF STATE	(F 12)	1 12	the state of			
Stage 1			g.				
Stage 2	, L	371137				Target N	
Approach	SB		3 174				
HCM Control Delay, s	0.1						
HCM LOS	1 2 2	MI Su	real of	10 11 11 11	ALL VALUE	100	

Synchro 8 Report Page 3 9/14/2016 Baseline

1: Compton & 112th -FWP - AM

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Wilmin	ngton Ave			Yea	r of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Conduc	cted by:	Saeedeh	Farivar	Date:		9/30/2016	
22	East-West Street: 103rd	St			Proje	ction Year:			Pea	ık Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
	No. of Phase			2	1		2				2				2				2
	osed Ø'ing: N/S-1, E/W-2 or Both-3	AID O	SB	0	NB	0 SB		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
Right 1	Turns: FREE-1, NRTOR-2 or OLA-3	EB 0	WB	0	EB	0 WE		EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATCS-2			1			1				2				2				2
-	Override Capacit		ING CONDI		FXIST	NG PLUS PR		FUTUR	E CONDITION	ON W/O PR		FUTUR	E CONDIT	ION W/ PRO		FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	4,1101	No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left	192	1	192	0	192	192	0	211	1	211	0	211	1	211		211	1	211
NORTHBOUND	← Left-Through ↑ Through	542	0 1	542	12	554	554	9	604	0	604	12	616	0	616		616	1	616
₩	↑ Through-Right	0.12	0		,_	001				Ö	F			0				0	
12	Right	72	1	28	3	75	24	0	79	1	30	3	82	1	26		82	1	26
2	Left-Through-Right		0							0				0				0	
10000000	← Left-Right		0		077000			1950		U		B230			E PROPERTY.			OVER LEGIS	Dis.
0	⊢ Left	84	1	84	0	84	84	1	93	1	93	0	93	1	93		93	1	93
	→ Left-Through	400	0	400	10	440	440	40	400	0	402	10	500	0	500		500	0	500
8	↓ Through	430	0	430	18	448	448	10	482	0	482	18	300	0	500		300	0	500
∥ Ĕ	Right	77	1	49	0	77	49	0	84	1	53	0	84	1	53		84	1	53
SOUTHBOUND	Left-Through-Right		0							0				0				0	100
(F) (F) (S)	لم Left-Right		0	CH 100-01			CHILD PROPER		201	0		5000	METERS.		SHEW)	Contract of			STATE OF
	<u>ا</u> Left	57	1	57	0	57	57	0	63	1	63	0	63	1	63		63	1	63
	→ Left-Through	054	0	251	0	251	251	4	279	0	279	0	279	0 1	279		279	0	279
🖁	→ Through → Through-Right	251	0	251	0	231	251	4	219	Ó	219	"	213	Ó	213		2/3	ò	210
EASTBOUND	Right	89	1	0	0	89	0	0	98	1 1	0	0	98	1	0		98	1	0
🖺	Left-Through-Right		0							0				0				0	
(m. 14.3	-{ Left-Right		U		Removal	0 S S S	STATE OF THE PARTY.		Selfer	Johnson		500 E 17	THE STATE OF	WS., 1993	-		F223.		
	√ Left	89	1	89	14	103	103	0	98	1	98	14	112	1	112		112	1	112
WESTBOUND	∜ Left-Through	240	0	412	0	348	412	4	386	0	461	0	386	0	461		386	0	461
	Through Through-Right	348	1	412	U	340	412	"	300	1	401	ľ	300	1	401		300	1	
E	Right	64	0	0	0	64	0	5	75	0	0	0	75	0	0		75	0	0
🛚	Left-Through-Right Left-Right		0							0				0				0	
	¢ centragin	No	rth-South:	626	No	orth-South:	640		Nor	th-South:	697		Nor	th-South:	711			th-South:	711
	CRITICAL VOLUME	S E	East-West:			East-West:	469		E	ast-West:	524		E	ast-West:	524		E	ast-West:	524
	VOLUME/CADACITY (MOLDATIC		SUM:		-	SUM:	1109			SUM:	1221			SUM:	1235	-		SUM:	
	VOLUME/CAPACITY (V/C) RATIO			0.730			0.739				0.814				0.823				0.823
V/C	LESS ATSAC/ATCS ADJUSTMENT			0.660			0.669				0.714				0.723 C				0.723 C
L	LEVEL OF SERVICE (LOS	<u>: </u>		В			В				С				C I				U

PROJECT IMPACT

Change in v/c due to project: 0.009 $\Delta v/c$ after Significant impacted? NO Full

 $\Delta v/c$ after mitigation: 0.009 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Wilming	ton Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:		9/30/2016	
23	East-West Street:	Santa Ar	na Blvd N			Proje	ction Year:	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
	No. o osed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 o ATSAC-1 or ATSAC+ Override	r OLA-3? ATCS-2?	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SB 0 WE		NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2
	EXISTING CONDITION			EXIST	ING PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTURE CONDITION W/ PROJECT				FUTURE W/ PROJECT W/ MITIGATION			GATION		
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through-Right Right Left-Through-Right Left-Through-Right		12 575 60	1 0 0 1 0 0	635 0	17 0	14 592 60	652 0	9	13 640 66	1 0 0 1 0 0	706 0	2 17 0	15 657 66	1 0 0 1 0 0	15 723 0		15 657 66	1 0 0 1 0 0	15 723 0
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right		32 557 7	1 0 0 1 0 0	32 564 0	0 37 0	32 594 7	32 601 0	0 10 0	35 621 8	1 0 0 1 0 0	35 629 0	0 37 0	35 658 8	1 0 0 1 0 0	35 666 0		35 658 8	1 0 0 1 0 0	35 666 0
EASTBOUND	→ Left → Left-Through → Through-Right → Right ← Left-Through-Right ← Left-Right	13	7 11 30	0 0 0 0 0 0	7 48 0	0 0 5	7 11 35	7 53 0	0 0	8 12 33	0 0 0 0 0 1	8 53 0	0 0 5	8 12 38	0 0 0 0 0 1	58		8 12 38	0 0 0 0 0 0	8 58 0
WESTBOUND	← Left ← Left-Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right	3.11	100 36 135	0 1 0 0 1 0	100 136 119	0 0	100 36 135	100 136 119	0 0	110 40 148	0 1 0 0 1 0	110 150 131	0 0	110 40 148	0 1 0 0 1 0	110 150 131		110 40 148	0 1 0 0 1 0	110 150 131
	CRITICAL V			th-South: ast-West: SUM:			orth-South: East-West: SUM:	684 153 837			th-South: ast-West: SUM:	741 163 904			th-South: ast-West: SUM:	758 168 926			th-South: ast-West: SUM:	758 168 926
V/C	VOLUME/CAPACITY (V/C LESS ATSAC/ATCS ADJU LEVEL OF SERVIC	STMENT:			0.543 0.473 A			0.558 0.488 A				0.603 0.503 A				0.617 0.517 A				0.617 0.517 A

PROJECT IMPACT

Change in v/c due to project: 0.014
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.014 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Wilming	ton Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	9	/30/2016	
24	East-West Street:	108th St				Proje	ction Year	2035		Pea	ık Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
	No. o oosed Ø'ing: N/S-1, E/W-2 o Turns: FREE-1, NRTOR-2 o		NB 0	SB	2 0 0	NB	0 SB		NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Kigiii	ATSAC-1 or ATSAC-		EB 2	WB	0 1	EB	2 WE	3 0 1	EB	2	WB	0	EB	2	WB	0 2	EB	2	WB	0 2
		Capacity			0			0				0	0				0			
	EXISTING CONDITION			EXISTING PLUS PROJECT				E CONDITION					ION W/ PR							
MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	
	↑ Left		32	1 0	32	2	34	34	0	35	0	35	2	37	1 0	37		37	0	37
NORTHBOUND	← Left-Through ↑ Through		573	0	597	20	593	617	9	638	0	664	20	658	0	684		658	0	684
E	Through-Right		24	0	0	0	24	0	0	26	0	0	0	26	0	0		26	Ó	0
NOR	← Left-Through-Right ← Left-Right			0							0				0 0				0 0	
1971	↓ Left		20	1	28	0	28	28	0	31	1	31	0	31	1	31	O DO	31	1	31
SOUTHBOUND	→ Left-Through Through		28 605	0	660	40	645	700	10	674	0	734	40	714	0	774		714	0	774
<u>@</u>	→ Through-Right		005	1	000	40	043	700	10	0/4	1	734	"	, , , ,	1				1	
5	Right		55	0	0	0	55	0	0	60	0	0	0	60	0	0		60	0	0
So	← Left-Through-Right ← Left-Right			0							0		name to the same	15 450	0				0	
Earli	J Left	11 F18	53	0	53	0	53	53	0	58	0	58	0	58	0	58		58	0	58
₽	→ Left-Through			0							0				0				0	
EASTBOUND	→ Through		87	0	165	0	87	165	0	95	0	180	0	95	0	180		95	0	180
E S	→ Through-Right → Right		25	0	0	0	25	0	0	27	0	0	0	27	0	0		27	0	0
E A	Left-Through-Right			1	2 1 1	12.7		11.10			1				1				1	
	-{ Left-Right			0					_		0			CHARGO	0	-	-	-	0	-
DENSY	€ Left		101	0	101	0	101	101	0	111	0	111	0	111	0	111		111	0	111
9	1 Left-Through		, ,,,	0					_		0				0				0	
9	← Through ♣ Through-Right		126	0	249	0	126	249	0	138	0	273	0	138	0	273		138	0	273
WESTBOUND	Through-Right Right		22	0	0	0	22	0	0	24	0	0	0	24	0	0		24	0	0
N E	Left-Through-Right	:		1				10.00			1	E' la			1				1	
	- Left-Right			0	200			704			0	700		•	0	044			0	014
	CRITICAL \	VOLUMES		th-South: ast-West:	692 302		rth-South: East-West:	734 302			th-South: ast-West:	769 331			th-South: ast-West:	811 331			h-South: st-West:	811 331
	J. J. J. J. J. J. J. J. J. J. J. J. J. J			SUM:			SUM:	1036			SUM:	1100			SUM:				SUM:	1142
	VOLUME/CAPACITY (V/	C) RATIO:			0.663			0.691				0.733				0.761				0.761
V/C	LESS ATSAC/ATCS ADJU	JSTMENT:			0.593			0.621				0.633				0.661				0.661
	LEVEL OF SERVI	CE (LOS):			Α			В				В				В				В

PROJECT IMPACT

Change in v/c due to project: 0.028
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.028 Fully mitigated? N/A

	۶	→	•	€	•	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	0	0	47	17	0	43	34	654	29	10	769	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.902			0.994			0.999	
Fit Protected					0.986			0.998			0.999	
Satd. Flow (prot)	0	1611	0	0	1657	0	0	1848	0	0	1859	0
Flt Permitted					0.986			0.998			0.999	
Satd. Flow (perm)	0	1611	0	0	1657	0	0	1848	0	0	1859	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	51	18	0	47	37	711	32	11	836	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	51	0	0	65	0	0	780	0	0	851	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			= 0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 73.5%

ICU Level of Service D

Analysis Period (min) 15

9/14/2016 Baseline Synchro 8 Report
Page 1

Intersection	0.4	and the state of	11 L	200		and the				
Int Delay, s/veh	2.4									
Movement	EBL	EBT	EBR	# 16Th	WBL	WBT	WBR	NBL	NBT	NBF
Vol, veh/h	0	0	47		17	0	43	34	654	29
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	(
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free
RT Channelized	1572		None		3.50	:55	None	u.e.	-	None
Storage Length	40.00		100					0.00		
Veh in Median Storage, #)#6	0	~			0	æ	⊙ -	0	9
Grade, %	THE COLUMN	0			-	0	- 4	Te No	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2
Mvmt Flow	0	0	51		18	0	47	37	711	32
THE RESERVE OF THE PARTY OF THE				10 0						
Major/Minor	Minor2				Minor1			Major1		
Conflicting Flow All	1684	1676	838		1686	1663	727	840	0	(
Stage 1	860	860	-		801	801	-	:-		
Stage 2	824	816	8-		885	862		Y 14		
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	-	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52		1.0		
Critical Hdwy Stg 2	6.12	5.52	9		6.12	5.52	3			
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218		
Pot Cap-1 Maneuver	75	95	366		74	97	424	795		
Stage 1	351	373			378	397				
Stage 2	367	391	2		340	372	-	:re	-	-
Platoon blocked, %										
Mov Cap-1 Maneuver	62	85	366		59	87	424	795	-	-
Mov Cap-2 Maneuver	62	85			59	87	V.	L LO L AND		1710
Stage 1	323	364	-		348	365	-	,		
Stage 2	300	360	11.15		286	363	*	11 To 1		112
Anneach	EB	W1515		K=1=1	WB			NB	Town State of	~ (4)
Approach		100			44.5			0.5	M. J.N. J.L.	
HCM Control Delay, s	16.4							0.5		
HCM LOS	С									
Minor Lane/Major Mvmt	NBL	NBT	NBR	E8Ln1	WBLn1	SBL	SBT	SBR	S 11 11 12	XI F L
Capacity (veh/h)	795	-	11011	366	154	865		-		
HCM Lane V/C Ratio	0.046	- 1 D	5	0.14	0.423	0.013	231			
HCM Control Delay (s)	9.7	0		16.4	44.5	9.2	0			
HCM Lane LOS		A		10.4 C	44.5 E	9.2 A	A			
HOW Lane LUS	A	А		0.5	1.9	A	A			

Synchro 8 Report Page 2 9/14/2016 Baseline

Int Delay, s/veh			
			72200
Movement	SBL	SBT	SBR
Vol, veh/h	10	769	4
Conflicting Peds, #/hr	0	0	0
Sign Control	Free	Free	Free
RT Channelized	:e:	-	None
Storage Length	THE WEST		
Veh in Median Storage, #	*	0	3
Grade, %	THE Y THE	0	T, 31
Peak Hour Factor	92	92	92
Heavy Vehicles, %	2	2	2
Mvmt Flow	11	836	4
	ATTO		
Major/Minor	Major2		
Conflicting Flow All	742	0	0
Stage 1	(-	€(3
Stage 2	140 E	30	A 1
Critical Hdwy	4.12		
Critical Hdwy Stg 1		190	
Critical Hdwy Stg 2	0 ₩8	(#)	:*
Follow-up Hdwy	2.218	- 4	
Pot Cap-1 Maneuver	865	20	2
Stage 1	100	/20	
Stage 2		*	8
Platoon blocked, %			-
Mov Cap-1 Maneuver	865	(-):	
Mov Cap-2 Maneuver			1
Stage 1	2#3	340	-
Stage 2	72	360	
Ciago L			
Approach	SB		
HCM Control Delay, s	0.1		
HCM LOS			

Minor Lane/Major Mvmt

Synchro 8 Report Page 3 9/14/2016 Baseline

	•	-	*	•	•	•	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	0	0	175	63	0	43	37	676	32	10	809	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.945			0.994			0.999	
Flt Protected	- 3.K				0.971			0.998			0.999	1 A 1 1
Satd. Flow (prot)	0	1611	0	0	1709	0	0	1848	0	0	1859	0
Flt Permitted					0.971			0.998			0.999	
Satd. Flow (perm)	0	1611	0	0	1709	0	0	1848	0	0	1859	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)	DAY SEE	6.0			7.8			6.4			5.8	To the
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	190	68	0	47	40	735	35	11	879	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	190	0	0	115	0	0	810	0	0	894	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	1/1
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	V 5 1	3, 1, 5	5.51.5	100								call the
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	4 8 2	9	15	170	9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 87.0%

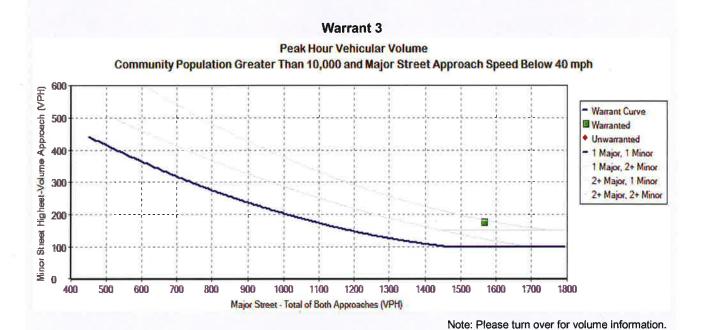
Analysis Period (min) 15

ICU Level of Service E

9/14/2016 Baseline Synchro 8 Report Page 1

Int Delay, s/veh	65.9	N								
PROPERTY OF THE PARTY.	Market Inch		351	1 - 1	4,11,4	50	1849	UT TO S		
Movement	EBL	EBT	EBR	harry.	WBL	WBT	WBR	NBL	NBT	NB
Vol, veh/h	0	0	175	14.89	63	0	43	37	676	3:
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Fre
RT Channelized	:#	540	None		-	:=:	None	÷	-	Non
Storage Length			1000		17/4			The state of	, Design	
Veh in Median Storage, #		0	-			0	- N		0	
Grade, %		0	100		4117	0	ATT TO	100 1000	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	9:
Heavy Vehicles, %	2	2	2		2	2	2	2	2	
Mvmt Flow	0	0	190		68	0	47	40	735	3
					1,3-					
Major/Minor	Minor2	3,018	5.70	45.50	Minor1			Major1	KH S	EN É
Conflicting Flow All	1759	1753	882	1000	1831	1738	752	884	0	1 3
Stage 1	903	903	-		833	833	-	2	720	-
Stage 2	856	850	15.00	UNITED STATE	998	905		200		
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	17.0	
Critical Hdwy Stg 1	6.12	5.52		17 17 17 17	6.12	5.52	a de est		VI TV.	1
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52			:=:	
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	100	71
Pot Cap-1 Maneuver	66	85	345		~ 59	87	410	765	525	
Stage 1	332	356	100		363	384	3	and the variation	V I JUST	
Stage 2	352	377	-		294	355	-	÷	-	
Platoon blocked, %		100		15 12	Missi	911		WATER BUILDING	te true	16.
Mov Cap-1 Maneuver	53	75	345		~ 24	77	410	765		
Mov Cap-2 Maneuver	53	75	Y 1 31		~ 24	77	I hadre			Tues.
Stage 1	301	347			330	349	:●):	-		
Stage 2	283	342			128	346	11.1			19.13
Approach	EB	بالجثا			WB	78.8	15.730	NB	ter	mu.
HCM Control Delay, s	27.5			\$	1099.2			0.5		
HCM LOS	D			100	F		AL D	11 3 7 1 1 1 1	100	1111
Minor Lane/Major Mvmt	NBL	NBT	NBR		NBLn1	SBL	SBT	SBR	Trees.	
Capacity (veh/h)	765			345	39	844	(-)	*		
HCM Lane V/C Ratio	0.053			0.551	2.954	0.013				TAKE.
HCM Control Delay (s)	- 10	0	- 1	27.5\$		9.3	0	*		
HCM Lane LOS	A	Α	4 5 2	D	F	Α	Α		A BY	
HCM 95th %tile Q(veh)	0.2	•	9	3.2	12.9	0	-	3		
Notes			1774.3	- No. of the	W 71.7	15 THE	1000	10. 12. 11. 20.4	20 MAY	200

Synchro 8 Report Page 2 9/14/2016 Baseline


Intersection Int Delay, s/veh					
Entered to the second	AND EAST OF		The second		
Movement	SBL	SBT	SBR	TIPAGOT ATURAL	
Vol, veh/h	10	809	4		
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free	VALUE OF THE	
RT Channelized	76	-	None		
Storage Length	2100 July 201	S/ 5, 12		The second	J.
Veh in Median Storage, #	197	0			
Grade, %	75 I 57 IS	0	ONE LI	With the same	
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2		
Mymt Flow	11	879	4		
		13.54	1		7,97
Major/Minor	Major2	3 1 1	G-196	11(15) - 24 3 1	ig Vi
Conflicting Flow All	770	0	0	The second second	
Stage 1	190		-		
Stage 2			W. Carlo		
Critical Hdwy	4.12		Ħ		
Critical Hdwy Stg 1	100	10%	Te la te		
Critical Hdwy Stg 2	: : ::	(=)	:=		
Follow-up Hdwy	2.218				
Pot Cap-1 Maneuver	844	75			
Stage 1			i i i		
Stage 2	: :#:				
Platoon blocked, %			15 2		
Mov Cap-1 Maneuver	844	; ₩ ()			
Mov Cap-2 Maneuver	1		11		
Stage 1	190	(=)	-		
Stage 2	A 18	100	- 17 - 17	35.3	
Approach	SB				
HCM Control Delay, s	0.1				
HCM LOS					

Minor Lane/Major Mymt

Synchro 8 Report Page 3 9/14/2016 Baseline

Warrant 3: Peak Hour

1: Wilmington & 112th -EWP - AM

	•	-	*	•	←	•		†		-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	0	0	52	19	0	47	37	723	32	11	849	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.904			0.995			0.999	
Flt Protected	وتناوعا				0.986			0.998		15 N	0.999	1 - 1
Satd. Flow (prot)	0	1611	0	0	1660	0	0	1850	0	0	1859	0
Flt Permitted					0.986			0.998			0.999	
Satd. Flow (perm)	0	1611	0	0	1660	0	0	1850	0	0	1859	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8		No.	6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	57	21	0	51	40	786	35	12	923	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	57	0	0	72	0	0	861	0	0	939	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)	AL HOT	0	w S	90 11	0			0			0	1300
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											E 111	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	West of the last	9	15		9	15	11/3	9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 79.5%

Analysis Period (min) 15

ICU Level of Service D

9/14/2016 Baseline Synchro 8 Report
Page 1

Intersection Int Delay, s/veh	3.7									
III Delay, Siveri								HILL STANK		
Movement	EBL	EBT	EBR	HO A	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	0	0	52	Hall	19	0	47	37	723	32
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	5.54	Stop	Stop	Stop	Free	Free	Free
RT Channelized	-	-	None			9.20	None	-	-	None
Storage Length		OI -	27		10	To Like			113	8 w 2
Veh in Median Storage, #	3.00	0				0			0	- (-
Grade, %		0	, d		rui Seel	0			0	p n
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2
Mvmt Flow	0	0	57		21	0	51	40	786	35
DESTRUCTION OF THE PARTY OF THE	1887		(T)		TIV =	15 -10	5.70		1	
Major/Minor	Minor2			V W	Minor1			Majort	varie.	11,000
Conflicting Flow All	1858	1850	925	Arter	1861	1835	803	927	0	0
Stage 1	949	949			884	884	-		350) ,
Stage 2	909	901		100	977	951			The	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	:::::	98
Critical Hdwy Stg 1	6.12	5.52	1100		6.12	5.52		13. 11. 11.		N Da
Critical Hdwy Stg 2	6.12	5.52	12		6.12	5.52	(*)	ē	:: ₩ :	:-
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	-	
Pot Cap-1 Maneuver	56	74	326		56	76	383	737	* 12	-
Stage 1	313	339	2		340	363	A 77 M	U.S. Tolk		SR. IS
Stage 2	329	357	-		302	338				
Platoon blocked, %										
Mov Cap-1 Maneuver	44	65	326		42	66	383	737	:•:	
Mov Cap-2 Maneuver	44	65			42	66		A DOLLAR	100	/4
Stage 1	282	328	-		306	327	141	€.	(a)	54
Stage 2	257	321	1		242	328				
					14.00	- 777 - 1	JE - 1201	VID.		JEI VIE
Approach	EB	100			WB	111,111	to a series	NB		
HCM Control Delay, s	18.3				78			0.5		
HCM LOS	C				e de la company					100
Minor Lang/Mains Mumb	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	ne.	
Minor Lane/Major Mvmt								COUNT		1971
Capacity (veh/h)	737	191		326	115	808				
HCM Cantrol Polocy (a)	0.055	-		0.173	0.624	0.015	0			
HCM Control Delay (s)	10.2	0	, and the second	18.3	78	9.5	0			
HCM Lane LOS	В	Α	W. 3	C	F	A	Α		فينيد	CHE PLOY
HCM 95th %tile Q(veh)	0.2	-	=	0.6	3.1	0	-	i.		

Synchro 8 Report Page 2 9/14/2016 Baseline

Minor Lane/Major Mvmt

Intersection		No.			
Int Delay, s/veh					
		4.	416		
Movement	SBL	SBT	SBR		Ī
Vol, veh/h	11	849	4		
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free		
RT Channelized	V2	-	None		
Storage Length	70.00	No.		22.00	
Veh in Median Storage, #	1.0	0	•4		
Grade, %		0	100 8, 4		
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2	The Park	-44
Mvmt Flow	12	923	4		
The state of the s		10 110	120		1
Major/Minor	Major2	3.5	47.8-	S - 150P1+8	
Conflicting Flow All	821	0	0		J. 10.
Stage 1	1.00	12			
Stage 2	2441		1 2 3 3 3	X (17.74 d.)	
Critical Hdwy	4.12	; • 3			
Critical Hdwy Stg 1	NI COLUMN	100	133.		
Critical Hdwy Stg 2	.045	(*)	:		
Follow-up Hdwy	2.218			100,000	
Pot Cap-1 Maneuver	808				
Stage 1			A A S		d n
Stage 2	3.5		•		
Platoon blocked, %		U-To-		I I S I I Y I I	
Mov Cap-1 Maneuver	808				
Mov Cap-2 Maneuver		100			1117
Stage 1	3 2	940	>		
Stage 2		A 100	400		750
ÿ					
Approach	SB	6	W	There is not	5.00
HCM Control Delay, s	0.1				
HCM LOS	U. I				

Synchro 8 Report Page 3 9/14/2016 Baseline

	•	-	*	•	•	•		†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WOL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	0	0	180	65	0	47	40	745	35	11	890	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.865			0.944			0.994			0.999	
Flt Protected					0.972			0.998			0.999	
Satd. Flow (prot)	0	1611	0	0	1709	0	0	1848	0	0	1859	0
Flt Permitted					0.972			0.998			0.999	20
Satd. Flow (perm)	0	1611	0	0	1709	0	0	1848	0	0	1859	0
Link Speed (mph)		30			30			30			30	5877
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	322
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	196	71	0	51	43	810	38	12	967	4
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	196	0	0	122	0	0	891	0	0	983	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												14113
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

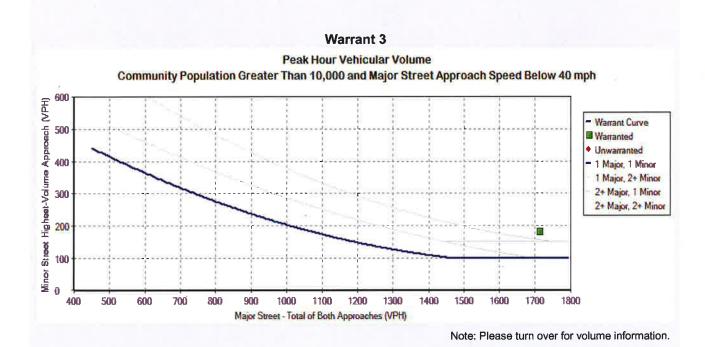
Control Type: Unsignalized Intersection Capacity Utilization 93.3%

Analysis Period (min) 15

ICU Level of Service F

Synchro 8 Report 9/14/2016 Baseline Page 1

3: Wilmington Ave & 112th St- Existing+Project+ Cumulative AM


Intersection	400.4	N ETHE	1512			ATENIA	Carlo Maria	10	
Int Delay, s/veh	129.4	1 -15					A MARINE THE		
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBF
Vol, veh/h	0	0	180	65	0	47	40	745	3
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Fre
RT Channelized		=4/1	None	-	-	None	-	2.45	None
Storage Length		3 50	- T'S 'S			157 27		Tr. V	
Veh in Median Storage, #		0		-	0	9	•	0	
Grade, %		- 0		Was been and	0			0	
Peak Hour Factor	92	92	92	92	92	92	92	92	9
Heavy Vehicles, %	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	196	71	0	51	43	810	3
EMPERIE IN COLUM	170 150	J. William				k his		TEXT.	
Major/Minor	Minor2	204	11	Minor1		dati.	Majort	9.23	
Conflicting Flow All	1934	1928	970	2007	1912	829	972	0	100
Stage 1	993	993		916	916	-	•	VE	
Stage 2	941	935	200	1091	996		De Jacobs 1981	100	
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12		
Critical Hdwy Stg 1	6.12	5.52		6.12	5.52	V 100		31 W. W.	
Critical Hdwy Stg 2	6.12	5.52	2	6.12	5.52	(-)"	×	3₩1	
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218		
Pot Cap-1 Maneuver	50	66	307	~ 44	68	370	709	:	
Stage 1	296	323	1000	326	351			12	
Stage 2	316	344		260	322	100	-		
Platoon blocked, %						11.0		-	
Mov Cap-1 Maneuver	38	56	307	~ 14	58	370	709	11.99	
Mov Cap-2 Maneuver	38	56		~ 14	58		1000		
Stage 1	262	312	=	288	310		¥	(*)	
Stage 2	241	304	Sol≛i	91	311				10.4
Approach	EB			WB			NB		
HCM Control Delay, s	35.2			\$ 2270.2			0.5		
HCM LOS	and the E		12-01	F	March.		A Committee		
Minor Lane/Major Mymt	NBL	NBT	NBR	EBLn1 WBLn1	SBL	SBT	SBR		
Capacity (veh/h)	709	(4):	14	307 23	790	(*)		N. W. Line	_
HCM Lane V/C Ratio	0.061	-	10	0.637 5.293	0.015	-			
HCM Control Delay (s)	10.4	0		35.2 \$ 2270.2	9.6	0	-		
HCM Lane LOS	В	Α	1 1 5	E F	A	Α			
HCM 95th %tile Q(veh)	0.2	-	in the second	4.1 15.3	0	-	ă		
Notes	7 - 1 5 - 12		4 1 6	THE R. P. LEW.	ned *: A		olume in platoon		

9/14/2016 Baseline Synchro 8 Report Page 2

nt Delay, s/veh			
	13.7		
Movement	SBL	SBT	SBR
Vol, veh/h	11	890	4
Conflicting Peds, #/hr	0	0	0
Sign Control	Free	Free	Free
RT Channelized	-	-	None
Storage Length	1 To 10 - 1	Se 15.1	
Veh in Median Storage, #		0	*
Grade, %	i i i i i i	0	
Peak Hour Factor	92	92	92
Heavy Vehicles, %	2	2	2
Mymt Flow	12	967	4
MALE REPORT OF THE PARTY OF THE	None of the	241	
Major/Minor	Major2		
Conflicting Flow All	848	0	0
Stage 1	-	¥	*
Stage 2			
Critical Hdwy	4.12	3	25
Critical Hdwy Stg 1		100	18
Critical Hdwy Stg 2		a.	•
Follow-up Hdwy	2.218	WO.	
Pot Cap-1 Maneuver	790		*.
Stage 1	Nan Lab		17 11
Stage 2		9	2
Platoon blocked, %			V
Mov Cap-1 Maneuver	790	9	
Mov Cap-2 Maneuver	Value of Carlo		
Stage 1			•
Stage 2	1111 . 3.	1	
A COLUMN TO THE PARTY OF THE PA	CO.	- 16	
Approach	SB		
HCM Control Delay, s HCM LOS	0.1		

Synchro 8 Report Page 3 9/14/2016 Baseline

1: Wilmington & 112th -FWP - AM

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Aval	on Blvd			Year	of Count	2016	Amb	ient Grov	/th: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:	_	1/20/2017	
47	East-West Street: 103r	d St			Projec	tion Year	2035		Pea	ık Hour:	AM	Revie	ewed by:			Project:	W	illowbrod	k
	No. of Phas osed Ø'ing: N/S-1, E/W-2 or Both- Turns: FREE-1, NRTOR-2 or OLA- ATSAC-1 or ATSAC+ATCS-	3? NB 2 EB 0	SB WB	2 0 0 2 1	NB EB	2 SE 0 W	3 2 1	NB EB	2 0	SB WB	2 0 0 2 2	NB EB	2 0	SB WB	2 0 0 2 2	NB EB	2	SB WB	2 0 0 2 2
	Override Capac			0			0				0				0				0
	MOVEMENT	EXIST	ING CONDI			NG PLUS PI			E CONDITION				TURE CONI		PROJECT		W/ PROJE		
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
SOUND	Ceft ← Left-Through ↑ Through	970	1 0 1	22 515	0 25	22 995	22 528	13	24 1077	1 0 1	24 574	25	24 1102	1 0 1	24 586		24 1102	1 0 1	24 586
NORTHBOUND	↑ Through-Right	60	1 0 0 0	60	0	60	60	4	70	1 0 0 0	70	0	70	1 0 0 0	70	9.	70	1 0 0 0	70
SOUTHBOUND	Left Left-Through Through-Right Right Left-Through-Right Left-Right	78 789 38	1 0 1 1 0 0	78 414 38	0 41 0	78 830 38	78 434 38	0 17 0	86 883 42	1 0 1 1 0 0	86 463 42	0 41 0	86 924 42	1 0 1 1 0 0	86 483 42		86 924 42	1 0 1 1 0 0	86 483 42
EASTBOUND		33 70 19	1 0 0 1 0 0	33 89 0	0 2 0	33 72 19	33 91 0	0 0	36 77 21	1 0 0 1 0 0	36 98 0	0 2 0	36 79 21	1 0 0 1 0 0	36 100 0		36 79 21	1 0 0 1 0 0	36 100 0
WESTBOUND	← Left ← Left-Through ← Through-Right ← Right Left-Through-Right ← Left-Right	84 107 109	1 0 1 0 1	84 107 109	0 1 0	84 108 109	84 108 109	4 0 0	96 117 120	1 0 1 0 1 0	96 117 120	0 1 0	96 118 120	1 0 1 0 1 0	96 118 120		96 118 120	1 0 1 0 1 0	96 118 120
	CRITICAL VOLUM	ES E	rth-South: ast-West: SUM:	593 173 766		rth-South: East-West: SUM:	606 175 781			th-South: ast-West: SUM:	660 194 854			th-South: ast-West: SUM:	672 196 868			th-South: ast-West: SUM:	672 196 868
V/C	VOLUME/CAPACITY (V/C) RAT LESS ATSAC/ATCS ADJUSTMEN LEVEL OF SERVICE (LO	IT:		0.511 0.441 A			0.521 0.451 A				0.569 0.469 A				0.579 0.479 A				0.579 0.479 A

PROJECT IMPACT

Change in v/c due to project: 0.010
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.010 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Avaic	n Blvd			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		1/18/2017	
48	East-West Street: 108th				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:	W.		Project:	w	illowbrod	k
	No. of Phase cosed Ø'ing: N/S-1, E/W-2 or Both-3	?	SB	2 0 0	NB	0 SE	2 0 3 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns: FREE-1, NRTOR-2 or OLA-3	EB 0	WB	0	EB	0 W		EB	0	WB	0	EB	0	WB	0	EB	0	WB	ő
	ATSAC-1 or ATSAC+ATCS-2 Override Capaci	у		1			1				2 0				2				2 0
	MOVEMENT	EXIST	ING COND			NG PLUS PI			E CONDITION				E CONDIT				W/ PROJE		
L.,		Volume	No. of Lanes	Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
9	↑ Left Left-Through	35	1	35	2	37	37	2	40	1	40	2	42	1	42		42	1 0	42
NORTHBOUND	† Through	976	1	534	25	1001	547	17	1088	1	595	25	1113	1	607		1113	1	607
¥	† Through-Right		1				6.67			1				1				1	
	Right	92	0	92	0	92	92	0	101	0	101	0	101	0	101		101	0	101
½	← Left-Through-Right ← Left-Right		0							0				0				0	
	Len-right		5 4 5 L L		(Existence)				- A-		esistera)		-S31			- 200	4.50		
۵ ا	Left	86	1	86	0	86	86	0	94	1	94	0	94	1	94		94	1 .	94
5		796	0	412	41	837	432	21	894	0	462	41	935	0	483		935	0	483
₩	→ Through → Through-Right	7 30	1	412	41	037	432	21	034	1	402	41	933	1	400		933	1	463
SOUTHBOUND	Right	27	0	27	0	27	27	0	30	0	30	0	30	0	30		30	0	30
%	← Left-Through-Right ↓ Left-Right		0							0				0				0	
848	24 Cent-right	Distriction of the last			NO. OF STREET	37 F1 S14		07.00	3 100			1970 1				3350	35179		CONTRACT.
	J Left	21	0	21	0	21	21	0	23	0	23	0	23	0	23		23	0	23
	 → Left-Through → Through 	165	0	222	6	171	230	4	182	0	247	6	188	0	255		188	0	255
8	→ Through-Right	103	0	222	"	17.1	230	'	102	0	241	0	100	0	233		100	0	255
EASTBOUND	Right	36	0	0	2	38	0	2	42	0	0	2	44	0	0		44	0	0
0	Left-Through-Right		1							1				1 0				1 0	
	EN RUSSIA DE LA COMPTE DEL COMPTE DE LA COMPTE DEL COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DEL COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE DE LA COMPTE D			WITE SHEET	CONTRACT OF	- THE RE			137908			15000	1000			9/	E415	US SOUR	in the same
	✓ Left	109	0	109	0	109	109	0	120	0	120	0	120	0	120		120	0	120
WESTBOUND		90	1	199	2	92	201	1	100	1	220	2	102	1 0	222		102	1	222
8	Through-Right		0	100	-	32	201		100	0	220		102	0	222		102	0	222
	Right	63	1	20	1	64	21	0	69	1	22	1	70	1	23		70	1	23
	Left-Through-Right Left-Right		0							0				0				0	
	¥	No	rth-South:	620	No	rth-South:	633		Nor	th-South:	689		Nor	th-South:	701		Non	th-South:	701
	CRITICAL VOLUME	S E	ast-West:			ast-West:	339		E	ast-West:	367		E	st-West:	375		E	st-West:	375
	VOLUME/CAPACITY (V/C) RATIO		SUM:			SUM:	972			SUM:	1056			SUM:	1076			SUM:	1076
1//0	LESS ATSAC/ATCS ADJUSTMEN			0.634			0.648				0.704				0.717				0.717
V/C				0.564			0.578				0.604				0.617				0.617
	LEVEL OF SERVICE (LOS) .]		Α	<u> </u>		Α				В				В				В

PROJECT IMPACT

Change in v/c due to project: 0.013
Significant impacted? NO

Δv/c after mitigation: 0.013
Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Main St					of Count	2016	Amb	oient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	,
49	East-West Street:	Imperial	Hwy			Projec	c <mark>tion Ye</mark> ar	2035		Pea	ık Hour:	AM	Revie	wed by:			Project:	W	'illowbro	ok
Орр	No. o osed Ø'ing: N/S-1, E/W-2 or	f Phases Both-3?			2 0			2 0				2 0				2 0				2 0
Right '	Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 WI		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-2?	EB- U	VVB	0 1	EB	U VVI	B 0 1	EB	0	WB	0 2	EB	0	WB	0 2	EB	0	WB	0
	Override	Capacity			0			0				ō				0				0
			EXISTI	NG CONDI	TION	EXISTI	NG PLUS PI	ROJECT	FUTUR	RE CONDITI	ON W/O PF	ROJECT	FUT	TURE CONE	ITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total	Lane	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total	No. of	Lana Valuma	Added	Total	No. of	Lane
<u> </u>	Left		Volume 57	1	57	0	Volume 57	Volume 57	Olume	63	1	63	Volume	Volume 63	Lanes	Lane Volume	Volume	Volume 63	Lanes	Volume 63
9	← Left-Through		07	0		Ŭ	O,		Ĭ	00	0	00	,0,	00	0	- 00		00	o	_ 00
NORTHBOUND	Through		349	0	396	3	352	399	4	387	0	441	3	390	0	444		390	0	444
뿔	Through-Right			1							1				1				1	
8			47	0	0	0	47	0	2	54	0	0	0	54	0	0		54	0	0
ž	Left-Right			0		1					0				0				0	
37000			CONTRACTOR			133 Lui	GATH						Lake S		REQUIRE !		(p+1)25_U	THE REAL PROPERTY.		
	Left		88	1	88	0	88	88	0	97	1	97	0	97	1	97		97	1	97
SOUTHBOUND	Left-Through Through		341	0	341	8	349	349	10	384	0	384	8	392	0	392		392	0	392
₩	→ Through-Right		341	O	341		549	343	10	304	0	304	Ů	392	Ó	392		392	0	392
5	Right		101	1	56	0	101	56	0	111	1	61	0	111	1	61		111	1	61
%	← Left-Through-Right ↓ Left-Right			0							0				0				0	
2000	Leit-Right		(All September 1		Name of Street		1,500 000		PER	500 700	U		150	C ELECTION	U	enter in the	MIDUSI	- 250	0	and the same
	ے Left		91	1	91	0	91	91	0	100	1	100	0	100	1	100		100	1	100
\ \	→ Left-Through		004	0	004		20=	0.00			0				0				0	
ਲੂ	→ Through → Through-Right		631	2	231	66	697	253	15	707	2	258	66	773	2	280		773	2	280
EASTBOUND	Right		61	Ó	61	0	61	61	0	67	0	67	0	67	Ó	67		67	Ó	67
≦	Left-Through-Right			0							0				0				0	
	- ✓ Left-Right			0							0		_		0	The state of the s	and the second		0	-
1	√ Left		115	1	115	0	115	115	2	128	1	128	0	128	1	128	ESSE NO	128	1	128
WESTBOUND				0							0				0				0	
	← Through		1066	2	415	42	1108	429	11	1181	2	460	42	1223	2	474		1223	2	474
l g l	Right		180	0	180	0	180	180	0	198	1	198	0	198	1	198		198	0	198
l š	Left-Through-Right		100	0		Ĭ	100	100	Ĭ	100	0	100		100	Ö	130		100	0	100
لئا	} Left-Right			0							0				0				0	
	CRITICAL V	OLUMES		th-South: ast-West:	484 506		th-South: ast-West:	487 520			th-South: ast-West:	538 560			h-South: st-West:	541 574			th-South: ast-West:	541 574
	OKITIOAL V	OLUMES		SUM:	990		ast-west: SUM:	1007		E	SUM:			Ęć	SUM:	1115		E	SUM:	1115
	VOLUME/CAPACITY (V/C) RATIO:			0.660		2	0.671				0.732				0.743				0.743
V/C	LESS ATSAC/ATCS ADJUS	STMENT:			0.590			0.601				0.632				0.643				0.643
	LEVEL OF SERVICE	E (LOS):			A			В				В				В				В
L		, /-																		

PROJECT IMPACT

Change in v/c due to project: 0.011
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.011 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	North-South Street: San Pedro St. East-West Street: Imperial Hwy				Year	of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	
50	East-West Street:	Imperial	Hwy			Projec	tion Year:	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroc	k
	No. o osed Ø'ing: N/S-1, E/W-2 oı Turns: FREE-1, NRTOR-2 o		NB 0	SB	4 0 0	NB	0 SB	4 0 0	NB	0	SB	4 0 0	NB	0	SB	4 0 0	NB	0	SB	4 0 0
Right	ATSAC-1 or ATSAC+	ATCS-2?	EB 0	WB	0 1 0	EB	0 W E	3 0 1 0	EB	0	WB	0 2 0	EB	0	WB	0 2 0	EB	0	WB	0 2 0
			EXISTII	NG CONDI	TION	EXISTI	NG PLUS PR	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FU [*]	TURE CONI	DITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
OND	Through ↑ Through		92 340	1 0 1	92 340	0 2	92 342	92 342	0	101 374	1 0	101 374	0	101 376	1 0 1	101 376		101 376	1 0	101 376
NORTHBOUND	Through-Right Right		11	0	0	0	11	0	0	12	0	0	0	12	0	0		12	0	0
Q	← Left-Through-Right ← Left-Right	Corporation	OLD STATE OF	0						- 1	0				0				0	
QN D	Left Left-Through		82	1 0	82 308	0	82	82	2	92	1 0 1	92	0	92	1 0 1	92	50.54	92	1 0	92
SOUTHBOUND	↓ Through ↓ Through-Right ↓ Right		308 107	0	30	6 0	314 107	314	0	339 117	0	339	0	345 117	0	345		345 117	0	345
ဖွ	★ Left-Through-Right ★ Left-Right	Ste 7, Un 13		0			NOT THE OWNER.		023		0				0			30000	0	Statut .
QN	J Left → Left-Through		155	1 0	155	0	155	155	0	170	1 0	170	0	170	1 0	170		170	1 0	170
EASTBOUND	→ Through → Through-Right → Right		354 73	2 0 1	177	66 0	420 73	210	17 0	405 80	2 0 1	203	66	471 80	2 0 1	236		471 80	2 0 1	236 30
FA	Left-Through-Right			0							0				0				0	
8			39	1	39	0	39	39	0	43	1	43	0	43	1	43		43	1 0	43
WESTBOUND	← Through ← Through-Right ← Right		1145 140	2 1 0	428	42	1187 140	140	13	1269 156	2 1 0	475 156	42	1311 156	2 1 0	489 156		1311 156	2 1 0	489 156
WE	Left-Through-Right Left-Right			0							0 0				0 0				0	
	CRITICAL V	OLUMES		th-South: est-West: SUM:	422 583 1005	1	rth-South: ast-West: SUM:	424 597 1021			th-South: ast-West: SUM:	466 645 1111			th-South: ast-West: SUM:	659			th-South: ast-West: SUM:	468 659 1127
	VOLUME/CAPACITY (V/C				0.731			0.743	-			0.808				0.820				0.820
V/C	LESS ATSAC/ATCS ADJU-				0.661 B			0.673 B	. •			0.708 C				0.720 C				0.720 C

PROJECT IMPACT

Change in *v/c* due to project: 0.012
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.012 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: San Ped	ro St			Year	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	
51	East-West Street: 120th St				Projec	ction Year:	2035		Pea	ak Hour:	АМ	Revie	wed by:			Project:	W	illowbrod	k
	No. of Phases osed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	2 0 0 0	NB EB	0 SB 0 WE		NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			1 0			1 0				2				2 0				2
		EXISTI	NG CONDI	TION	EXISTI	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FUT	URE CON	OITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
UND	Left←↑ Left-Through↑ Through	50 303	1 0 1	50 303	0	50 303	50 303	0	55 333	1 0 1	55	0	55 333	1 0 1	55		55 333	1 0	55
NORTHBOUND	Through-Right Right	86	0	64	5	91	68	0	94	0	70	5	99	0	74		99	0	74
Į į	← Left-Through-Right ← Left-Right		0							0 0				0 0		4		0 0	
S S	Left → Left-Through	73	1 0	73	6	79	79	0	80	1 0	80	6	86	1 0	86		86	1 0	86
SOUTHBOUND	↓ Through ↓ Through-Right ↓ Right	342 56	1 0 1	342 36	0	342 56	342 36	0	376 61	1 0 1	376 39	0	376 61	1 0 1	376		376 61	1 0 1	376 39
SOL	★ Left-Through-Right		0		(Alberta per					0				0				0	
Q.	Ĵ Left Ĵ Left-Through	41	1	41	0	41	41	0	45	1 0	45	0	45	1	45		45	1	45
EASTBOUND	→ Through → Through-Right → Right	255 50	1 0 1	255 25	35	290 50	290	12	292 55	1 0 1	292	35	327 55	1 0 1	327		327 55	1 0 1	327
E E	Left-Through-Right Left-Right		0							0				0			and females	0	
2	✓ Left✓ Left-Through	45	1 0	45	2	47	47	0	49	1 0	49	2	51	1	51		51	1 0	51
WESTBOUND	← Through ← Through-Right ← Right	464 98	1 0 1	464 62	20 2	484 100	484 61	7	516 108	1 0	516 68	20	536 110	1 0 1	536 67		536 110	1 0	536 67
WE	Right Left-Through-Right Left-Right		0					U		0		2		0 0				0	
	CRITICAL VOLUMES		th-South: ast-West: SUM:	392 505 897		rth-South: ast-West: SUM:	392 525 917			th-South: ast-West: SUM:	431 561 992			th-South: ast-West: SUM:	431 581 1012			th-South: ast-West: SUM:	431 581 1012
	VOLUME/CAPACITY (V/C) RATIO:			0.598			0.611				0.661				0.675				0.675
V/C	LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.528 A			0.541 A				0.561 A				0.575 A				0.575 A

PROJECT IMPACT

Change in v/c due to project: 0.014
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.014 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Compton Av	ve			Yea	r of Count	2016	Amb	ient Grov	/th: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016	
17	East-West Street:	Imperial Hw	vy			Projec	ction Year	2035		Pea	k Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
	No. of F posed Ø'ing: N/S-1, E/W-2 or B Turns: FREE-1, NRTOR-2 or C	Both-37	B 0 B 0	SB WB	2 0 0 0	NB EB	0 SE 0 WE		NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0
	ATSAC-1 or ATSAC+AT Override Ca				1			1 0				2				2				2
			EXISTIN	IG CONDIT	TION	EXIST	NG PLUS PF	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PRO	OJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	v	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
QNND	*) Left ←↑ Left-Through ↑ Through		115 335	1 0 1	11 5 335	94 39	209 374	209 374	3	129 369	1 0 1	129 369	94 39	223 408	1 0 1	223 408		223 408	1 0 1	408
NORTHBOUND	↑ Through-Right ↑ Right		169	0	73	37	206	67	3	188	0	82	37	225	0	76		225	0	76
N	← Left-Through-Right ← Left-Right		1971	0				DESIGNATION OF THE PERSON OF T			0				0			W 5 81	0	
OUND	↓ Left ↓ Left-Through ↓ Through		114 292	1 0 0	114 427	5 73	119 365	119 500	0	125 324	1 0 0	125 472	5 73	130 397	1 0 0	130 545		130 397	1 0 0	130 545
SOUTHBOUND	→ Through-Right → Right → Left-Through-Right		135	1 0 0	0	0	135	0	0	148	1 0 0	0	0	148	1 0 0	0		148	1 0 0	0
	人、Left-Right し ノ Left	US. 335	76	0	76	0	76	76	E 520	84	0	84	0	84	0	84	DE SAULES	84	0	84
OUND	- → Left-Through Through		667	0 2	280	57	724	355	9	741	0 2	312	57	798	0 2	388		798	0 2	388
EASTBOUND	Through-Right Right Left-Through-Right Left-Right		173	1 0 0 0	173	169	342	342	6	196	1 0 0	196	169	365	1 0 0	365		365	0	365
			2,827		Parent .	1000	2 mm=010				STATE OF		-	1723	1,350,50		SEL	Alexander		1201
QND	✓ Left ✓ Left-Through ← Through		192 1504	1 0 1	192 834	86 26	278 1530	278 847	7	212 1657	1 0 : 1	212 919	86 26	298 1683	1 0 1	298 932		298 1683	1 0 1	298 932
WESTBOUND	Through-Right Right Left-Through-Right		163	1 0 0	163	1	164	164	1	180	1	180	1	181	1 0 0	181		181	1 0	181
5	} Left-Right			0							0	استا			0				0	100
	CRITICAL VO	LUMES		th-South: ast-West: SUM:	542 910 1452		rth-South: East-West: SUM:	709 923 1632			th-South: ast-West: SUM:	601 1003 1604			th-South: ast-West: SUM:	768 1016 1784			th-South: ast-West: SUM:	768 1016 1784
	VOLUME/CAPACITY (V/C)	RATIO:		20,,,,	0.968		35	1.088			30	1.069			20	1.189				1.189
V/0	LESS ATSAC/ATCS ADJUST				0.898			1.018				0.969				1.089				1.089
	LEVEL OF SERVICE	: (LUS):			D			F				E				F	1			F

PROJECT IMPACT

Change in v/c due to project: 0.120 $\Delta v/c$ after mitigation: 0.120 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Wilmingt	on Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016	
26	East-West Street:	Imperial I	Hwy			Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
	No. of posed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or		NB 0	SB	3 0 0	NB	0 SB		NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
	ATSAC-1 or ATSAC+/	ATCS-2?	EB 0	WB	0 1 0	EB	0 WE	1	EB	0	WB	0 2 0	EB	0	WB	0 2 0	EB	0	WB	0 2
-	Override	Capacity	EXIST	NG CONDI		EXIST	ING PLUS PF		FUTUR	E CONDITI	ON W/O PR		FUTUR	E CONDIT	ION W/ PRO	_	FUTURE	W/ PROJE	CT W/ MITI	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
QND	Left ← Left-Through		177	1 0 1	177 239	20	197 466	197 259	1 6	195 473	1 0 1	195 265	20 40	215 513	1 0 1	215 285		215 513	1 0 1	215 285
NORTHBOUND	↑ Through ↑ Through-Right ↑ Right		426 52	1 0	52	0	52	52	0	473 57	1 0	57	0	57	1 0	57		57	1 0	57
N RO	← Left-Through-Right ← Left-Right			0							0				0				0	12.
2	↓ Left ↓ Left-Through		31	1 0	31	0	31	31	0	34	1	34	0	34	1	34		34	1 0	34
SOUTHBOUND	Through ← Through-Right		843	1 1 0	494 144	386	1229 148	689 148	32 0	957 158	1 1 0	558	386	1343 162	1 1 0	753		1343 162	1 1 0	753
Sou	→ Right→ Left-Through-Right→ Left-Right		144	0	144	4	140	140	U	100	0	156	4	102	0	102		102	0	102
Q	J Left → Left-Through		143	1	143	10	153	153	0	157	1 0	157	10	167	1	167		167	1 0	167
EASTBOUND	→ Through → Through-Right → Right		23 220	1 0	132	46	23 266	23 168	3	25 244	1 0 1	25 147	0 46	25 290	1 0 1	25 183		25 - 290	1 0	25 183
EAS	Left-Right		220	0	132	40	200	100	3	244	0	147	40	250	0	103		230	0	103
٥	「 Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
WESTBOUND	Through Through-Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
WES	Right Left-Through-Right Left-Right		0	0 0 0	0	0	0	0	0	0	0 0 0	0	0	0	0 0 0	0		0	0 0 0	0
	CRITICAL V	OLUMES		th-South: ast-West: SUM:	671 143 814		rth-South: East-West: SUM:	886 168 1054			th-South: ast-West: SUM:	753 157 910			th-South: ast-West; SUM:	968 183 1151			th-South: ast-West: SUM:	968 183 1151
	VOLUME/CAPACITY (V/C)	RATIO:			0.571			0.740				0.639				0.808				0.808
V/C	LESS ATSAC/ATCS ADJUS LEVEL OF SERVIC				0.501 A			0.670 B				0.539 A				0.708 C				0.708 C

PROJECT IMPACT

Change in v/c due to project: 0.169 Δv/c after Significant impacted? YES Fully

 $\Delta v/c$ after mitigation: 0.169 Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Imperia			Yea	r of Count	: 2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016		
36	East-West Street: I-105 w	b Ramps			Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	llowbroo	k
	No. of Phases to sed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity	NB 0 EB 3	SB WB	4 1 0 0 1	NB EB	0 SE 3 WE		NB EB	0 0	SB WB	4 1 0 0 2	NB EB	0	SB WB	4 1 0 0 2 0	NB EB	0	SB WB	4 1 0 0 2
	Override Capacity	EXIST	NG CONDI		EXIST	NG PLUS PI		FUTUR	E CONDITION	ON W/O PR		FUTUE	RE CONDIT	ION W/ PRO		FUTURE	W/ PROJE	CT W/ MITH	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	539 11 137	1 0 0 1 0	275 275 0	9 12	833 20 149	427 427 0	0	594 12 150	1 1 0 0 1 0	303 303 0	294 9 12	888 21 162	1 1 0 0 1 0	455 455 0		888 21 162	1 1 0 0 1 0	455 455 0
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	7 34 68	0 0 0 0 0 1	7 109 0	0 0 0	7 34 68	7 109 0	0 0	8 37 75	0 0 0 0 0 0	8 120 0	0 0 0	8 37 75	0 0 0 0 0 0	8 120 0		8 37 75	0 0 0 0 0 1	8 120 0
EASTBOUND	→ Left → Left-Through → Through → Through-Right Right → Left-Through-Right ← Left-Right	51 1012 224	1 0 3 1 1 0	51 253 0	7 89 139	58 1101 363	58 293 0	0 19 5	56 1129 251	1 0 3 1 1 0 0	56 282 100	7 89 139	63 1218 390	1 0 3 1 1 0 0	63 322 0		63 1218 390	1 0 3 1 1 0	63 322 0
WESTBOUND	← Left ← Left-Through ← Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right	742 1346 13	2 0 2 1 0 0	408 453 13	2 142 4	744 1488 17	409 502 17	0 30 0	814 1507 14	2 0 2 1 0 0	448 507 14	2 142 4	816 1649 18	2 0 2 1 0 0	449 556 18		816 1649 18	2 0 2 1 0 0	449 556 18
	CRITICAL VOLUMES		th-South: ast-West: SUM:	661	17	rth-South: East-West: SUM:	536 702 1238			th-South: ast-West: SUM:	423 730 1153			th-South: ast-West: SUM:	575 771 1346			h-South: st-West: SUM:	575 771 1346
V/C	VOLUME/CAPACITY (V/C) RATIO: LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.760 0.690 B			0.900 0.830 D				0.839 0.739 C				0.979 0.879 D				0.979 0.879 D

PROJECT IMPACT

Change in v/c due to project: 0.140 $\Delta v/c$ Significant impacted? YES

 $\Delta v/c$ after mitigation: 0.140 Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Mo	ona Blvd			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		9/30/2016	
39	East-West Street: Im	perial Hwy			Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
	No. of Ph. osed Ø'ing: N/S-1, E/W-2 or Bot Turns: FREE-1, NRTOR-2 or OL ATSAC-1 or ATSAC+ATC Override Cap	h-3? A-3? S-2?	SB WB	2 0 0 0 1	NB EB	0 SE 0 W	2 0 3 0 B 0 1	NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0 0	SB WB	2 0 0 0 2
		EXIST	ING COND	TION	EXIST	ING PLUS PI	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	140 49 157	0 1 0 0 1 0	140 189 62	2 5	144 51 162	144 195 66	0	154 54 172	0 1 0 0 1 0	208 67	4 2 5	158 56 177	0 1 0 0 1 0	158 214 71		158 56 177	0 1 0 0 1 0	158 214 71
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	27 103 93	0 0 0 0 0 0	27 223 0	0 5 0	27 108 93	27 228 0	0 0 0	30 113 102	0 0 0 0 0 0	30 245 0	0 5 0	30 118 102	0 0 0 0 0 1	30 250 0		30 118 102	0 0 0 0 0 0	30 250 0
EASTBOUND	→ Left → Left-Through → Through-Right Right ← Left-Through-Right ← Left-Right ← Left-Right	37 937 178	1 0 2 1 0 0	37 372 178	0 84 17	37 1021 195	37 405 195	0 19 0	41 1047 195	1 0 2 1 0 0	41 414 195	0 84 17	41 1131 212	1 0 2 1 0 0	41 448 212		41 1131 212	1 0 2 1 0 0	41 448 212
WESTBOUND	← Left ← Left-Through ← Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right	191 1800 21	1 0 2 1 0 0	191 607 21	2 144 0	193 1944 21	193 655 21	0 30 0	210 2005 23	1 0 2 1 0	210 676 23	2 144 0	212 2149 23	1 0 2 1 0 0	212 724 23		212 2149 23	1 0 2 1 0	212 724 23
	CRITICAL VOLU	MES E	th-South: ast-West: SUM:	363 644 1007		rth-South: East-West: SUM:	372 692 1064			th-South: ast-West: SUM:	399 717 1116			th-South: ast-West: SUM:	408 765 1173			th-South: ast-West: SUM:	408 765 1173
V/C	VOLUME/CAPACITY (V/C) RA LESS ATSAC/ATCS ADJUSTMI LEVEL OF SERVICE (L	ENT:		0.671 0.601 B			0.709 0.639 B				0.744 0.644 B				0.782 0.682 B				0.782 0.682 B

PROJECT IMPACT

Change in v/c due to project: 0.038 $\Delta v/c$ after mitigation: 0.038 Significant impacted? NO Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #	: North-South Street: Avalon E	3lvd			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		9/30/2016	
1	East-West Street: Imperial	Hwy			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
	No. of Phases			4			4				4				4				4
	pposed Ø'ing: N/S-1, E/W-2 or Both-3?	NB 0	SB	0	NB	0 SE	0 3 0	NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
Righ	t Turns: FREE-1, NRTOR-2 or OLA-3?	EB 0	WB	0	EB	0 W		EB	0	WB-	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATCS-2?		4.5	1	20.50	0 111	1				2		J		2		· ·	***	2
	Override Capacity			0			0				0				0				0
		EXIST	NG CONDI	TION	EXIST	ING PLUS PI	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	T5	Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
₽	↑ Left	100	1 0	100	0	100	100	10	120	1	120	0	120	1	120		120	1	120
\(\frac{1}{2} \)	← Left-Through ↑ Through	655	1	366	18	673	377	30	749	0	419	18	767	0	431		767	1	431
8	† Through-Right	000	1	300	10	075	377	30	143	1	713	"	101	1	431		707	1	431
	Right	76	0	76	5	81	81	6	89	0	89	5	94	0	94		94	0	94
NORTHBOUND	← Left-Through-Right		0							0				0				0	1.51
			0							0				0				0	
		450	10-27-6			470	THE REAL PROPERTY.		470			HUNSHER	100			3300	55,MS5		
₽	→ Left → Left-Through	150	1	150	20	170	170	5	170	1	170	20	190	1	190		190	1	190
1 3	Through	548	1	316	15	563	324	37	638	1	365	15	653	1	373		653	1	373
Ψ	Through-Right	"	1							1				1				1	
SOUTHBOUND	Right ب	84	0	84	0	84	84	0	92	0	92	0	92	0	92		92	0	92
လွ	→ Left-Through-Right		0							0				0				0	
Total Control	ل لـــــــــــــــــــــــــــــــــــ	79 37 300 230	0	THE REAL PROPERTY.	HATE SOLD	1972/85/1978		NATIVE DE	THE PERSON NAMED IN	0		-	micros et	0	Name and		-	0	and the same
885000	∫ Left	165	1	165	0	165	165	0	181	1	181	0	181	1	181		181	1	181
9	-2→ Left-Through		0							0				0				Ó	
<u>5</u>	→ Through	1296	2	477	52	1348	495	10	1432	2	532	52	1484	2	549		1484	2	549
EASTBOUND	→ Through-Right		1	400		400	400		400	1	400		400	1	400		400	1	400
AS	Right Left-Through-Right	136	0	136	0	136	136	14	163	0	163	0	163	0	163		163	0	163
ш	Left-Right		0							0				0				0	5.308
4535	AND DESCRIPTION OF THE PERSON	E ISTORIA	J. F. F. W.	SECTION 1	Tiles	25.B.E	Pantin I	75.5	11100		ST US	F 2 50	1500	30 30		100000	W 1990	905	SE-180
	€ Left	84	1	84	6	90	90	6	98	1	98	6	104	1	104		104	1	104
WESTBOUND		500	0 2	054	75	GE7	200	40	GE 1	0	204	7.	706	0 2	246		700	0	246
<u>@</u>	Through-Right	582	1	251	75	657	286	12	651	1	281	75	726	1	316		726	1	316
STI	Right	171	Ó	171	30	201	201	4	192	Ó	192	30	222	Ó	222		222	0	222
X	Left-Through-Right		0							0				0				0	
	- Left-Right		0	-						0				0				0	
			516		rth-South:	547			th-South:	589			th-South:	621			th-South:	621	
	CRITICAL VOLUMES	-	ast-west: SUM:	561 1077	·	East-West: SUM:	585 1132		E.	ast-West: SUM:	630 1219		E	ast-West: SUM:	653 1274		E	st-West: SUM:	653 1274
	VOLUME/CAPACITY (V/C) RATIO:		JUM.	0.783		JUIN.	0.823			Join.	0.887			30M.	0.927			JUIN.	0.927
v	C LESS ATSAC/ATCS ADJUSTMENT:	1.5																	
"				0.713			0.753				0.787				0.827				0.827
L	LEVEL OF SERVICE (LOS):	<u></u>		С			С				С				D				D

PROJECT IMPACT

Change in v/c due to project: 0.040 $\Delta v/c$ after mitigation: 0.040 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Ava	alon Blvd				Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		9/30/2016	
2	East-West Street: 120				Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k	
Орг	No. of Pha posed Ø'ing: N/S-1, E/W-2 or Both	1-3?	0		0		0.05	0		2		2 0		0		0		0	0.0	0
Right	Turns: FREE-1, NRTOR-2 or OLA	NB EB	0	SB WB	0	NB EB	0 SE 0 WE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0 0	SB WB	0
	ATSAC-1 or ATSAC+ATCS				1		0 111	1				2		Ū		2				2
	Override Capa				0			0				0				0				0
	**********	E		G CONDIT			ING PLUS P				ON W/O PR				ION W/ PR				CT W/ MITI	
	MOVEMENT	Volu	ne	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		79	1	79	0	79	79	9	96	1	96	0	96	1	96		96	1	96
S	Left-Through † Through	. I .	29	0	291	5	534	299	36	616	0	347	5	621	0	355		621	0	355
≌	Through-Right		25	1	231	"	004	200	50	010	1	047		021	1	000		021	1	- 000
NORTHBOUND	Right		52	0	52	11	63	63	21	78	0	78	11	89	0	89		89	0	89
2	← Left-Through-Right			0							0				0				0	
	→ Left-Right			0			_				0	-	-	-	0		NAME OF TAXABLE PARTY.		0	-
15550	Left	1311012	48	1	48	17	65	65	12	65	1	65	17	82	1	82	and the second	82	1	82
SOUTHBOUND	→ Left-Through			0							0				0	Table 1			0	
∥ ਲૂ	Through	. '	03	1	433	6	709	436	43	814	1	497	6	820	1	500		820	1	500
	← Through-Right → Right		63	1 0	163	0	163	163	1	180	0	180	0	180	1	180		180	0	180
S	Left-Through-Right	- 1	03	0	103	"	103	103		100	0	100	"	100	0	100		100	0	100
σ,	↓ Left-Right			0							0				0				0	Land I
	THE REPORT OF THE PARTY OF THE						100			400				100	88.5	100	45	400		400
	→ Left → Left-Through	- 1	09	1 0	109	0	109	109	2	122	1 D	122	0	122	1	122		122	0	122
EASTBOUND	→ Through		57	1	257	37	294	294	8	290	1	290	37	327	1	327		327	1	327
<u>8</u>	→ Through-Right			0							0				0				0	11,50
ASI	Right	- 1	90	1	51	0	90	51	12	111	1	63	0	111	1	63		111	1	63
ш				0							0 0				0				0	
SEA	All Miles and Halling and the	-	Start.			13.5.5		altri ist	NEW YORK	Contract of		1	27.5		1981 G 319	CHAR	SATE OF	-		ERW
	✓ Left		87	1	87	20	107	107	0	95	1	95	20	115	1	115		115	1	115
WESTBOUND		- 1	92	0	492	61	553	553	11	551	0	551	61	612	0 1	612		612	0	612
8	← Through-Right		7Z	0	432	"	303	333	''	551	Ó	331		012	0	012		012	0	012
∥ Si	Right Left-Through-Right	- 1	64	1	40	22	86	54	9	79	1	47	22	101	1	60		101	1	60
₹	h			0							0				0				0	
	├ Left-Right		North	0 n-South:	512	A1-	rth-South:	515		Mon	0 th-South:	593	-	Ma-	th-South:	596		Non	th-South:	596
	CRITICAL VOLU	MES		st-West:	601		East-West:	662			ast-West:	673			ast-West:	734			st-West:	734
				SUM:	1113		SUM:	1177			SUM:	1266			SUM:	1330			SUM:	1330
	VOLUME/CAPACITY (V/C) RA	TIO:			0.742			0.785				0.844				0.887				0.887
V/0	LESS ATSAC/ATCS ADJUSTME	ENT:			0.672			0.715				0.744	l			0.787				0.787
	LEVEL OF SERVICE (L	os):			В			С				С				С				С

PROJECT IMPACT

 $\Delta v/c$ after mitigation: 0.043 Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Cen	tral Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016	
5		rd St			Proje	ction Year			Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
Орр	No. of Pha nosed Ø'ing: N/S-1, E/W-2 or Both		211	2 0			2 0	1			2 0			. 1	2 0				2 0
Right	Turns: FREE-1, NRTOR-2 or OLA	-3? NB 0 EB 0	SB WB	0	NB EB	0 SE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS	-2?		1			1				2				2				2
<u> </u>	Override Capac		ING CONDI	0	EVICT	NG PLUS PF	0	FUTUR	E CONDITI	ON W/O PR	0	FUTUE	E CONDIT	ION W/ PRO	0	CUTURE	W/ PROJE	CT W/ MITI	0
	MOVEMENT	EXIST	No. of	Lane	Project			Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
	MOVEMENT	Volume	Lanes	Volume	Traffic	Total Volume	Lane Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left	59	1	59	0	59	59	0	65	1	65	0	65	1	65		65	1	65
3	← Left-Through	1105	0 2	432	66	1171	454	55	1268	0 2	493	66	1334	0 2	515		1334	0 2	515
∥	↑ Through ↑ Through-Right	1105	1	432	00	1171	404	55	1200	1	493	00	1334	1	313		1334	1	313
NORTHBOUND	→ Right	191	Ó	191	0	191	191	0	210	0	210	0	210	0	210		210	0	210
5	← Left-Through-Right		0							0				0				0	
	← Left-Right		0							0				0				0	
	Left	140	1	140	0	140	140	0	154	1	154	0	154	1	154		154	1	154
	Left-Through	140	Ó	140		140	140	"	134	0	134		154	Ó	104		104	0	104
8	↓ Through	1203	2	602	48	1251	626	56	1376	2	688	48	1424	2	712		1424	2	712
	← Through-Right		0	V 3						0				0			=0	0	0.4
SOUTHBOUND	→ Right → Left-Through-Right	46	1 0	29	0	46	29	0	50	1	31	0	50	1 0	31		50	0	31
S	上eft-Right		0							0				0				0	1
			0.524		IIIK.S	N. 35 3	STATE OF THE PARTY.	THE ALL	10 TO			Trans.	2 2	The second	STEEL ST	Tipo and		DE LA	
		35	1	35	0	35	35	0	38	1	38	0	38	1	38		38	1	38
EASTBOUND	→ Left-Through → Through	197	0	197	2	199	199	3	219	0	219	2	221	0 1	221		221	0	221
g	→ Through Through-Right	197	0	197	-	199	199	3	215	Ó	213	-	221	0	221		221	Ó	221
ST	Right	59	1	30	0	59	30	0	65	1	33	0	65	1	33		65	1	33
₩	Left-Through-Right		0							0				0				0	
Charmon	-{ Left-Right	THE RESERVE OF THE RES	0		Name of Street		-		-	0	-	700	C27 (C2-27)	0		THE PERSON NAMED IN		0	
200	€ Left	162	1	162	0	162	162	0	178	1	178	0	178	1	178		178	1	178
WESTBOUND			0							0				0				0	THE
g	← Through ↑ Through-Right	217	0	405	3	220	408	3	241	0	447	3	244	0	450		244	0	450
I E	← Through-Right ← Right	188	1 0	0	0	188	0	0	206	0	0	0	206	0	0		206	0	0
%	Left-Through-Right	100	0	V		100			200	0			200	Ö			200	0	
_ >	├ Left-Right		0							0	THE R			0				0	
	CDITION NO.		rth-South:	661		rth-South:	685			th-South:	753			th-South:	777			th-South:	777
	CRITICAL VOLUM	155	ast-West: SUM:	440 1101	1	East-West: SUM:	443 1128		E	ast-West: SUM:	485 1238		E	ast-West: SUM:	488 1265		E	st-West: SUM:	488 1265
	VOLUME/CAPACITY (V/C) RAT	TIO:	JUIN.	0.734		JUM.	0.752			JOM.	0.825			30.11.	0.843			20111	0.843
V/C	LESS ATSAC/ATCS ADJUSTME	- 1		0.734			0.732				0.725				0.743				0.743
1 "	LEVEL OF SERVICE (LC			0.664 B			0.002 B				0.725 C				0.743 C				C
	LLVLL OF SERVICE (EC	, 5,.		D			D												

PROJECT IMPACT

Change in v/c due to project: 0.018 Δv/c after mitigation: 0.018

Significant impacted? NO Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Central A	ve			Yea	r of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016	
6	East-West Street:	Imperial I	lwy			Proje	ction Year:	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	llowbroo	k
	No. o osed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or	. OL A-32	NB 3	SB	4 0 0	NB	3 SB		NB	3	SB	4 0 0	NB	3	SB	4 0 0	NB EB	3	SB WB	4 0 0 0
	ATSAC-1 or ATSAC+	ATCS-2?	EB 0	WB	0	EB	0 WE	1 0	EB	0	WB	0 2 0	EB	0	WB	0 2 0	EB	U	WD	2
-	Override	Capacity	EVICTI	NG CONDI	0 TION	EVICT	NG PLUS PR	<u> </u>	ELITUR	E CONDITION	ON W/O PR		FUTUE	E CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MITK	
	MOVEMENT	}	EXISTI	No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	1 Left		68	2	37	11	79	43	2	77	2	42	11	88	2	48		88	2	48
	← Left-Through		200	0	200	00	4000	504		1122	0 2	561	26	1148	0 2	574		1148	0 2	574
	↑ Through ↑ Through-Right	- 1	982	2	491	26	1008	504	44	1122	0	201	20	1140	0	3/4		1140	0	3/4
NORTHBOUND	Right	- 1	283	1	167	41	324	175	0	311	1	183	41	352	1 -	191		352	1	191
ਲ਼	← Left-Through-Right			Ô							0				0				0	3-2
-	← ← ← ← ← ← ← ← ← ← ← ← ←			0							0				0				0	100
		1000	044		440	22	244	134	6	238	2	131	33	271	2	149		271	2	149
9	└→ Left ├→ Left-Through		211	2	116	33	244	134	. 0	230	0	131	33	211	0	143		211	0	143
SOUTHBOUND	Through		563	2	282	22	585	293	49	667	2	334	22	689	2	345		689	2	345
¥	← Through-Right			0							0				0	- 3.7			0	
5	Right		178	1	127	0	178	127	2	197	1	141	0	197	1	141		197	1	141
S	★ Left-Through-Right ↓ Left-Right			0	2001						0				0				0	F .
10000	Leit-Kigiit	E 17 To			45000	12-319-7			W-133	UP IN S	SHALL		Sec.	2244		STATE OF THE PERSON NAMED IN	THE REAL PROPERTY.	1000	ME JE	100 S
			185	2	102	0	185	102	1	204	2	112	0	204	2	112		204	2	112
EASTBOUND	Left-Through			0	000		4407	004	_	4450	0	405	77	1006	0 2	432		1236	0	432
ਲૂ	→ Through → Through-Right		1050	2	366	77	1127	394	7	1159	2	405	77	1236	1	432		1230	1	432
STE	Right		49	Ó	49	6	55	55	1	55	ó	55	6	61	o o	61		61	0	61
E A	Left-Through-Right			0							0				0				0	- Alb.
	-			0			minument.			_	0	-	-		0	-	CHOCOCOCO	- Constant	0	ASSESSED FOR
W. I.	€ Left	4,000	211	2	116	60	271	149	0	232	2	128	60	292	2	161		292	2	161
9	T Left-Through			0			'				0		"		0				0	
5	← Through		965	2	428	111	1076	481	10	1069	2	476	111	1180	2	530		1180	2	530
Ĕ	Through-Right		0.15	1	242		266	200		360	1	360	E0.	410	1 0	410		410	1	410
WESTBOUND	Right Left-Through-Right		318	0	318	50	368	368	11	360	0	300	50	410	0	410		410	0	410
3	Left-Right			0							0				0				ő	5 T. Y.
				th-South:			rth-South:	638		-	th-South:	692			th-South:	723			th-South:	723
	CRITICAL V	OLUMES	E.	ast-West:			East-West:	583		E	ast-West:	588 1280		E	ast-West: SUM:	642 1365		E	ast-West: SUM:	642 1365
	VOLUME/CAPACITY (V/C	PATIO:		SUM:		1	SUM:	1221			SUM:	0.931			SUIVI:	0.993			GUINI:	0.993
	·				0.827			0.888								0.893			×	0.893
V/C	LESS ATSAC/ATCS ADJU				0.757			0.818				0.831 D				0.893 D				0.693
	LEVEL OF SERVICE	E (LUS):			С			D				U				U	1			

PROJECT IMPACT

Change in v/c due to project: 0.062 Δv/c after mitigation: 0.062
Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Central Av	re e			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:	,	9/30/2016	
7	East-West Street:	-105 w/b F	Ramps			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
Орј	No. of F posed Ø'ing: N/S-1, E/W-2 or B	oth-3?	/B 0	SB	3 0 0	NB	0 SE	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
Right	Turns: FREE-1, NRTOR-2 or C		IB 0 0	WB	0	EB	0 WE		EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+AT	TCS-2?			1 0	2		1				2				2				2
-	Override Ca	араспу	FXISTI	NG CONDI		EXIST	NG PLUS PI		FUTUR	E CONDITION	ON W/O PR		FUTUR	RE CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MITI	
	MOVEMENT	-		No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left		329	2	181	88	417	229	27	388	2	213	88	476	2	262		476	2	262
NORTHBOUND	← Left-Through ↑ Through		944	0 2	472	78	1022	511	45	1081	0 2	541	78	1159	0 2	580		1159	0 2	580
<u>@</u>	Through ↑ Through-Right		344	0	712	'6	1022	011	15	1001	0	041	, ,	1100	0	000		1100	0	000
É	Right		0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
₽ P	← Left-Through-Right	- 1		0							0				0				0	
coeste	→ Left-Right		- 10 - 1	0		TE 11 2 2 2	-		Name and Address of the Owner, where	100000	0		-	DIVIDE A	0			07 F 191	0	Control of
i anasti	Left		0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
SOUTHBOUND		- 1		0							0				0				0	
∥ ໘	Through	- 1	1000	2	500	32	1032	516	46	1143	2	572	32	1175	2 0	588		1175	2	588
ᆙ	→ Through-Right → Right	- 1	556	0	556	55	611	611	5	615	0 1	615	55	670	1	670		670	1	670
8	Left-Through-Right	- 1	330	Ó	330		011	0.1	J	010	Ó	0.0		0, 0	0	0.0		0,0	0	175
S	人 Left-Right			0	22.5						0				0				0	
1334	∫ Left		0	0	0	11531	0	0	0	0	0	0	0	0	0	0		0	0	0
₽	Left-Through	- 1	U	0			Ü		Ŭ	Ü	0			Ü	0			Ü	0	2
EASTBOUND	→ Through	- 1	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
l H	Through-Right	- 1	0	0	0		0	0		0	0	0	n:	0	0	0		Ω	0	0
AS	Right Left-Through-Right	- 1	0	0	U		U	0	0	U	0	0	0	U	0	U		U	0	0
"	Left-Right			0	التيم						0				0				0	100
255	THE REPORT OF THE PARTY OF	SP INV			405	JUSTICE OF	2005	405		220	Livering.	160		220	100	160		222	45, 200	168
₽	Left Left-Through		265	1	135	0	265	135	41	332	1	168	0	332	1	168		332	1	100
Į	← Through		4	0	135	0	4	135	0	4	0	168	0	4	0	168		4	Ö	168
WESTBOUND	Through-Right			0			===	7 3 8		505	0			500	0	-		F00	0	500
ES.	Right Left-Through-Right		536	1	536	0	536	536	0	588	1 0	588	0	588	1 0	588		588	1	588
3	Left-Right			0					0		0	145			0				0	
				th-South:	737		orth-South:	840			th-South:	828			th-South:	932			th-South:	932
	CRITICAL VOI	LUMES	E	ast-West:	536	1	East-West:	536		E	ast-West:	588		E	ast-West:	588 1520		E	ast-West: SUM:	588 1520
	VOLUME/CAPACITY (V/C)	RATIO:		SUM:			SUM:	1376			SUM:	1416 0.994			SUM:	1.067			SUM:	1.067
1/4	C LESS ATSAC/ATCS ADJUST	- 1			0.893			0.966								0.967				0.967
"		- 1			0.823			0.896				0.894 D				0.967 E				0.967 E
	LEVEL OF SERVICE	(LUS):			D	L		D				ע	L							

PROJECT IMPACT

Change in v/c due to project: 0.073 Δv/c after mitigation: 0.073
Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Central			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		9/30/2016		
8	East-West Street: I-105 e/l	Ramps			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
	No. of Phases posed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0	SB	3 0 0	NB	0 SE		NB	0	SB	3 0 0	NB	0	SB	3 0 0	NB	0	SB	3 0 0
Kigiit	ATSAC-1 or ATSAC+ATCS-2?	EB 0	WB	0	EB	0 W	B 0	EB	0	WB	0 2	EB	0	WB	0 2	EB	0	WB	0
	Override Capacity			0			0				0				0				0
		EXISTI	NG CONDI	TION		ING PLUS PI	ROJECT			ON W/O PR	OJECT			ION W/ PR	DJECT		W/ PROJE		GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
9	↑ Left Left-Through	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
NORTHBOUND	Through	825	3	275	130	955	318	68	973	3	324	130	1103	3	368		1103	3	368
#	Through-Right	385	0	385	0	385	385	51	473	0	473	0	473	0	473		473	0	473
S	Left-Through-Right	300	0	303		300	303]	475	0	4/3		473	Ó	4/3		410	0	4,3
z	→ Left-Right		0							0				0				0	
FIRST		400		055		400	OFF.		500		070		500		070		FOR		070
2	↓ Left → Left-Through	463	2	255	0	463	255	0	508	2	279	0	508	2	279		508	2	279
0	↓ Through	793	2	397	32	825	413	87	957	2	479	32	989	2	495		989	2	495
물	Through-Right		0						0	0		0	0	0	0		0	0	0
SOUTHBOUND		0	0	0	0	0	0	0	0	0	0	"	0	0	0		0	0	U
Š	人 Left-Right		0							0				0				0	
-25	Left	477	1	365	36	513	392	4	527	1	411	36	563	1	438		563	1	438
2	- 1 Left-Through		0				1313			0				0				0	1.5
EASTBOUND	→ Through	240	0	365	0	240	392	0	263	0	411	0	263	0	438		263	0	438
E E	→ Through-Right → Right	378	1	0	44	422	0	29	444	0 1	0	44	488	0	0		488	1	0
∥ ĕ ∣	Left-Through-Right		1							1	PL	''	100	1			100	1	801
	-		0							0		- The		0				0	
525	√ Left	I 0	0	0	0000154	0	0	0	0	0	0	0	0	0	0		0	0	0
N N			0					_		0				0				0	
	← Through ↑ Through-Right	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
WESTBOUND	Through-Right Right	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
WE	Left-Through-Right		0			ŭ			-	0	13		· ·	0				0	
	ψ. cercingin	Nor	th-South:	640	No	rth-South:	640		Nor	th-South:	752		Nor	th-South:	752		Non	th-South:	752
	CRITICAL VOLUMES	E	ast-West:	365	1	East-West:	392		E	ast-West:	411		E	ast-West:	438		E	ast-West:	438
	VOLUME (OADAQITY 4//0) SATIS	-	SUM:			SUM:	1032			SUM:	1163			SUM:	1190			SUM:	1190
	VOLUME/CAPACITY (V/C) RATIO:			0.705			0.724				0.816				0.835				0.835
V/C	LESS ATSAC/ATCS ADJUSTMENT:	1		0.635			0.654				0.716				0.735				0.735
L	LEVEL OF SERVICE (LOS):			В	1		В				С				С				С

PROJECT IMPACT

Change in v/c due to project: 0.019
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.019 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Central Av	ve			Yea	r of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	9	/30/2016	
9	East-West Street:	120th St				Proje	ction Year:	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
	osed Ø'ing: N/S-1, E/W-2 or E Turns: FREE-1, NRTOR-2 or (OLA-3?	NB 0 EB 0	SB WB	2 0 0 0	NB EB	0 SB 0 WE		NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0	NB EB	0	SB WB	2 0 0 0
	ATSAC-1 or ATSAC+A Override C				1 0			1 0				2 0				2 0				2
			EXISTI	NG CONDI	TION	EXIST	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MITH	GATION
<u>.</u>	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		144	1	144	0	144	144	0	158	1	158	0	158	1	158		158	1	158
NORTHBOUND	← Left-Through ↑ Through ↑ Through-Right		845	0 1 1	489	5	850	511	52	979	0 1 1	573	5	984	0 1 1	595		984	0 1 1	595
NORTH			132	0	132	40	172	172	21	166	0	166	40	206	0	206		206	0	206
	→ Left-Right		_	0		-			-		0			_	0				0	100
Q.	→ Left → Left-Through	E ALS - E-S	75	1 0	75	78	153	153	0	82	1 0	82	78	160	1 0	160	i zmreća	160	1 0	160
SOUTHBOUND			770 120	1 1 0	445 120	6	776 120	448 120	30 87	875 219	1 1 0	547 219	6	881 219	1 1 0	550 219		881 219	1 1 0	550 219
nos	Left-Right		120	0	120	Ů,	120	120	07	219	0	219	Ů,	213	0	213		213	0	210
			76	1	76	0	76	76	67	150	1	150	0	150	1 0	150		150	1 0	150
EASTBOUND	→ Left-Through → Through → Through-Right		225	0 1 1	182	71	296	218	8	255	0 1 1	204	71	326	1	240		326	1	240
EASTE	Right Left-Through-Right		139	0	139	0	139	139	0	153	0	153	0	153	0	153		153	0	153
THE REAL PROPERTY.	- ← Left-Right	Transpire of		0		-			METHOD IN	0.00	0	-	ENGINEER .		0			Secretary Secretary	0	
9	✓ Left ✓ Left-Through		169	1	169	65	234	234	31	216	1	216	65	281	1 0	281		281	1 0	281
WESTBOUND	← Through ← Through-Right ↑ Right		475	0	475	115	590	590	11	532	0	532	115	647	0	647		647	1 0	647
WES	Right Left-Through-Right Left-Right		80	1 0 0	43	136	216	140	0	88	1 0 0	47	136	224	1 0 0	144		224	1 0 0	144
	CRITICAL VO	DLUMES		th-South: ast-West: SUM:	589 551 1140		rth-South: East-West: SUM:	664 666 1330			th-South: ast-West: SUM:	705 682 1387			th-South: ast-West: SUM:	755 797 1552			h-South: sst-West: SUM:	755 797 1552
	VOLUME/CAPACITY (V/C)	RATIO:			0.760			0.887				0.925				1.035				1.035
V/C	LESS ATSAC/ATCS ADJUS	- 1			0.690 B	w		0.817 D				0.825 D				0.935 E				0.935 E
	LEVEL OF SERVICE	- (200).			D			U				U								

PROJECT IMPACT

Change in v/c due to project: 0.110 $\Delta v/c$ after mitigation: 0.110 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Compton	East-West Street: 103rd St No. of Phases osed Ø'ing: N/S-1, E/W-2 or Both-3? NB 0				r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		9/30/2016	
14					Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
	No. of Phases posed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2?	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SE 0 WI		NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2
	Override Capacity			0			0				0				0				0
1	MOVEMENT	EXISTI	NG CONDI		_	ING PLUS PI				ON W/O PR				ION W/ PR				CT W/ MITI	
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left ← Left-Through ↑ Through ↑ Through-Right ↑ Right ← Left-Through-Right ↑ Left-Right	101 451 84	1 0 1 1 0 0	101 268 84	53 0	111 504 84	111 294 84	8	111 503 92	1 0 1 1 0 0	111 298 92	10 53 0	121 556 92	1 0 1 1 0 0	121 324 92		121 556 92	1 0 1 1 0 0	121 324 92
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right Left-Right	82 361 62	1 0 1 1 0 0	82 212 62	0 36 0	82 397 62	82 230 62	0 6 0	90 402 68	1 0 1 1 0 0	90 235 68	0 36 0	90 438 68	1 0 1 1 0 0	90 253 68		90 438 68	1 0 1 1 0 0	90 253 68
EASTBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right Left-Right	79 352 81	0 1 0 0 1 0	79 431 31	0 0 5	79 352 86	79 431 31	0 3 0	87 389 89	0 1 0 0 1 0	87 476 34	0 0 5	87 389 94	0 1 0 0 1 0	87 476 34		87 389 94	0 1 0 0 1 0	87 476 34
WESTBOUND	← Left ← Left-Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right	93 380 83	0 0 0 0 0 0	93 556 0	0 0	93 380 83	93 556 0	0 3 0	102 420 91	0 0 0 0 0 1	102 613 0	0 0	102 420 91	0 0 0 0 0 0	102 613 0		102 420 91	0 0 0 0 0 0	102 613 0
	CRITICAL VOLUMES		th-South: ast-West: SUM:	635		orth-South: East-West: SUM:	376 635 1011			th-South: ast-West: SUM:	388 700 1088			th-South: ast-West: SUM:	414 700 1114			th-South: ast-West: SUM:	414 700 1114
V/0	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.657 0.587 A			0.674 0.604 B				0.725 0.625 B				0.743 0.643 B				0.743 0.643 B

PROJECT IMPACT

Change in v/c due to project: 0.018
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.018 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Compton	n Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016	
15	East-West Street: 108th St				Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
	No. of Phases posed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0 EB 0	SB WB	2 0 0 0	NB EB	0 SE 0 WE		NB EB	0	SB WB	2 0 0	NB EB	0 0	SB WB	2 0 0 0	NB EB	0 0	SB WB	2 0 0 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			1			1				2				2				0
		EXISTI	NG CONDI	TION	EXIST	NG PLUS PI	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PRO	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through ↑ Through ↑ Through-Right ← Right Left-Through-Right	34 515 71	0 0 0 0 0 1	620 0	68 0	583 71	696	0 8 0	37 573 78	0 0 0 0 0 1	688 0	68 0	45 641 78	0 0 0 0 0	764 0		45 641 78	0 0 0 0 0 1	45 764 0
SOUTHBOUND	Left-Right Left Left-Through Through-Right Right Left-Through-Right Left-Right Left-Right	29 568 31	0 0 0 0 0 0	29 628 0	0 44 0	29 612 31	29 672 0	0 6 0	32 629 34	0 0 0 0 0 0	32 695 0	0 44 0	32 673 34	0 0 0 0 0 0	32 739 0		32 673 34	0 0 0 0 0 0	32 739 0
EASTBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	43 107 47	0 0 0 0 0 0	43 197 0	0 0 5	43 107 52	43 202 0	0 0	47 117 52	0 0 0 0 0 0	47 216 0	0 0 5	47 117 57	0 0 0 0 0 0	47 221 0	N BY	47 117 57	0 0 0 0 0 0	47 221 0
WESTBOUND	← Left ← Left-Through ← Through-Right ← Right ← Left-Through-Right ← Left-Right	37 73 25	0 0 0 0 0 0	37 135 0	0 4	37 77 26	37 140 0	0 0	41 80 27	0 0 0 0 0 1	41 148 0	0 4 1	41 84 28	0 0 0 0 0 0	41 153 0		41 84 28	0 0 0 0 0 0	41 153 0
	CRITICAL VOLUMES	1	th-South: ast-West: SUM:			orth-South: East-West: SUM:	725 239 964			th-South: ast-West: SUM:	732 257 989			th-South: ast-West: SUM:	796 262 1058			th-South: ast-West: SUM:	796 262 1058
V/0	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.597 0.527 A			0.643 0.573 A				0.659 0.559 A				0.705 0.605 B				0.705 0.605 B

PROJECT IMPACT

Change in v/c due to project: 0.046 $\Delta v/c$ after mitigation: 0.046 Significant impacted? NO Fully mitigated? N/A

	*	\rightarrow	-		←	*	4	†	~	-	+	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	26	4	53	11	5	7	44	570	22	9	573	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.913			0.957			0.995			0.995	
Flt Protected		0.985			0.977			0.997			0.999	
Satd. Flow (prot)	0	1675	0	0	1742	0	0	1848	0	0	1852	0
Flt Permitted		0.985			0.977			0.997			0.999	
Satd. Flow (perm)	0	1675	0	0	1742	0	0	1848	0	0	1852	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	28	4	58	12	5	8	48	620	24	10	623	25
Shared Lane Traffic (%)											12	
Lane Group Flow (vph)	0	90	0	0	25	0	0	692	0	0	658	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	111
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Intersect		

Turning Speed (mph)

Area Type:

Sign Control

Other

15

Stop

9

15

Control Type: Unsignalized

Intersection Capacity Utilization 69.2%

ICU Level of Service C

Stop

9

15

Free

15

Free

Analysis Period (min) 15

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection						Sec. 21	100			V. T. W
Int Delay, s/veh	3.1									
								in the contract		
Movement	EBL	EBT	EBR	TV II	WBL	WBT	WBR	NBL	NBT	NBR
Vol, veh/h	26	4	53		11	5	7	44	570	22
Conflicting Peds, #/hr	0	0	. 0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free
RT Channelized	-	-	None		F=2	343	None	-	100	None
Storage Length		13.5	3		140	-			120	-
Veh in Median Storage, #	·	0	ŝ		E	0	•	*	0	-
Grade, %		0			1842	0			0	
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2
Mvmt Flow	28	4	58		12	5	8	48	620	24
Major/Minor	Minor2	1 las			Minor1		11/2	Major1		
Conflicting Flow All	1389	1394	635		1413	1394	632	648	0	0
Stage 1	655	655	-		727	727	-			-
Stage 2	734	739			686	667	217			- 13
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12		-
Critical Hdwy Stg 1	6.12	5.52	1 1		6.12	5.52				
Critical Hdwy Stg 2	6.12	5.52		V.	6.12	5.52	-	-	-	:=
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	i-e	
Pot Cap-1 Maneuver	120	141	478		115	141	480	938	=	12
Stage 1	455	463	7 5		415	429	- 9	State Car S	7 (2)	100
Stage 2	412	424			438	457	-			
Platoon blocked, %									100	4
Mov Cap-1 Maneuver	106	128	478		91	128	480	938	.0.	15
Mov Cap-2 Maneuver	106	128			91	128			- 1	S4-17-
Stage 1	419	455	*		382	395	-	-	(€)	-
Stage 2	368	390			375	449			- 100	-
Approach	EB		11111	200	WB		a University	NB	mes!	B. B.
HCM Control Delay, s	33.6				38.5			0.6		
HCM LOS	D				Ε.					5-4
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR		18
Capacity (veh/h)	938	-	-	214	132	942	:•			
HCM Lane V/C Ratio	0.051			0.422	0.189	0.01	راجي خال	W X V		
HCM Control Delay (s)	9	0	0	33.6	38.5	8.9	0	¥		
HCM Lane LOS	Α	Α		D	E	Α	Α	1 2 3 4 7 7 7		
HCM 95th %tile Q(veh)	0.2			1.9	0.7	0	-			

Synchro 8 Report Page 2 9/14/2016 Baseline

Intersection Int Delay, s/veh Movement SBT SBR Vol, veh/h 9 573 23 Conflicting Peds, #/hr 0 0 0 Sign Control Free Free Free RT Channelized None Storage Length Veh in Median Storage, # 0 Grade, % 0 Peak Hour Factor 92 92 92 Heavy Vehicles, % 2 2 2 Mvmt Flow 10 623 25 Major/Minor Major2 Conflicting Flow All 643 0 0 Stage 1 Stage 2 Critical Hdwy 4.12 Critical Hdwy Stg 1 Critical Hdwy Stg 2 Follow-up Hdwy 2.218 Pot Cap-1 Maneuver 942 Stage 1 Stage 2 Platoon blocked, % Mov Cap-1 Maneuver 942 Mov Cap-2 Maneuver Stage 1 Stage 2 Approach HCM Control Delay, s 0.1

Minor Lane/Major Mvmt

HCM LOS

9/14/2016 Baseline Synchro 8 Report

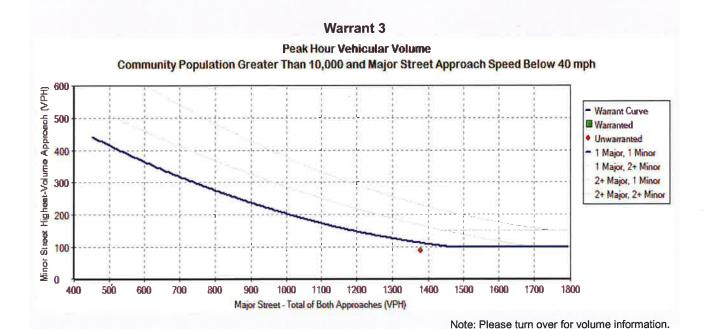
	۶	-	•	•	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	26	4	58	13	5	7	52	645	26	9	623	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.910			0.960			0.995			0.995	
Flt Protected	X ISLAND	0.985			0.975			0.996			0.999	
Satd. Flow (prot)	0	1670	0	0	1744	0	0	1846	0	0	1852	0
FIt Permitted	In the	0.985			0.975			0.996	1-2 1-0		0.999	
Satd. Flow (perm)	0	1670	0	0	1744	0	0	1846	0	0	1852	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0	100		7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	28	4	63	14	5	8	57	701	28	10	677	25
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	95	0	0	27	0	0	786	0	0	712	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	
Intersection Summary	al Kin		- Y- III			2 E 1 18	1	#3. JF1	18.4		S TA	(W)
	Other											
Control Type: Unsignalized					-9.	P Street	91.3				100	, vein_
Intersection Capacity Utilizati	on 79.0%			10	CU Level	of Service	D					
A D . I												

Synchro 8 Report Page 1

Analysis Period (min) 15

Int Delay, s/veh	4.1										
Later and the second			Ale V	C. IIV	45.7			Sec. II			
Movement	EBL	EBT	EBR	1111	WBL	WBT	WBR	- North	NBL	NBT	NBF
Vol, veh/h	26	4	58	P Til	13	5	7	A SHAPE	52	645	26
Conflicting Peds, #/hr	0	0	0		0	0	0		0	0	C
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	1	Free	Free	Free
RT Channelized	740	-	None		-	348	None		745	-	None
Storage Length					V. 187		100	310			
Veh in Median Storage, #	(5)	0				0			1/2	0	-
Grade, %		0	C			0	NY ST	100	3.5	0	1
Peak Hour Factor	92	92	92		92	92	92		92	92	92
Heavy Vehicles, %	2	2	2		2	2	2		2	2	2
Mvmt Flow	28	4	63		14	5	8		57	701	28
	300	1	7. T.					1.04			
Major/Minor	Minor2		Note to	P - 1	Minor1		76, 171		Major1	Mile	
Conflicting Flow All	1544	1551	690		1571	1550	715		702	0	(
Stage 1	709	709			828	828	9		30		
Stage 2	835	842			743	722	10.35			•	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22		4.12	:•.	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52			- 0=		313
Critical Hdwy Stg 2	6.12	5.52	*		6.12	5.52	(*))(+)		
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318		2.218		, 8,0.0
Pot Cap-1 Maneuver	94	114	445		90	114	431		895		8
Stage 1	425	437	T V		365	386			200	10 12	1 000
Stage 2	362	380	Ħ		407	431	-		•	3	ē
Platoon blocked, %				De 1, 1				u 1 /i		100	
Mov Cap-1 Maneuver	80	100	445		68	100	431		895		- 5
Mov Cap-2 Maneuver	80	100			68	100				Page 18	
Stage 1	379	429	2		326	344	543).		×	()∰:	9
Stage 2	312	339			339	423			100		
		***			win		A A ST		KID		A 4 10 10
Approach	EB	3746			WB				NB		
HCM Control Delay, s	46.5	- Commont			56		-		0.7		-
HCM LOS	E				F						
Minor Lane/Major Mymt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR		4 5	100
Capacity (veh/h)	895	IND.I	INDIA	178	97	875	-	OLI I			
HCM Lane V/C Ratio	0.063			0.537	0.28	0.011	or other	MAP . B			1 101
	9.3	0	-	46.5	56	9.2	0	2			
HCM Long LOS		A		40.3 E	F	9.2 A	A			we did	XII.
HCM Lane LOS	A 0.2	A		2.8	1	0		1 3 5			

Synchro 8 Report Page 2 9/14/2016 Baseline


Minor Lane/Major Mymt

ntersection Int Delay, s/veh				
Tit Delay, Siveri		120 (17)		
Movement	SBL	SBT	SBR	
Vol, veh/h	9	623	23	
Conflicting Peds, #/hr	0	025	0	
Sign Control	Free	Free	Free	REPORT OF THE RESIDENCE OF TAXABLE PROPERTY.
RT Channelized	1100	-	None	
Storage Length		17 1-1	None	
Veh in Median Storage, #		0	3	
Grade, %		0		
Peak Hour Factor	92	92	92	
Heavy Vehicles, %	2	2	2	THE REAL PROPERTY OF THE PROPERTY OF
Mymt Flow	10	677	25	
WWITE Flow			WAYE F	
Major/Minor	Major2		Y-11).	
Conflicting Flow All	729	0	0	
Stage 1			3	
Stage 2				
Critical Hdwy	4.12			
Critical Hdwy Stg 1	Lifty bell.	(-)		
Critical Hdwy Stg 2	2 4 1	(≜)		
Follow-up Hdwy	2.218	01 1 1	11 11	
Pot Cap-1 Maneuver	875		2	
Stage 1			T. ST	AND THE RESIDENCE OF THE PARTY
Stage 2		27.h		
Platoon blocked, %		1 1	1 17 3	
Mov Cap-1 Maneuver	875			
Mov Cap-2 Maneuver		-	1	
Stage 1	247	(a)	2	
Stage 2	4	V1 3	porty and	
Approach	SB			
HCM Control Delay, s	0.1			
HCM LOS				

Synchro 8 Report Page 3 9/14/2016 Baseline

Warrant 3: Peak Hour

1: Compton & 112th -EWP - PM

R	*	-	•	•	+	*	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	29	4	57	12	6	8	48	630	24	10	631	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.915			0.958			0.995			0.995	
Flt Protected	e " 31	0.984			0.978		MT 34.	0.997	5-310	11 - 11	0.999	
Satd. Flow (prot)	0	1677	0	0	1745	0	0	1848	0	0	1852	0
Flt Permitted		0.984			0.978			0.997			0.999	
Satd. Flow (perm)	0	1677	0	0	1745	0	0	1848	0	0	1852	0
Link Speed (mph)		30			30			30	100		30	11
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	4	62	13	7	9	52	685	26	11	686	27.
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	98	0	0	29	0	0	763	0	0	724	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0	253		0	100		0	1100	30	0	51 11/15
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	987			3 - 7					100			1000
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	S You's	9	15	1	9	15		9	15	23 80	9
Sign Control		Stop			Stop			Free			Free	

intersection Summary

Other

Area Type: Control Type: Unsignalized

Intersection Capacity Utilization 75.3%

Analysis Period (min) 15

9/14/2016 Baseline

ICU Level of Service D

Synchro 8 Report Page 1

Int Delay, s/veh	4.3									
Station in the and	the bearing		C 11	S. S.		<i>57</i> - 1 1				314
Movement	EBL	EBT	EBR	(* j. 1847)	WBL	WBT	WBR	NBL	NBT	NBI
Vol, veh/h	29	4	57	100	12	6	8	48	630	2
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Fre
RT Channelized		=	None		124	-	None	243	-	Non
Storage Length	THE PARTY OF THE P	11.11.2	11.3		18.5	1311.325	Do to			
Veh in Median Storage, #		0			1.	0	-	<u> </u>	0	
Grade, %		0				0		24 X 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	9
Heavy Vehicles, %	2	2	2		2	2	2	2	2	
Mvmt Flow	32	4	62		13	7	9	52	685	2
			1,112		The last	4-1-1-4		31 Y 31 3 5 1 1 3 5 5		
Major/Minor	Minor2	www.fi		Total Sa	Minor1			Major1		1 Dy
Conflicting Flow All	1531	1536	699		1556	1537	698	713	0	The state
Stage 1	721	721	•		802	802	-	19		
Stage 2	810	815			754	735			271 127	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	5 € 8	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52			*	
Critical Hdwy Stg 2	6.12	5.52	2		6.12	5.52	*	0=:	590	
Follow-up Hdwy	3.518	4.018	3.318	4.57	3.518	4.018	3.318	2.218		1000
Pot Cap-1 Maneuver	96	116	440		92	116	440	887	· 🐷	
Stage 1	419	432			378	396		Bert Landing	19	
Stage 2	374	391	-		401	425	- 5			
Platoon blocked, %			4. 114						190	
Mov Cap-1 Maneuver	82	103	440		70	103	440	887	1.00	
Mov Cap-2 Maneuver	82	103			70	103	U.S.			10, 1
Stage 1	378	423	¥		341	358	14	(*)	:=:	
Stage 2	325	353		an Quil	334	416		States of the contract of the	SIN W	
					2000					
Approach	EB			W-17	WB			NB	4 3	
HCM Control Delay, s	50.4				51.5			0.6		
HCM LOS	Fig. 1				F			128 / 120	in a series	
Minor Lane/Major Mymt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	W 16	
Capacity (veh/h)	887	NDI	IVDN	172	105	888		ODIT		
HCM Lane V/C Ratio	0.059			0.569	0.269	0.012				
HCM Control Delay (s)	9.3	0		50.4	51.5	9.1	0			
HCM Lane LOS	9.3 A	A	and tree	50.4 F	51.5 F	Α.	A	dila sa Jak		
HCM 95th %tile Q(veh)	0.2	- A	5	3	1	0				

Synchro 8 Report Page 2 9/14/2016 Baseline

Minor Lane/Major Mvmt

nt Delay, s/veh					
	Wind la	-14	2950 b		
Movement	SBL	SBT	SBR		
Vol, veh/h	10	631	25		
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free		
RT Channelized	141	12	None		
Storage Length					
Veh in Median Storage, #	-	0			
Grade, %		0		SALT USASTIETAS	
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2		
Mvmt Flow	11-	686	27		
F TO SERVICE OF		T-111	1.50		
Major/Minor	Major2	The Pa	1 24 74	and the state of t	Name of the Party
Conflicting Flow All	711	0	0		
Stage 1	÷.	3			
Stage 2	250		10 12		A STATE OF THE STA
Critical Hdwy	4.12	-			
Critical Hdwy Stg 1		n Eile	180		
Critical Hdwy Stg 2	3#7		¥		
Follow-up Hdwy	2.218		1		
Pot Cap-1 Maneuver	888	-			
Stage 1	CYL VOI 50	14.84			A CONTRACTOR
Stage 2	17.	-			
Platoon blocked, %	hard or its		577		
Mov Cap-1 Maneuver	888	:-			
Mov Cap-2 Maneuver	1973 B 1286		177.1		
Stage 1	(#S		¥		
Stage 2		-	19 30		
<u> </u>					
Approach	SB				
HCM Control Delay, s	0.1				
HCM LOS	ALL SALEY AND AND				

Synchro 8 Report Page 3 9/14/2016 Baseline

3: Compton Ave & 112th St- Existing++ Cumulative Project PM

	۶	→	•	•	-	*	1	†	<i>*</i>	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	29	4	62	14	6	8	56	705	28	10	680	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.912			0.961			0.995			0.995	
Flt Protected		0.985			0.976	to finding		0.996		10 W.	0.999	33 X 3
Satd. Flow (prot)	0	1673	0	0	1747	0	0	1846	0	0	1852	0
Flt Permitted		0.985			0.976		100	0.996			0.999	
Satd. Flow (perm)	0	1673	0	0	1747	0	0	1846	0	0	1852	0
Link Speed (mph)		30			30		NEW	30			30	100
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8		50 .	6.4		4	5.8	-
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	4	67	15	7	9	61	766	30	11	739	27
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	103	0	0	31	0	0	857	0	0	777	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)	Train.	0		ALC: A	0	1 31.2		0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	Kundh		100					34 11 7/4	يعايات	411		" MALE
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	man N	9	15		9	15	100	9	15	100	9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 85.0%

Analysis Period (min) 15

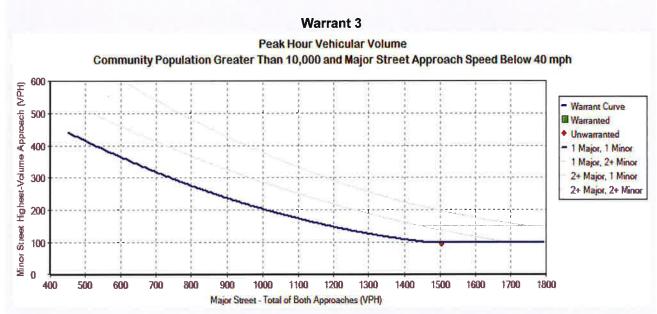
ICU Level of Service E

9/14/2016 Baseline Synchro 8 Report
Page 1

3: Compton Ave & 112th St- Existing++ Cumulative Project PM

Intersection Int Delay, s/veh	6.6									
int belay, 3/ven		1/1	A 15			A PLAN			360	I En
Movement	EBL	EBT	EBR	100	WBL	WBT	WBR	NBL	NBT	NBF
Vol, veh/h	29	4	62	No Television	14	6	8	56	705	28
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	C
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	Free	Free
RT Channelized	:e:	-	None		:(€:	1001	None		-	None
Storage Length	The state of the s	-				, 2 - Sy	201.2		1000	
Veh in Median Storage, #	(#)	0	4		126	0	-	16	0	N
Grade, %	/ TO THE REAL PROPERTY.	0	No.			0		PM CO.	0	N. W.
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2		2	2	2	2	2	2
Mvmt Flow	32	4	67		15	7	9	61	766	30
		and the		3 /1	2 2 2	Marie I	le lepr's		N Y .	
Major/Minor	Minor2		A 101	7.37	Minort	M. N.		Major1		Z N
Conflicting Flow All	1685	1692	753		1713	1691	782	766	0	
Stage 1	774	774			903	903	:41	£	(#E	- 3
Stage 2	911	918	DIS.	N. S.	810	788	1			W 50
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12		-
Critical Hdwy Stg 1	6.12	5.52		Sec. 20	6.12	5.52	100	S-MITTER TO	21 - 1	- 14
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	(20)	-	:•:	3
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	171 1781	: 518 J
Pot Cap-1 Maneuver	75	93	410		71	93	394	847	2 € 0	9
Stage 1	391	408	-	F 155	332	356	de la contraction de la contra		100	
Stage 2	328	350	9		374	402	=11	-	~	
Platoon blocked, %					and all a				- 8	
Mov Cap-1 Maneuver	61	79	410		50	79	394	847		j
Mov Cap-2 Maneuver	61	79	10.5		50	79			100	100
Stage 1	340	399	~		289	310	(*).		(±:	2
Stage 2	273	305	3 y 3	1111	302	393			100	
				_	V 400			ND.		
Approach	EB				WB			NB	-0.14	
HCM Control Delay, s	81.3	X.			84.1			0.7		A CONTRACTOR OF THE PARTY OF TH
HCM LOS	F	100		and the	reference to			The Table 1 of T	132.02	377.54
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	1 x 12 12	100
Capacity (veh/h)	847	- 1 1100	7.46011.	140	74	825	-	-		
HCM Lane V/C Ratio	0.072	500	AVELLO.	0.738	0.411	0.013		SUBSTITUTE OF	2,15	185.4
HCM Control Delay (s)	9.6	-0		81.3	84.1	9.4	0			
HCM Lane LOS	9.0 A	A	-	61.5	F	Α.	A	NEW AND ASSESSMENT		X-1-
HCM 95th %tile Q(veh)	0.2	-	8	4.3	1.6	0	-	2		-

Synchro 8 Report Page 2


3: Compton Ave & 112th St- Existing++ Cumulative Project PM

Intersection						
Int Delay, s/veh		TOUT TO				and the second
		H H W A	Description of	- Ca C 1	2000	State and the
Movement	SBL	SBT	SBR		0.0	
Vol, veh/h	10	680	25			
Conflicting Peds, #/hr	0	0	0			
Sign Control	Free	Free	Free	العائضتيا		
RT Channelized	199	-	None			
Storage Length			-			1100
Veh in Median Storage, #		0	-			
Grade, %		0				11.47
Peak Hour Factor	92	92	92			
Heavy Vehicles, %	2	2	2			
Mvmt Flow	11	739	27			
		120		PRINCE LA	4	11147
Major/Minor	Major2	E III	- 2	6 2 5 3		10
Conflicting Flow All	797	0	0	DESIGNATION OF THE PARTY OF THE		- 8
Stage 1						
Stage 2			E re	1000000	ir(,	" C
Critical Hdwy	4.12					
Critical Hdwy Stg 1		1	1981-	177 - 137	51/4	Ī
Critical Hdwy Stg 2	2	:*:				
Follow-up Hdwy	2.218	128	10 30	15134		
Pot Cap-1 Maneuver	825	-	-			
Stage 1		- 1	(e) 11 20	Eq. b.		
Stage 2		1. -	-			
Platoon blocked, %	W 7	V	Y - 1 - 1			
Mov Cap-1 Maneuver	825	(*)	\$ * 5			
Mov Cap-2 Maneuver	William of	4-3-	100	173		
Stage 1	-	N#	340			
Stage 2				STATE S.		
Ciago L				-300		
	00			LE N. COLON		
Approach	SB	-124		المتحجيين		
HCM Control Delay, s	0.1					
HCM LOS		May St.	PATRIC	1 - 1 2 1 1	MAT LE	

9/14/2016 Baseline Synchro 8 Report Page 3

Warrant 3: Peak Hour

1: Compton & 112th -FWP - PM

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Wilmingt	on Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	16	9/30/2016	
22	East-West Street:	103rd St				Proje	ction Year:	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
	No. oosed Ø'ing: N/S-1, E/W-2 o	of Phases or Both-3?			2			2	Ī.			2 0				2				2
	Turns: FREE-1, NRTOR-2 o		NB 0	SB WB	0	NB EB	0 SE 0 WE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0 0	SB WB	0
	ATSAC-1 or ATSAC-	+ATCS-2?	EB 0	VVD	1	ED	O PVE	1	ED.	U	775	2	LD	U	V/ D	2	LD	U	***	2
	Override	Capacity			0			0				0				0	EUTUDE	W/ BBO IE	CT W/ MITI	0
	MONEMENT		EXISTI	NG CONDI			ING PLUS PR				ON W/O PR				ION W/ PR			Total	No. of	Lane
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Volume	Lanes	Volume
	Left		127	1	127	0	127	127	0	139	1	139	0	139	1	139		139	1	139
<u>\$</u>	← Left-Through		070	0	373	00	395	395	24	433	0	433	22	455	0	455		455	0	455
8	↑ Through		373	0	3/3	22	393	393	24	433	0	433	22	400	0	455		400	Ó	433
NORTHBOUND	Through-Right Right		67	1	38	8	75	42	0	74	1	42	8	82	1	46		82	1	46
R	← Left-Through-Right			0							0				0				0	35 1
2	→ Left-Right			0							0				0				0	
			SCHOOL				25			440		440		110		442	0X 015	112	1	112
□ □	Left Left-Through		95	0	95	0	95	95	8	112	1	112	0	112	1	112		112	0	112
5			343	1	343	15	358	358	18	394	1	394	15	409	1	409		409	1	409
ĕ	Through-Right			0			***				0				0				0	
15	Right		40	1	19	0	40	19	0	44	1	21_	0	44	1	21		44	1	21
SOUTHBOUND	← Left-Through-Right	:		0							0				0				0	
1000000	↓ Left-Right	La constitution	/S. (1) (1) (1)	0	STORES.	PERSONAL PROPERTY.				P. J. 195		District to	S. 3.55	0000		STATE OF THE PARTY.	MICH IN	5.650		
	J Left	No. of the last	42	1	42	0	42	42	0	46	1	46	0	46	1	46		46	1	46
₽	→ Left-Through			0		l			1		0				0				0	
₹	→ Through		237	1	237	0	237	237	3	263	1	263	0	263	1	263		263	1	263
ĮĚ	Through-Right		135	0	72	0	135	72	0	148	0	79	0	148	0 1	79		148	1	79
EASTBOUND	Right Left-Through-Right	ě	135	0	12	1	155	12	l o	170	Ó	13	ľ	140	0			, 10	Ö	
" "	- Left-Right	3		0							0				0				0	
13911	ar (1722 Edited Jak			ورقرو	NA ET	1000	العقالات				GIST IS	0.4		70	A STATE OF	70		73	1	73
۵	€ Left ₹ Left-Through		58	1	58	9	67	67	0	64	1	64	9	73	1	73		13	0	73
3	← Through		246	0	289	0	246	289	3	273	0	328	0	273	0	328		273	Ö	328
WESTBOUND	Through-Right			1	1			12.70			1				1				1	
∥ SE	Right		43	0	0	0	43	0	8	55	0	0	0	55	0	0		55	0	0
\$,	t		0							0				0				0	
	├ Left-Right		No	th-South:	470	No	orth-South:	490		Noi	th-South:	545		Nor	th-South:	567		Nor	th-South:	567
	CRITICAL	VOLUMES		ast-West:	331		East-West:	331		E	ast-West:	374		E	ast-West:			E	ast-West:	374
				SUM:	801		SUM:	821			SUM:	919			SUM:				SUM:	
	VOLUME/CAPACITY (V/	C) RATIO:			0.534			0.547				0.613				0.627				0.627
V/0	C LESS ATSAC/ATCS ADJU	USTMENT:			0.464			0.477				0.513				0.527				0.527
	LEVEL OF SERV	ICE (LOS):			A			Α				Α				Α				Α

PROJECT IMPACT

Change in v/c due to project: 0.014
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.014 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Wilming	ton Ave			Year	of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		9/30/2016	
23	East-West Street:	Santa Ar	na Blvd N			Projec	ction Year:	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
		of Phases			2			2				2				2				2
Орр	osed Ø'ing: N/S-1, E/W-2 o	r Both-3?			0		0 00	0		0		0		0	0.5	0		0	0.0	0
Right 1	Turns: FREE-1, NRTOR-2 o	r OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SB 0 WE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
1	ATSAC-1 or ATSAC-	ATCS-22	EB U	VV D	1	ED.	O MAE	1	ED	U	VVD	2	20	U	***	2	Low	U	***	2
		Capacity			Ö			Ů.				ō				ō				0
			EXISTI	NG CONDI	TION	EXIST	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
) Left		16	1	16	7	23	23	0	18	1	18	7	25	1	25	ĺ	25	1	25
\ <u>\times</u>	← Left-Through		-4.	0			0.40			000	0		07	000	0			600	0	707
🖁	Through		581	0	643	37	618	680	24	662	0	730	37	699	0	767		699	0	767
∥	Through-Right		62	0	0	0	62	0	ñ	68	0	0	0	68	0	0	l	68	0	0
NORTHBOUND			02	0		"	02		0	00	0			00	0			00	0	
ž	Left-Right			0							0				0				0	
		STIP ST	W. C. W. St.	9 3 4		US 178			3 1		Diam'r.		N. W. W.	TO SERVICE	3.62	DESCRIPTION OF THE PERSON OF T		15.255	WE S	10 T
	└ Left		46	1	46	0	46	46	0	50	1	50	0	50	1	50		50	1	50
\(\frac{1}{5}\)	→ Left-Through			0							0			500	0	540		500	0	540
8	↓ Through		449	0	453	28	477	481	18	511	0	515	28	539	0	543	1	539	0	543
∥ Ē I	← Through-Right ✓ Right		4	0	0	0	4	0	0	4	0	0	0	4	0	0		4	0	0
SOUTHBOUND	Left-Through-Right		1 7	0		ľ	7			-	0				0				0	-
ο I	لل Left-Right			0							0				0				0	Land.
2240		TO SHOW IN	450000	- 173 y S	SCOUNT !	S 3.15			35,35									AVO A		
	ے Left		2	0	2	0	2	2	0	2	0	2	0	2	0	2		2	0	2
¥	→ Left-Through			0	00		44	20		12	0	20	0	12	0	32		12	0	32
EASTBOUND	→ Through → Through-Right		11	0	26	0	11	30	0	12	0	28	"	12	0	32		12	0	32
	Right		13	0	0	4	17	0	0	14	0	0	4	18	0	0		18	0	0
🐇	Left-Through-Right		"	1	200	l i	.,				1				1				1	
	- Left-Right			0							0				0				0	
	√ Left						50		D BEIN	67	0		CONTRACTOR OF THE PARTY OF THE	57	0	57	de constant	57	0	57
∥ ₀ ∣			52	0	52	0	52	52	0	57	1	57	0	5/	1	5/		5/	1	5/
WESTBOUND	↓ Leπ-Inrough Through		14	0	66	0	14	66	0	15	Ó	72	0	15	Ó	72		15	Ö	72
8	Through-Right		'	Ö	H. H.			Bo Ell	-		0	11, 22			0				0	
∥ Si	Right		66	1	43	0	66	43	0	72	1	47	0	72	1	47		72	1	47
🕺	Left-Through-Right			0							0				0				0	- PE
			.,	0	689	84-	with County	726		Ma-	th-South:	780		Mar	th-South:	817		Mor	th-South:	817
	CRITICAL	VOLUMES		th-South: ast-West:		1	rth-South: East-West:	82			ast-West:	85			าก-Soutn: ast-West:				ast-West:	89
	CITICAL	CLOMES		SUM:			SUM:	808		_	SUM:				SUM:				SUM:	906
	VOLUME/CAPACITY (V/	C) RATIO:		20.311	0.511			0.539				0.577				0.604				0.604
∥ v/c	LESS ATSAC/ATCS ADJU				0.441			0.469				0.477				0.504				0.504
"/"																				0.504 A
	LEVEL OF SERVI	CE (LUS):	<u></u>		A	<u> </u>		Α				Α				Α				A

PROJECT IMPACT

Change in v/c due to project: 0.027 $\Delta v/c$ after mitigation: 0.027 Significant impacted? NO Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Wi	Ilmington Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:	9	9/30/2016	
24	East-West Street: 10	8th St			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroc	k
1	No. of Ph osed Ø'ing: N/S-1, E/W-2 or Bot	th-3?) SB	2 0 0	NB	0 SE	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns: FREE-1, NRTOR-2 or OL		WB	0	EB	2 W		EB	2	WB	0	EB	2	WB	0	EB	2	WB	0
	ATSAC-1 or ATSAC+ATC Override Cap			1 0			1 0				2 0				2 0				2
		EX	STING COND	ITION	EXIST	ING PLUS PI	ROJECT		E CONDITI	ON W/O PR	OJECT		RE CONDIT		OJECT			CT W/ MITI	
	MOVEMENT	Volum		Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left	3		37	5	42	42	0	41	1	41	5	46	1	46		46	1	46
3	← Left-Through	60	0 2	631	44	646	675	24	685	0	717	44	729	0	761		729	0	761
요	↑ Through 九 Through-Right	60	2 0	631	44	040	0/3	24	000	1	717	44	123	1	701		723	1	,01
∥≝∣	→ Right	2	9 0	0	0	29	0	0	32	0	0	0	32	0	0		32	0	0
NORTHBOUND	← Left-Through-Right		0							0				0				0	
	← Left-Right		0							0				0			-	0	
1327	↓ Left	3	2 1	32	0	32	32	0	35	1	35	0	35	1	35		35	1	35
9	Left-Through		0	32		32	32	"	30	Ó	33		55	Ó	33		00	Ö	00
≥	Through	46	1 0	482	32	493	514	18	524	0	547	32	556	0	579		556	0	579
SOUTHBOUND	Through-Right		1			0.4			00	1			22	1	0		23	1	0
5	→ Right → Left-Through-Right	2	1 0	0	0	21	0	0	23	0	0	0	23	0	U		23	0	U.
%	↓ Left-Right		0					-		0				0				0	
(above)			1.3	-	50153	No. 43 16	A SOURCE	CENT PI	-10-2	ACCULATION OF		15.2 16	2333-	200	DOST!		1000	300	222
	Left	3		36	0	36	36	0	40	0	40	0	40	0	40		40	0	40
EASTBOUND	Left-Through → Through	7	0 7 0	139	0	77	139	0	84	0	153	0	84	0	153		84	0	153
	↑ Through-Right	'	0	100	ľ		100		01	0	100	"	٠.	0				0	70
ST	Right	2	6 0	0	0	26	0	0	29	0	0	0	29	0	0		29	0	0
<u>1</u> 2	Left-Through-Right		1							1 0				1 0 =				0	
72-0	-{ Left-Right	THE RESERVE	0			CT-02-7		-		U	THE REAL PROPERTY.	0.000	2.00			E - E - E	2 15 .		ing shades
-	€ Left		7 0	47	0	47	47	0	52	0	52	0	52	0	52		52	0	52
WESTBOUND	₹ Left-Through		0	STATE OF		0.5			0.1	0	0.0	_	0.1	0	00		24	0	00
∥ ಜୁ ∣	← Through ← Through-Right	2	2 0	87	0	22	87	0	24	0	96	0	24	0	96		24	0	96
STE	Right		8 0	0	0	18	0	0	20	0	0	0	20	0	0		20	0	0
NE	Left-Through-Right		1			. •				1		-		1				1	
	Ç Left-Right		0							0		,		0				0	700
	CRITICAL VOLU		Vorth-South			orth-South:	707 186			th-South: ast-West:	752 205			th-South: ast-West:	796 205			th-South: ast-West:	796 205
	CRITICAL VOLU	DIMES	East-West SUM			East-West: SUM:	893			SUM:				SUM:			E	SUM:	1001
	VOLUME/CAPACITY (V/C) RA	ATIO:	2011	0.566		- COIM.	0.595				0.638		(0.667				0.667
V/C	LESS ATSAC/ATCS ADJUSTM			0.496			0.525				0.538				0.567				0.567
"	LEVEL OF SERVICE (I			0.430 A		ä	A				Α				Α.				A
L	22722 3. 3277702 (1	<i>r</i>		_ ^															

PROJECT IMPACT

Change in v/c due to project: 0.029 $\Delta v/c$ after mitigation: 0.029 Significant impacted? NO Fully mitigated? N/A

	•	→	7	•	-	4	1	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			4	
Volume (vph)	1	1	35	18	0	13	21	730	31	17	532	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.872	94		0.944			0.995			0.998	
Flt Protected		0.999			0.971			0.999			0.999	
Satd. Flow (prot)	0	1623	0	0	1707	0	0	1852	0	0	1857	0
Flt Permitted		0.999			0.971	34		0.999			0.999	
Satd. Flow (perm)	0	1623	0	0	1707	0	0	1852	0	0	1857	0
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	38	20	0	14	23	793	34	18	578	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	40	0	0	34	0	0	850	0	0	604	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	
Intersection Summary		traja					The second		ST ZINE		1.54	TO BE
Area Type: C	ther											

Control Type: Unsignalized Intersection Capacity Utilization 64.4%

Capacity Utilization 64.4% ICU Level of Service C

Analysis Period (min) 15

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection			i kisi		X274.	00.00	In Page	P12 (5 1)	ileina	No.
Int Delay, s/veh	1.5	×11 ×			-					
Movement	EBL	EBT	EBR	N. S. W	WBL	WBT	WBR	NBI	NBT	NBF
Vol, veh/h	1	1	35	-	18	0	13	2		31
Conflicting Peds, #/hr	0	0	0		0	0	0	(0 0	C
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Free	e Free	Free
RT Channelized	-	-	None		:€:	:•:	None			None
Storage Length						- 1-1	V .			
Veh in Median Storage, #	**	0	말		·	0	2		- 0	3
Grade, %		0	Markey.			0			- 0	
Peak Hour Factor	92	92	92		92	92	92	9:	2 92	92
Heavy Vehicles, %	2	2	2		2	2	2	1 1 1 1 1	2 2	2
Mvmt Flow	1	1	38		20	0	14	2:	3 793	34
Major/Minor	Minor2	1 15	2 KJ 5	GET.	Minor1			Major	1 50 TEU	
Conflicting Flow All	1482	1492	582	75.	1495	1479	810	580	6 0	0
Stage 1	619	619	2		856	856	:2			
Stage 2	863	873			639	623	-			200
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12	2 -	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52				7 5
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	- 7			
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.21	3	1 17
Pot Cap-1 Maneuver	103	123	513		101	126	380	989	9 -	:4
Stage 1	476	480			352	374	-	17 2 3 5		3
Stage 2	349	368	2		464	478	=			
Platoon blocked, %									-	
Mov Cap-1 Maneuver	94	114	513		88	117	380	989	9 -	
Mov Cap-2 Maneuver	94	114			88	117				5-715
Stage 1	456	464			337	358	; *			
Stage 2	322	352	110		414	462			• 1	1
	NAT NO.				V 4 4 100			411		
Approach	EB	-1-1			WB	100	1000	NE NE		
HCM Control Delay, s	14.4				42.1			0.2	2	
HCM LOS	В				E					
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR		16-14
Capacity (veh/h)	989			422	130	804				
				0.095	0.259	0.023				
HCM Cantrol Dalay (a)	0.023	^					-			
HCM Long LOS	8.7	0	_	14.4	42.1	9.6	0			
HCM Lane LOS	Α	Α	,	В	E	Α	Α			
HCM 95th %tile Q(veh)	0.1	-	2	0.3	1	0.1	-	-		

Synchro 8 Report Page 2 9/14/2016 Baseline

Intersection	1051 / 1817	- 191			The state of the state of the
AND THE RESERVE AND THE PARTY OF THE PARTY O					- 10 - 10 May 10 -
Int Delay, s/veh					
Movement	SBL	SBT	SBR		
Vol, veh/h	17	532	7		
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free		
RT Channelized	1=7	-	None		
Storage Length					The State of
Veh in Median Storage, #	**	0	2		
Grade, %		0			
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2		
Mvmt Flow	18	578	8		
A ACCRECIA ARCCOM	14.7.0	_			
Major/Minor	Major2		<u> 10 - 10</u>		
Conflicting Flow All	827	0	0		
Stage 1	***	:=1:	-		
Stage 2		- 3	1 1		
Critical Hdwy	4.12	•	9		
Critical Hdwy Stg 1					
Critical Hdwy Stg 2		(-)			
Follow-up Hdwy	2.218	(#) t	and the		
Pot Cap-1 Maneuver	804	=3	-		
Stage 1					
Stage 2		F=0	14		
Platoon blocked, %		11 💰	2 3		
Mov Cap-1 Maneuver	804	9.0			
Mov Cap-2 Maneuver					
Wov Cap-2 Walleuvel					
Stage 1	3.53	: ₩1	•		

Approach	SB	
HCM Control Delay, s	0.3	
HCM LOS		

Minor Lane/Major Mvmt

Synchro 8 Report Page 3 9/14/2016 Baseline

3: Wilmington Ave & 112th St- Existing+Project PM

	>	-	*	•	—	•	4	† 2	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	1	1	106	55	0	13	29	779	42	17	564	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.867			0.974			0.993			0.998	
Flt Protected					0.961	A CONTRACTOR		0.998		13284	0.999	
Satd. Flow (prot)	0	1615	0	0	1744	0	0	1846	0	0	1857	0
FIt Permitted					0.961			0.998	Althor I		0.999	100
Satd. Flow (perm)	0	1615	0	0	1744	0	0	1846	0	0	1857	0
Link Speed (mph)		30			30			30			30	(2)54
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	115	60	0	14	32	847	46	18	613	8
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	117	0	0	74	0	0	925	0	0	639	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0	(20)	46.5	0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane										100		12.4
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	1	9	15	186	9	15	W.	9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

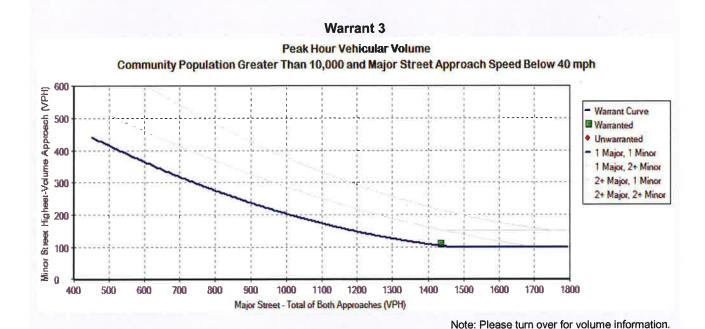
Intersection Capacity Utilization 73.6%

ICU Level of Service D

Analysis Period (min) 15

Movement EBI. EBT EBR	ntersection nt Delay, s/veh	12									
Vol. veh/h	nt Delay, Siveri		la True		11979	10 mg	276		ALC: NO	15. 14	V.
Conflicting Peds, #hrr 0	Movement	EBL	EBT	EBR		WBL	WBT	WBR	NBL	NBT	NBF
Conflicting Peds, #hr	Vol, veh/h	Maria Maria It.	1	106		55	0	13	29	779	42
Sign Control Stop Stop Stop Stop Stop Free	0	0	0		0	0	0	0	0		
RT Channelized - None - None - None Storage Length		Stop	Stop	Stop	11157	Stop	Stop	Stop	Free	Free	Fre
Veh in Median Storage, #	RT Channelized	**	-	None		: : ::::::::::::::::::::::::::::::::::	F#31	None		-	None
Veh in Median Storage, # - 0 0 0 Grade, % - 0 - 0 - 0 - 0 - 0 - 0 - 0 Grade, % - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	Storage Length		-	21	Wall.					يخي برات	
Grade, % - 0 0 - 0 - 0 - 0 0 - 0 0 - 0 0 - 0 0 0 - 0			0				0	-	986	0	
Peak Hour Factor 92 4 <th< td=""><td></td><td>et il Die Silder</td><td>0</td><td></td><td>377</td><td>200</td><td>0</td><td>100</td><td></td><td>0</td><td></td></th<>		et il Die Silder	0		377	200	0	100		0	
Mymit Flow 1 1 115 60 0 14 32 847 Major/Minor Minor2 Minor1 Major1 Conflicting Flow All 1594 1609 617 1645 1591 870 621 0 Stage 1 654 654 - 933 933 - - - Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -	Peak Hour Factor	92	92	92		92	92	92	92	92	92
Major/Minor Minor2 Minor1 Major1 Major1 Conflicting Flow All 1594 1609 617 1645 1591 870 621 0 Stage 1 654 654 - 933 933 Stage 2 940 955 - 712 658 - Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - - Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.13 6.14 8.318 3.518 4.018 3.318 2.218 - Pot Cap-1 Maneuver 86 105 490 79 107 351 960 - Stage 1 456 463 - 319 345 - - - Stage 2 316 337 - 423 461 - - - Stage 2 316 337 - 423 461 - - - Stage 2 Stage 1 425 446 - 298 322 - - - - Stage 2 283 314 - 3111 444 - - - - Stage 2 Stage 2 283 314 - 3111 444 - - - - Stage 2 Stage 2 283 314 - 3111 444 - - - - - Stage 2 - - -	Heavy Vehicles, %	2	2	2	W. T.	2	2	2	2	2	2
Conflicting Flow All 1594 1609 617 1645 1591 870 621 0		1	1	115		60	0	14	32	847	46
Conflicting Flow All 1594 1609 617 1645 1591 870 621 0		THE REAL PROPERTY.	40			300	100				يرقرا ا
Stage 1	Major/Minor	Minor2			J0 3	Minor1	ولاراك	S. Vitt	Majort	Mar	
Stage 2 940 955 - 712 658	Conflicting Flow All	1594	1609	617		1645	1591	870	621	0	thus:
Stage 2 940 955 - 712 658 -		654	654			933	933	•	-	540	
Critical Hdwy 7.12 6.52 6.22 7.12 6.52 6.22 4.12 - Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - - - Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - - - Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - - - Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - <td></td> <td>940</td> <td>955</td> <td>15 4 2</td> <td></td> <td>712</td> <td>658</td> <td></td> <td>775</td> <td>25</td> <td></td>		940	955	15 4 2		712	658		775	25	
Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 - <t< td=""><td></td><td>7.12</td><td>6.52</td><td>6.22</td><td></td><td>7.12</td><td>6.52</td><td>6.22</td><td>4.12</td><td>•</td><td></td></t<>		7.12	6.52	6.22		7.12	6.52	6.22	4.12	•	
Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 - <t< td=""><td></td><td>6.12</td><td>5.52</td><td>1000</td><td>300</td><td>6.12</td><td>5.52</td><td></td><td>To the last</td><td>0 3.</td><td></td></t<>		6.12	5.52	1000	300	6.12	5.52		To the last	0 3.	
Follow-up Hdwy 3.518 4.018 3.318 3.518 4.018 3.318 2.218 - Pot Cap-1 Maneuver 86 105 490 79 107 351 960 - Stage 1 456 463 - 319 345 Stage 2 316 337 - 423 461 Platoon blocked, % Mov Cap-1 Maneuver 76 94 490 ~55 96 351 960 - Mov Cap-2 Maneuver 76 94 - ~55 96 Stage 1 425 446 - 298 322 Stage 2 283 314 - 311 444 Approach EB WB NB HCM Control Delay, s 15.8 254.5 0.3 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1 WBLn1 SBL SBT SBR Capacity (veh/h) 960 - 450 66 760 HCM Lane V/C Ratio 0.033 - 0.261 1.12 0.024 HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A A - C F A A - HCM 95th %tile Q(veh) 0.1 - 1 5.8 0.1		6.12	5.52	¥		6.12	5.52			0.00	
Pot Cap-1 Maneuver 86 105 490 79 107 351 960 - Stage 1 456 463 - 319 345 - - - Stage 2 316 337 - 423 461 - - - Platoon blocked, % -		3.518	4.018	3.318	1.15	3.518	4.018	3.318	2.218		
Stage 1 456 463 - 319 345 - - - - Stage 2 316 337 - 423 461 - <t< td=""><td></td><td>86</td><td>105</td><td>490</td><td></td><td>79</td><td>107</td><td>351</td><td>960</td><td>200</td><td></td></t<>		86	105	490		79	107	351	960	200	
Stage 2 316 337 - 423 461 - - - Platoon blocked, % Mov Cap-1 Maneuver 76 94 490 ~ 55 96 351 960 - Mov Cap-2 Maneuver 76 94 - ~ 55 96 - - - Stage 1 425 446 - 298 322 - - - Stage 2 283 314 - 311 444 - - - Approach EB WB NB HCM Control Delay, s 15.8 254.5 0.3 HCM LOS C F **MB** **MB** **HCM Control Delay, s **In the colspan="8">NB** **NB** **NB** **MB** **MB** **HCM Control Delay, s **In the colspan="8">NB** **NB** **NB** **MB** **HCM Control Delay, s **In the colspan="8">SBT SBT **MB** **MB** **In the colspan="8">**In the colspan="8">Approach - - - - - - - - - - - - - - - - - -		456	463	1	180.15	319	345	1		-	
Platoon blocked, %		316	337	-		423	461		-	-	
Mov Cap-1 Maneuver 76 94 490 ~ 55 96 351 960 - Mov Cap-2 Maneuver 76 94 - ~ 55 96 - - - Stage 1 425 446 - 298 322 - - - Stage 2 283 314 - 311 444 - - - Approach EB WB NB NB HCM Control Delay, s 15.8 254.5 0.3 0.3 HCM LOS C F -		BUAL AL ES									
Mov Cap-2 Maneuver 76 94 - ~ 55 96 - - - Stage 1 425 446 - 298 322 -		76	94	490		~ 55	96	351	960		
Stage 1 425 446 - 298 322 -		76	94	Se 14-1	2	~ 55	96				
Stage 2 283 314 - 311 444 - - -		425	446	14		298	322	:•):	*	3.€3	
HCM Control Delay, s 15.8 254.5 0.3 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1 WBLn1 SBL SBR Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -		283	314	-	= 1	311	444	10 ×			
HCM Control Delay, s 15.8 254.5 0.3 HCM LOS C F Minor Lane/Major Mvmt NBL NBT NBR EBLn1 WBLn1 SBL SBR Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -						. >1117					
Minor Lane/Major Mvmt NBL NBT NBR EBLn1 WBLn1 SBL SBR Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -	Approach	EB				WB					
Minor Lane/Major Mvmt NBL NBT NBR EBLn1 WBLn1 SBL SBR Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -	HCM Control Delay, s	15.8							0.3		
Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -	HCM LOS	C	الباكاة		100	F		120			
Capacity (veh/h) 960 - - 450 66 760 - - HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -				NA.	F01 -	1000	on.	007	onn		0.00
HCM Lane V/C Ratio 0.033 - - 0.261 1.12 0.024 - - HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -											
HCM Control Delay (s) 8.9 0 - 15.8 254.5 9.9 0 - HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -											
HCM Lane LOS A A - C F A A - HCM 95th %tile Q(veh) 0.1 - - 1 5.8 0.1 - -										1 1 1 1	
HCM 95th %tile Q(veh) 0.1 1 5.8 0.1											
										STREET ST	
		0.1		*	1	5.8	0.1	-		-	
Notes -: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	Notes	E IL A DEBUTE									

Synchro 8 Report Page 2


3: Wilmington Ave & 112th St- Existing+Project PM

Int Delay, s/veh					
			1111	r.A.v	B. S. J.
Movement	SBL	SBT	SBR	THE W	
Vol, veh/h	17	564	7		100 11 6
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free	S Sand	Barrier Co
RT Channelized	120	-	None		
Storage Length			DOS SIL	3000	
Veh in Median Storage, #	9.	0			
Grade, %	No.	0	E STATE		
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2	18.88	
Mvmt Flow	18	613	8		
			AWIE .	Mary and	2
Major/Minor	Major2	19 8	2111	197	H en
Conflicting Flow All	892	0	0		13.
Stage 1	9	- 5			
Stage 2			- N. 10 1	A DESCRIPTION OF THE PERSON OF	
Critical Hdwy	4.12	-	-		
Critical Hdwy Stg 1	STATE OF THE PARTY			N.S. P. S. PUL	
Critical Hdwy Stg 2	:=0	-			
Follow-up Hdwy	2.218		TOTAL STATE		
Pot Cap-1 Maneuver	760	-	-		
Stage 1				THE PART OF THE	
Stage 2		9			
Platoon blocked, %		10			
Mov Cap-1 Maneuver	760	•			
Mov Cap-2 Maneuver				As have the first	
Stage 1	380	-	×		
Stage 2		14.5			ī
Approach	SB		S. 100 S	Market Barrell	III.
HCM Control Delay, s	0.3				
HCM LOS	The state of the s	CINCIII)	MICH STREET		

Minor Lane/Major Mvmt

Synchro 8 Report Page 3 9/14/2016 Baseline

1: Wilmington & 112th -EWP - PM

	•	-	\rightarrow	•	←	*	1	†	*	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	150 10	10.10	39	20	0	14	23	821	34	19	599	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.871			0.945			0.995			0.998	
Fit Protected		0.999	63, 75	200	0.971	AELSY.		0.999			0.998	
Satd. Flow (prot)	0	1621	0	0	1709	0	0	1852	0	0	1855	0
Flt Permitted		0.999			0.971			0.999			0.998	السان
Satd. Flow (perm)	0	1621	0	0	1709	0	0	1852	0	0	1855	0
Link Speed (mph)		30			30			30	185 m		30	T-115
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8		1714	6.4		1	5.8	1111
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	42	22	0	15	25	892	37	21	651	9
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	44	0	0	37	0	0	954	0	0	681	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0	3 - 1		0		101/2	0		9	0	T. L. Ser
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	100		JISSEL S				100	200			0.00	2000
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	al In	9	15		9	15	12	9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type:

Other

Control Type: Unsignalized

Intersection Capacity Utilization 70.5%

Analysis Period (min) 15

ICU Level of Service C

9/14/2016 Baseline
Synchro 8 Report
Page 1

Intersection					N 78 10		-3	Contraction of the Contraction o		
Int Delay, s/veh	2.1	8 1 5 5					7 Y M			
Movement	EBL	EBT	EBR	201	WBL	WBT	WBR	NBL	NBT	NBF
Vol, veh/h		man de	39		20	0	14	23	821	34
Conflicting Peds, #/hr	0	0	0		0	0	0	0	0	(
Sign Control	Stop	Stop	Stop	- AL	Stop	Stop	Stop	Free	Free	Free
RT Channelized	-	-	None		12	=3/1	None		187	None
Storage Length	THE RESERVE OF	1	CUTE.	1111		11 50		All The State of t	SIX Jay	
Veh in Median Storage, #		0				0	-		0	
Grade, %		0		11 175	11.01	0	ins si	Market St. 18	0	
Peak Hour Factor	92	92	92		92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	11 12	2	2	2	2	2	1
Mvmt Flow	1	-1	42		22	0	15	25	892	37
		n ger	1 1 10		100			STATE OF STATE	Dr. Ear	
Major/Minor	Minor2		77.00		Minor1			Major1	-17:111	
Conflicting Flow All	1665	1676	655		1679	1662	911	660	0	(
Stage 1	697	697	ħ		961	961		•	•	
Stage 2	968	979	The same		718	701	100		-	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.12		
Critical Hdwy Stg 1	6.12	5.52	1 ×1		6.12	5.52	**			
Critical Hdwy Stg 2	6.12	5.52	19		6.12	5.52	-	-	:#S	5
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.218	-	
Pot Cap-1 Maneuver	77	95	466		75	97	332	928	74	
Stage 1	431	443	200		308	335	1 1		1.5	a arys
Stage 2	305	328			420	441		•		
Platoon blocked, %	LANCE LIBER			No.		31 / 18	F. Ave.		11110	
Mov Cap-1 Maneuver	68	86	466		62	87	332	928	8.00	
Mov Cap-2 Maneuver	68	86			62	87				
Stage 1	407	423	9		291	316	÷	=	(≥)	
Stage 2	275	310	V 1 108	1100	364	421		1. 3. Pastir	-	
Annoch	EB	*********			WB	<i>#</i> * * * * * * * * * * * * * * * * * * *	E MI THE	NB	-01-25	0.78
Approach	16				67.2			0.2		
HCM LOS	10 C				07.2 F			0.2		1 101
HCM LOS	V.			- 10	- N. O.					
Minor Lane/Major Mymt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR	i Juli	HY
Capacity (veh/h)	928	(2)	÷	373	93	736		¥		
HCM Lane V/C Ratio	0.027		111	0.119	0.397	0.028			TO LET	
HCM Control Delay (s)	9	0	8	16	67.2	-10	0	-		
HCM Lane LOS	Α	Α	165. 3	C	T. FI	В	Α	No. 2 To St. F	1	
HCM 95th %tile Q(veh)	0.1			0.4	1.6	0.1	-			

Synchro 8 Report Page 2 9/14/2016 Baseline

Intersection		***	برا: والج		art y a lingue
Int Delay, s/veh					
Movement	SBL	SBT	SBR		14XXII) 11"
Vol, veh/h	19	599	8	NATIONAL PROPERTY.	PART THE
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free		
RT Channelized	-	94	None		
Storage Length		Fig. 6	3111		
Veh in Median Storage, #	180	0			
Grade, %	To live and	0	150	William P.	1 2 11 1
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2		18 A BIN
Mvmt Flow	21	651	9		
			THE P		
Major/Minor	Major2	61.00			
Conflicting Flow All	929	0	0	Jakon Va	
Stage 1	3.50	-		-	
Stage 2	P. Staller	+ 5 5 - 1		2.00	R book
Critical Hdwy	4.12		*		
Critical Hdwy Stg 1				Service of the service of	
Critical Hdwy Stg 2	120	12	-		
Follow-up Hdwy	2.218		THE N		
Pot Cap-1 Maneuver	736				
Stage 1		Y	Li ı ē		The state of
Stage 2	()		Ħ		
Platoon blocked, %			1111		
Mov Cap-1 Maneuver	736	:-	*		
Mov Cap-2 Maneuver	1000				
Stage 1	論	ī.	9	11	
Stage 2		170			1.5-11-5
Approach	SB		100		يسرن الو
HCM Control Delay, s	0.3				
HCM LOS					

Synchro 8 Report Page 3 9/14/2016 Baseline

3: Wilmington Ave & 112th St- Existing++ Cumulative Project PM

	•	-	•	•	←	*	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Volume (vph)	1	1	110	57	0	14	31	870	45	19	630	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.867			0.974			0.994			0.998	
Fit Protected					0.961			0.998	Name of		0.999	
Satd. Flow (prot)	0	1615	0	0	1744	0	0	1848	0	0	1857	0
Flt Permitted					0.961			0.998			0.999	100
Satd. Flow (perm)	0	1615	0	0	1744	0	0	1848	0	0	1857	0
Link Speed (mph)		30			30		100	30			30	
Link Distance (ft)		266			341			283			255	
Travel Time (s)		6.0			7.8			6.4			5.8	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1	1	120	62	0	15	34	946	49	21	685	9
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	122	0	0	77	0	0	1029	0	0	715	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		0			0			0			0	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					18-35					C-III-		FE 17
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	1.00	9	15		9	15		9
Sign Control		Stop			Stop			Free			Free	

Intersection Summary

Area Type: Other

Control Type: Unsignalized

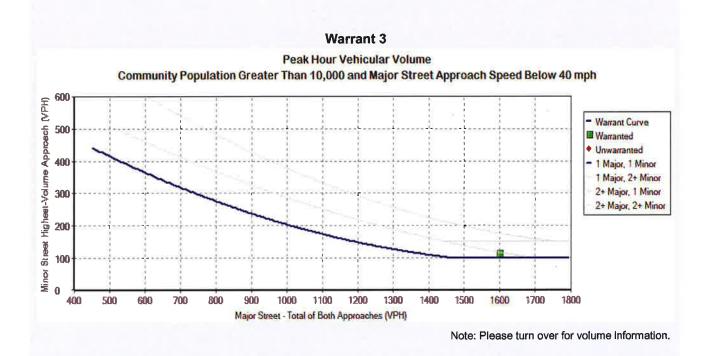
Intersection Capacity Utilization 79.6%

Analysis Period (min) 15

ICU Level of Service D

9/14/2016 Baseline Synchro 8 Report Page 1

Intersection							Min X			77.76
Int Delay, s/veh	22.2	V Marie								
Movement	EBL	EBT	EBR	200	WBL	WBT	WBR	NE	BL NBT	NBF
Vol, veh/h	1	1	110		57	0	14		31 870	4
Conflicting Peds, #/hr	0	0	0		0	0	0		0 0	-
Sign Control	Stop	Stop	Stop		Stop	Stop	Stop	Fre	ee Free	Free
RT Channelized	-	-	None		99.0		None			None
Storage Length		Lock of	400-1		11.	111	7/4/			
Veh in Median Storage, #	-	0	-		5 ≤ 72	0	Ħ.		- 0	
Grade, %		0	No ha		1 40	0			- 0	
Peak Hour Factor	92	92	92		92	92	92	(92 92	9:
Heavy Vehicles, %	2	2	2		2	2	2		2 2	THE R
Mvmt Flow	1	1	120		62	0	15	(34 946	49
			10.12			10, 17		A CONTRACTOR		110
Major/Minor	Minor2		71.5		Minor1		40.30	Majo		1140
Conflicting Flow All	1775	1792	689		1829	1773	970	69	93 0	P 516
Stage 1	730	730	5 = 1		1038	1038	=			
Stage 2	1045	1062	18		791	735		I will be	* 100	
Critical Hdwy	7.12	6.52	6.22		7.12	6.52	6.22	4.	12 -	
Critical Hdwy Stg 1	6.12	5.52			6.12	5.52	-1-1		3 1 1	
Critical Hdwy Stg 2	6.12	5.52			6.12	5.52	5			
Follow-up Hdwy	3.518	4.018	3.318		3.518	4.018	3.318	2.2		
Pot Cap-1 Maneuver	64	81	446		~ 59	83	307	90)2 -	
Stage 1	414	428	-		279	308				
Stage 2	276	300	500		383	425	=		· ·	
Platoon blocked, %										
Mov Cap-1 Maneuver	55	70	446		~ 38	72	307	90	02 -	
Mov Cap-2 Maneuver	55	70			~ 38	72	10.11		E 11 18	
Stage 1	379	407	(*)		255	282	7:			
Stage 2	240	275			266	404				
Approach	EB			-	WB			N.	В	
	17.8				\$ 522.7				.3	
HCM Control Delay, s	17.0 C		and the	4-4-3			1000		.5	
HCM LOS	C				F					
Minor Lane/Major Mvmt	NBL	NBT	NBR	EBLn1	WBLn1	SBL	SBT	SBR		ш, ц
Capacity (veh/h)	902			401	46	695	5	-		
HCM Lane V/C Ratio	0.037	HY.	USU.	0.304	1.678	0.03		113.7		
HCM Control Delay (s)	9.1	0			\$ 522.7	10.3	0			
HCM Lane LOS	A	A	14.15	C	F	В	A			
HCM 95th %tile Q(veh)	0.1	-	160	1.3	7.7	0.1	-	-		
Notes				F11118		V STATE	1	ON ELEMEN	rgi Simo	1)495
THATCO										= 1


9/14/2016 Baseline Synchro 8 Report Page 2

3: Wilmington Ave & 112th St- Existing++ Cumulative Project PM

nt Delay, s/veh					
		-			0,0
Movement	SBL	SBT	SBR	A Share	Н
Vol, veh/h	19	630	8		ķ
Conflicting Peds, #/hr	0	0	0		
Sign Control	Free	Free	Free		
RT Channelized	3 . 0	-	None		
Storage Length		7 -	17 July 1181	A STATE OF THE PARTY OF THE PAR	
Veh in Median Storage, #	7#0	0	*		
Grade, %		0	J. J. SU	Comment of	
Peak Hour Factor	92	92	92		
Heavy Vehicles, %	2	2	2		
Mvmt Flow	21	685	9		
			70.7	92.4 3.2 1	** (1.5
Major/Minor	Major2	Transition in		No. of the Control of	107
Conflicting Flow All	995	0	0		
Stage 1	-	*	*		
Stage 2	CHANGE TO SHARE	100		(15)	POR I
Critical Hdwy	4.12	-	-		
Critical Hdwy Stg 1			DI L S Z		
Critical Hdwy Stg 2		-	-		
Follow-up Hdwy	2.218	EX AT	T. T	Maria II and	
Pot Cap-1 Maneuver	695	-			
Stage 1	- 10 X2 101 - 4	1231			
Stage 2	5-12	*	-		
Platoon blocked, %	Carlotte Co.		1		
Mov Cap-1 Maneuver	695	-	2		
Mov Cap-2 Maneuver	000	EL SIVET	10 20		
Stage 1		-	5.		
Stage 2					
Siage 2				es also especials	
					N. Company
A transfer to					
Approach	SB				
Approach HCM Control Delay, s HCM LOS	0.3				

Synchro 8 Report Page 3 9/14/2016 Baseline

1: Wilmington & 112th -FWP - PM

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Avalon E	Blvd			Year	of Count	2016	Amb	ient Grov	vth: (%);	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/20/2017	
47	East-West Street:	103rd St				Projec	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
	osed Ø'ing: N/S-1, E/W-2 o Turns: FREE-1, NRTOR-2 o	or OLA-3?	NB 2 EB 0	SB WB	2 0 0 2	NB EB	2 SB 0 WE		NB EB	2 0	SB WB	2 0 0 2	NB EB	2 0	SB WB	2 0 0 2	NB EB	2 0	SB WB	2 0 0 2
	ATSAC-1 or ATSAC- Override	Capacity			1			1				2				2				2
			EXISTI	NG CONDI	TION	EXISTI	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FU1	TURE CON	DITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		21	1	21	0	21	21	0	23	1	23	0	23	1	23		23	1	23
NORTHBOUND	Left-Through Through Through-Right		846	0 1 1	470	46	892	493	30	958	0 1 1	532	46	1004	0 1 1	555		1004	0 1 1	555
NORT	Right Left-Through-Right Left-Right		93	0 0 0	93	0	93	93	3	105	0 0 0	105	0	105	0 0 0	105		105	0 0 0	105
-	Lett-right	1075	757750	Marine.		200	0.00		H23-2	71573			1000000	2 -7 11 -			17/502			SCHOOL SECTION
QNNC	LeftLeft-ThroughThrough		89 825	1 0 1	89 442	0 32	89 857	89 458	0 37	98 942	1 0 1	98 503	0 32	98 974	1 0 1	98 519		98 974	1 0 1	98 519
SOUTHBOUND	★ Through-Right ✓ Right ★ Left-Through-Right		58	1 0 0	58	0	58	58	0	64	1 0 0	64	0	64	1 0 0	64		64	1 0 0	64
S	人、Left-Right			0							0		H2		0				0	
9	J Left→ Left-Through		60	1 0	60	0	60	60	0	66	1 0	66	0	66	1 0	66		66	1 0	66
EASTBOUND	→ Through → Through-Right → Right		98	0 1 0	117	2	100 19	119	0	108 21	0 1 0	129	2	110	0	131		110	0 1 0	131
EAS	Left-Through-Right		19	0	U	U	19	U	0	21	0	U	U	21	0 0 0	0		21	0	U
9	✓ Left ✓ Left-Through		141	1 0	141	0	141	141	3	158	1	158	0	158	1 0	158		158	1 0	158
WESTBOUND	Through Through-Right		155	1	155	3	158	158	0	170	1 0	170	3	173	1	173		173	1 0	173
WES	Right Left-Through-Right Left-Right		81	1 0 0	81	0	81	81	0	89	1 0 0	89	0	89	1 0 0	89		89	1 0 0	89
	CRITICAL V	/OLUMES		th-South: ast-West: SUM:	559 258 817		rth-South: East-West: SUM:	582 260 842			th-South: ast-West: SUM:	630 287 917			th-South: ast-West: SUM:	289			th-South: ast-West: SUM:	653 289 942
	VOLUME/CAPACITY (V/C	C) RATIO:			0.545			0.561				0.611				0.628				0.628
V/C	LESS ATSAC/ATCS ADJU				0.475			0.491				0.511				0.528				0.528
	LLVEL OF SERVI	or (ros):			Α			Α				Α				A				Α

PROJECT IMPACT

Change in v/c due to project: 0.017
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.017 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Avalon E	Blvd			Year	r of Count	2016	Amt	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	
48	East-West Street:	108th St				Projec	ction Year	2035		Pea	ak Hour:	PM	Revie	ewed by:			Project:	W	illowbrod	ok
Орр	No. o osed Ø'ing: N/S-1, E/W-2 o	of Phases r Both-3?			2			2				2 0				2 0				2 0
Right -	Turns: FREE-1, NRTOR-2 o	r OLA-3?	NB 0	SB	0	NB	0 SE		NB	0	SB	0	NB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-22	EB 0	WB	0	EB	0 WE	3- 0 1.	EB	0	WB	0 2	EB	0	WB	0 2	EB	0	WB	0 2
		Capacity			o_			0				0				0				0
			EXISTI	NG CONDI	TION	EXISTI	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O P	ROJECT	FU ⁻	TURE CONI	DITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MIT	GATION
	MOVEMENT	GI.	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		18	1	18	4	22	22	1	21	1	21	4	25	1	25		25	1	25
3	← Left-Through		000	0	405		040	-4-	00	000	0	500		4007	0			4007	0	500
∥	↑ Through ↑ Through-Right		866	1	495	44	910	517	33	983	1	560	44	1027	1	582		1027	1	582
NORTHBOUND	Right		124	0	124	0	124	124	0	136	0	136	0	136	0	136		136	0	136
੪ੵ	← Left-Through-Right			0							0		, and		0				0	100
	← ← ← ← ← ← ← ← ← ← ← ← ←			0							0				0				0	
SEL	↓ Left	- 18-9-		1	0.4		S en la car	0.4	E-99	70	1	70	THE ST	70		70	I Garage	70		70
₽	→ Leπ → Left-Through		64	0	64	0	64	64	0	70	0	70	0	70	1 0	70		70	1 0	70
SOUTHBOUND	Through		794	1	425	27	821	441	40	911	1	486	27	938	1	502		938	1	502
空	← Through-Right			1							1				# 1				1	
∥į∏l	→ Right → Left-Through-Right		55	0	55	5	60	60	0	60	0	60	5	65	0	65		65	0	65
%	人 Left-Right			0							0				0				0	
- WEST			26/450	COLENIA I		Name of Street	ALC: NO.		(J. 1) N	1 14 15 15	Prince i		- N. C.	TO BY	LEO SEX			S. P. S. S. S.		
_~			33	0	33	0	33	33	0	36	0	36	0	36	0	36		36	0	36
🛓			230	0	290	5	235	297	2	254	0	322	5	259	0	329		259	0	329
EASTBOUND	↑ Through-Right		230	0	290	3	233	297	4	234	0	322)	209	0	329		239	0	329
E	Right		27	0	0	2	29	0	2	32	0	0	2	34	0	0		34	0	0
₩	Left-Through-Right			1							1				1				1	
	- ≺ Left-Right		-	0	1000		-	2			0	and the last	-		0	W. Commission	-	- North Con-	0	
1	√ Left	-	168	0	168	0	168	168	0	184	0	184	0	184	0	184	3000	184	0	184
			333	1					ľ		1				1				1	
WESTBOUND	← Through ← Through-Right		82	0	250	- 2	84	252	2	92	0	276	2	94	0	278		94	0	278
	Through-Right Right		64	0	32	1	65	33	0	70	0	35	1	71	0 1	36		71	0	36
Ě	Right Left-Through-Right		04	0	32	'	03	33		, 0	o	33	'	<i>t</i> 1	0	30		7.1	0	30
	Left-Right			0							0				0				0	
	ODITIOAL	(OL 11842)		th-South:	559	1	rth-South:	581			th-South:	630			th-South:	652			th-South:	652
	CRITICAL V	OLUMES	l E	ast-West: SUM:	458 1017	E	ast-West: SUM:	465 1046		E	ast-West: SUM:	506 1136		E	ast-West: SUM:	513 1165		E	sst-West: SUM:	513 1165
	VOLUME/CAPACITY (V/C) RATIO:		JUM.	0.678		SUM.	0.697			SUM.	0.757	-		SUM.	0.777			SUM.	0.777
V/C	LESS ATSAC/ATCS ADJU																			
"/"	LEVEL OF SERVICE				0.608			0.627				0.657				0.677				0.677
	LEVEL OF SERVIC	>E (FO9):	L		В			В	L			В				В				В

PROJECT IMPACT

Change in v/c due to project: 0.020
Significant impacted? NO

∆v/c after mitigation: 0.020
Fully mitigated? N/A

2

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Main St				Year	of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	
49	East-West Street: Imperial	Hwy			Projec	tion Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	w	illowbrod	k
II.	No. of Phases osed Ø'ing: N/S-1, E/W-2 or Both-3?	NB 0	SB	2 0 0	NB	0 SE	2 0 3 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	EB 0	WB	0	EB	0 WE		EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			1 0			1				2 0				2 0				2 0
		EXISTI	NG CONDI	TION	EXISTI	NG PLUS P	ROJECT	FUTUR	E CONDITI	ON W/O PF	ROJECT	FU1	TURE COND	DITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MIT	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left	72	1	72	0	72	72	0	79	1	79	0	79	1	79		79	1	79
NORTHBOUND	← Left-Through ↑ Through	399	0	454	11	410	465	21	459	0	521	11	470	0	532		470	0	532
∥ ≝	↑→ Through-Right		1							1	= = 1		.,,	1				1	
	Right	55	0	0	0	55	0	2	62	0	0	0	62	0	0		62	0	0
⊻	← Left-Through-Right ← Left-Right		0							0				0 0				0	
100	T LEIT-NIGHT	TO SHOT	SU VIIIA		UENE			747 V	N. 531			9,000	WELL TO	200		- COVER 1			CHIERY!
۵	↓ Left	99	1	99	0	99	99	0	109	1	109	0	109	1	109		109	1	109
SOUTHBOUND	Left-Through Through	293	0	293	5	298	298	28	350	0	350	5	355	0 1	355		355	0	355
₩	→ Through → Through-Right	293	0	293] 3	290	290	20	330	Ó	350]	300	Ó	300		333	0	333
5	Right	104	1	23	0	104	23	0	114	1	25	0	114	1	25		114	1	25
S	★ Left-Through-Right ↓ Left-Right		0					30		0				0				0	
		and the		Internal	-	A 15. 32	-	M - 73	22.00 TO	TEPCO.		F75.5E	- 8		Name and Address of the Owner, where	20-00-0	-		the last
	J Left	162	1	162	0	162	162	0	178	1	178	0	178	1	178		178	1	178
EASTBOUND	→ Left-Through→ Through	1238	0 2	437	52	1290	455	21	1379	0 2	487	52	1431	0	504		1431	0	504
8	↑ Through-Right	1230	1	437	J2	1230	435	21	1373	1	407	32	1431	1	304		1431	1	304
AST	Right	74	0	74	0	74	74	0	81	0	81	0	81	0	81		81	0	81
<u> </u>	★ Left-Through-Right ★ Left-Right		0							0				0				0	
630					200	DELL'S		HIERON .	C-27, 40	CHIZA		100	NEATH				1923		BOOK S
	€ Left	63	1	63	0	63	63	1	70	1	70	0	70	1	70		70	1	70
WESTBOUND		811	0 2	313	75	886	338	20	910	0 2	350	75	985	0	375		985	0	375
	Through-Right	011	1	010		000	000	20	010	1	000	'0	000	1	0.0		000	1	0,0
ES.	Right	127	0	127	0	127	127	0	139	0	139	0	139	0	139		139	0	139
	Left-Through-Right Left-Right		0							0				0				0	
		Nor	th-South:	553	No	rth-South:	564		Nor	th-South:	630		Non	th-South:	641		Non	h-South:	641
	CRITICAL VOLUMES	E E	ast-West:	500	E	ast-West:	518))	E	ast-West:	557		Ea	st-West:	574		E	st-West:	574
	VOLUME/CAPACITY (V/C) RATIO:		SUM:	1053		SUM:	1082	-		SUM:	1187			SUM:	1215			SUM:	1215
l v/c	LESS ATSAC/ATCS ADJUSTMENT:			0.702			0.721				0.791				0.810				0.810
"/"	LEVEL OF SERVICE (LOS):			0.632 B			0.651 B		14		0.691 B				0.710 C				0.710 C
	LEVEL OF SERVICE (LOS):	U		В	l		Б				D	L			O IFOT IMP				U

PROJECT IMPACT

Change in v/c due to project: 0.019
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.019 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	San Ped	ro St.			Year	of Count	2016	Amt	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	'
50	East-West Street:	Imperial	Hwy			Projec	ction Year	2035	-	Pea	ak Hour:	PM	Revie	ewed by:			Project:	W	illowbrod	ok
ll .	osed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0 EB 0	SB WB	4 0 0 0	NB EB	0 SB 0 WE		NB EB	0	SB WB	4 0 0 0	NB EB	0	SB WB	4 0 0 0	NB EB	0 0	SB WB	4 0 0 0
	ATSAC-1 or ATSAC+/ Override (1 0			1				2				2 0				2
			EXISTI	NG CONDI	FION	EXISTI	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PF	OJECT	FU ⁻	TURE CON	DITION W/	PROJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume		No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
9	ົ Left ⊷ Left-Through		79	1 0	79	0	79	79	0	87	1	87	0	87	1	87		87	1	87
B0	↑ Through ↑ Through-Right		351	1	351	8	359	359	1	386	1	386	8	394	1	394	1	394	1	394
NORTHBOUND			18	1 0 0	2	0	18	2	0	20	1 0 0	3	0	20	1 0 0	3		20	1 0 0	3
9	Left		81	1 0	81	0	81	81	2	91	1	91	0	91	1	91	Accept 16 18	91	1	91
SOUTHBOUND	→ Left-Through↓ Through← Through-Right		295	1 0	295	5	300	300	2	326	0 1 0	326	5	331	0 1 0	331		331	0 1 0	331
SOUT	Right Left-Through-Right Left-Right		125	1 0 0	63	0	125	63	0	137	1 0 0	69	0	137	1 0 0	69		137	1 0 0	69
Q.	 J Left → Left-Through → Through 		125	1 0 2	125	0	125	125	0	137	1 0 2	137	0	137	1 0 2	137	in an outcome	137	1 0	137
EASTBOUND	Through-Right Right		1180 72	0	590	52	1232 7 2	616 33	22	1317 79	0	659 36	52	1369 79	0	685 36		1369 79	0	685 36
12	Left-Through-Right			0							0				0				0	
Q.	✓ Left ✓ Left-Through		32	1 0	32	0	32	32	0	35	1 0	35	0	35	1	35		35	1	35
WESTBOUND	Through Through-Right Right Left-Through-Right		772 127	2 1 0	300	75 0	847 127	325 127	21	868 140	2 1 0	336	75 0	943 140	2 1 0	361 140		943 140	2 1 0	361 140
WE	Left-Through-Right			0		Ŭ					0				0			. 10	0	
	CRITICAL VO	OLUMES		th-South: ast-West: SUM:	432 622 1054		rth-South: East-West: SUM:	440 648 1088			th-South: ast-West: SUM:	477 694 1171			th-South: ast-West: SUM:				th-South: ast-West: SUM:	485 720 1205
	VOLUME/CAPACITY (V/C)				0.767			0.791				0.852				0.876				0.876
V/C	LESS ATSAC/ATCS ADJUS				0.697 B			0.721				0.752				0.776				0.776
<u></u>	LEVEL OF SERVIC	·= (LUS):			B			С				С	L			C				С

PROJECT IMPACT

Change in v/c due to project: 0.024
Significant impacted? NO

Δv/c after mitigation: 0.024
Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: San Ped	ro St			Year	of Count:	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Shiva D	elparastaran	Date:		1/18/2017	
51	East-West Street: 120th St				Projec	tion Year:	2035		Pea	k Hour:	PM	Revie	wed by:			Project:	W	illowbroc	o <mark>k</mark>
	No. of Phases losed Ø'ing: N/S-1, E/W-2 or Both-3?	NB 0	SB	2 0 0	NB	0 SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
Right	Turns: FREE-1, NRTOR-2 or OLA-3?	EB 0	WB	0	EB	0 WE		EB	0	WB	0	EB	0	WB	0	EB	0	WB	0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity			1 0			1 0			-	2 0				2 0				2
		EXISTI	NG CONDI	TION	EXISTI	NG PLUS PR	ROJECT		E CONDITION		ROJECT		URE CON		PROJECT		W/ PROJE		GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
∥ <u> </u>	Left	40	1	40	0	40	40	0	44	1	44	0	44	1	44		44	1	44
≶	<∱ Left-Through ↑ Through	368	0	368	0	368	368	1	405	0	405	0	405	0	405		405	0	405
≌	↑ Through-Right	300	0	300	ľ	500	300		400	Ó	403		400	Ō	403		400	0	403
NORTHBOUND	Right	94	1	73	4	98	74	0	103	1	80	4	107	1	81		107	1	81
일	Left-Through-Right		0							0				0				0	
E 2070	← ← ← ← ← ← ← ← ← ← ← ← ←	TO STATE OF	0		HOUSE BOOK	C 100 III	Wall Tools	100 P	V (C = 1	0		Commercial Commercial	N-01.3	U	Name and Address of	100000	or and the same	TI III TO THE	
ا م	└- Left	77	1	77	5	82	82	0	84	1	84	5	89	1	89		89	1	89
Š	→ Left-Through	000	0	200		000	200		200	0	200		200	0	200		200	0	200
≌,		280	0	280	0	280	280	2	309	0	309	0	309	0	309		309	0	309
SOUTHBOUND	Right	31	1	0	0	31	0	0	34	1	0	0	34	1	0		34	1	0
SO	← Left-Through-Right		0							0 2				0				0	
Market .	人、Left-Right	STATISTICS.	0		LA COL	50 50		ESTATE OF	20.515	0		Contract of		0	SHIP WATER	3 1 1 1 7 7		0	nisionen
_	ے Left	63	1	63	0	63	63	0	69	1	69	0	69	1	69		69	1	69
	→ Left-Through	F44	0	-44	00	540	F.40	0.4	505	0	505	00	044	0	044		644	0	044
g	→ Through → Through-Right	514	0	514	26	540	540	21	585	0	585	26	611	0	611		611	0	611
EASTBOUND	Right	61	1	41	0	61	41	0	67	1	45	0	67	1	45		67	1	45
2	Left-Through-Right		0							0				0				0	
ed rot	- ← Left-Right			State of the last		42.0		1 5 X 2 T 4	- V., O.			10.15		U STATE OF THE STA		DESCRIPTION OF THE PERSON OF T	11117		ALC: NO.
	√ Left	42	1	42	7	49	49	0	46	1	46	7	53	1	53		53	1	53
WESTBOUND		040	0	240		254	254	00	200	0	200	41	400	0	400		403	0	403
8 8	Through-Right	310	0	310	41 –	351	351	22	362	0	362	41	403	0	403		403	0	403
ST	Right	73	1	35	8	81	40	0	80	1	38	8	88	1	44		88	1	44
§	Left-Through-Right		0							0				0				0	- 1
		Nor	th-South:	445	No	rth-South:	450		Non	th-South:	489		Non	th-South:	494		Nort	h-South:	494
	CRITICAL VOLUMES		ast-West:	556		ast-West:	589			ast-West:	631			ast-West:	664			st-West:	664
			SUM:	1001		SUM:	1039			SUM:	1120			SUM:				SUM:	1158
	VOLUME/CAPACITY (V/C) RATIO:			0.667			0.693				0.747				0.772				0.772
V/C	LESS ATSAC/ATCS ADJUSTMENT:			0.597			0.623				0.647				0.672				0.672
	LEVEL OF SERVICE (LOS):	<u></u>		Α	<u> </u>		В				В				В				В

PROJECT IMPACT

Change in v/c due to project: 0.025
Significant impacted? NO

 $\Delta v/c$ after mitigation: 0.025 Fully mitigated? N/A

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	AID.				Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	/30/2016	
17	East-West Street: Imperia	l Hwy			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	llowbroo	k
	No. of Phases posed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SE 0 WE		NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2
	Overniae dapacity	EXISTI	NG CONDI	TION	EXIST	NG PLUS PR	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left ↑ Left-Through ↑ Through-Right ↑ Right ↑ Left-Through-Right ↑ Left-Right	99 307 169	1 0 1 0 1 0	99 307 137	174 84 69	273 391 238	391 181	11 5 2	120 342 187	1 0 1 0 1 0	120 342 150	174 84 69	294 426 256	1 0 1 0 1 0	294 426 194		294 426 256	1 0 1 0 1 0 0	294 426 194
SOUTHBOUND	Left → Left-Through → Through → Through-Right Right → Left-Through-Right	216 260 102	1 0 0 1 0 0	216 362 0	4 53 0	220 313 102	220 415 0	2 2 1	239 287 113	1 0 0 1 0 0	239 400 0	4 53 0	243 340 113	1 0 0 1 0 0	243 453 0		243 340 113	1 0 0 1 0 0	243 453 0
EASTBOUND	→ Left → Left-Through → Through	79 1448 87	1 0 2 1 0 0	79 512 87	0 51 105	79 1499 192	79 564 192	1 6 8	88 1595 103	1 0 2 1 0 0	88 566 103	0 51 105	88 1646 208	1 0 2 1 0 0	88 618 208		88 1646 208	1 0 2 1 0 0	88 618 208
WESTBOUND	Left ✓ Left-Through ← Through-Right Right Left-Through-Right Left-Right	64 742 234	1 0 1 1 0 0	64 488 234	51 60 3	115 802 237	115 520 237	4 8 2	74 822 259	1 0 1 1 0 0 0	74 541 259	51 60 3	125 882 262	1 0 1 1 0 0	125 572 262		125 882 262	1 0 1 1 0 0	125 572 262
	CRITICAL VOLUMES		rth-South: ast-West: SUM:	576		orth-South: East-West: SUM:	688 679 1367	U.		th-South: ast-West: SUM:	581 640 1221			th-South: ast-West: SUM:	747 743 1490			h-South: ist-West: SUM:	747 743 1490
V/	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.733 0.663 B			0.911 0.841 D				0.814 0.714 C				0.993 0.893 D				0.993 0.893 D

PROJECT IMPACT

Change in v/c due to project: 0.179 $\Delta v/c$ after mitigation: 0.179 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Wilm	ington Ave			Yea	r of Count	: 2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		9/30/2016	
26	East-West Street: Impe	East-West Street: Imperial Hwy No. of Phases 1 Ø'ing: N/S-1, E/W-2 or Both-3?					2035		Pea	k Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
Орр	No. of Phas posed Ø'ing: N/S-1, E/W-2 or Both-	1?		3 0			3				3				3				3
Right	Turns: FREE-1, NRTOR-2 or OLA-	? NB- 0	SB	0	NB EB	0 SE		NB EB	0	SB WB	0	NB	0	SB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATCS-	EB 0	WB	1	EB	0 W	B 0	EB	U	WB	2	EB	U	WB	2	EB	U	WB	2
	Override Capac			Ö			o				0	.0			0				0
		EXIST	ING COND	ITION	EXIST	ING PLUS PI	ROJECT	FUTUR	E CONDITION	ON W/O PF	OJECT	FUTUR	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
L		Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	1 Left	161	1	161	33	194	194	4	181	1	181	33	214	1	214		214	1	214
NORTHBOUND	← Left-Through		0							0				0	1			0	-
8	↑ Through	456	1	252	71	527	287	20	520	1	286	71	591	1	322		591	1	322
[]	Through-Right	47	1	47	0	47	47	0	52	1 0	52	0	52	0	52		52	1 0	52
8 8		47	0	47	"	47	41		52	0	32	"	32	0	52		JZ	0	32
ž	ty Left-Right	- 1	0							0		(D)		0				0	
225	and the second statement of th		LABOR	CONTRACT OF THE PARTY.	THE STATE OF	S & S 118		10000	ELTIPS.	755	200	2333	057-5	7400		10000	405	TRANS.	STATE OF THE PARTY.
	- Left	30	1	30	0	30	30	0	33	1	33	0	33	1	33		33	1	33
Į ž		- 1	0							0				0	200		1.0.	0	
g	Through	624	1	348	305	929	502	53	738	1	408	305	1043	1	563		1043	1	563
E	→ Through-Right → Right	71	0	71	4	75	75	0	78	0	78	4	82	1 0	82		82	0	82
SOUTHBOUND	Left-Through-Right		0		-	73	15	"	70	0	70	4	02	0	02		02	0	02
l ix	↓ Left-Right	1	0							Ö				Ö				0	100
BE		E 254 25V	125 F	2 141					1000		MARKET AND ADDRESS OF THE PARTY	30 = AVE			The last		BU S SU	2781255	
	Left	138	1	138	10	148	148	0	151	1	151	10	161	1	161		161	1	161
ĮĘ		15	0 1	15	0	15	15	0	16	0	16	0	16	0 1	16		16	0	16
g	→ Through → Through-Right	15	0	13	U	13	15	"	10	0	10	"	10	0	10		10	Ó	10
STE	Right	379	1	299	78	457	360	1	417	1	327	78	495	1	388		495	1	388
EASTBOUND	→ Left-Through-Right		0	2.37						0				0				0	
	- day teft-Right	L	0							0				0				0	
1000												0		0		1880	0	0	0
₽	€ Left ₹ Left-Through	0	0	0	0	0	0	0	0	0	0	l ⁰	0	0	0		U	0	0
5	← Through	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	Ö	0
126	Through-Right		0							0				0				0	
WESTBOUND	Right	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
\$	Left-Through-Right		0							0				0				0	
	Left-Right	Ata		509	Ata	rth-South:	696		Nor	th-South:	589		Nor	th-South:	777		Nor	th-South:	777
	CRITICAL VOLUM	North-South				East-West:	360			ast-West:	327			ast-West:				ast-West:	388
	CRITICAL VOLUMES East-			299 808		SUM:	1056			SUM:	916			SUM:				SUM:	1165
	VOLUME/CAPACITY (V/C) RAT	0:		0.567			0.741				0.643				0.818				0.818
V/C	LESS ATSAC/ATCS ADJUSTMEN	т:		0.497			0.671				0.543				0.718				0.718
	LEVEL OF SERVICE (LO			0.497 A			B				0.545 A				C				C
L	LETEL OF OLIVIOL (LO	7.		A			0	I											

PROJECT IMPACT

Change in v/c due to project: 0.175 Δv/c after mitigation: 0.175

Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Imperial	Hwy			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedeh	Farivar	Date:	9	9/30/2016	
36	East-West Street:	I-105 w/b	Ramps			Proje	ction Year:	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbroo	k
1	No. o osed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 o		NB 0	SB	4 1 0	NB	0 SB		NB	0	SB	4 1 0	NB	0	SB	4 1 0	NB	0	SB	4 1 0
Right	ATSAC-1 or ATSAC+		EB 3	WB	0	EB	3 WE	3 0	EB	0	WB	0 2	EB	3	WB	0	EB	3	WB	0 2
	Override				1			0			4	0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS PR	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PRO	DJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		549	1	279	217	766	391	4	606	1	308	217	823	1	420		823	1	420
NORTHBOUND	← Left-Through ↑ Through ↑ Through-Right		8	1 0 0	279	7	15	391	0	9	0	308	7	16	0	420		16	0	420
₺	Right		274	1	109	10	284	118	0	301	1	119	10	311	1	129		311	1	129
O _N	← Left-Through-Right ← Left-Right			0							0				0				0	
District Co.	Left		9	0	9	0	9	9	0	10	0	10	0	10	0	10	- Control	10	0	10
SOUTHBOUND	Left-Through			0	131						0				0				0	-
8	↓ Through		22	0	56	0	22	56	0	24	0	61	0	24	0	61		24	0	61
₹	→ Through-Right → Right		25	0	0	0	25	0	0	27	0	0	0	27	0	0		27	0	0
	← Left-Through-Right			1							1		-		1				1	100
57	لم Left-Right	- PESC 2	of the last	0			THE PERSON				0		-	200	0			AND DESCRIPTION	0	Service of
DESCRIPTION OF THE PERSON OF T	J Left	100.00	47	1	47	18	65	65	0	52	1	52	18	70	1	70	100000	70	1	70
EASTBOUND	→ Left-Through			0				37-11-		4004	0	10.5	400	0000	0			0000	0	505
	→ Through → Through-Right		1628	3	407	186	1814	482	48	1834	3	459	186	2020	3 1	535		2020	1	535
ST	Right		342	1	63	253	595	0	25	400	1	246	253	653	1	- 0		653	1	0
≦	Left-Through-Right			0							0				0 0				0	
TAX STATE OF	-	1200				a pides	HALLES A		Deleti					NIN STATE			III ZOLI DI	344	2000	9 VS
	√ Left		602	2	331	2	604	332	0	661	2	364	2	663	2	365		663	2	365
WESTBOUND	Through Through		820	0	274	103	923	309	46	946	0 2	316	103	1049	0 2	351		1049	0	351
8	Through-Right		620	1	217	103	323	303	40	340	1	010	100	1010	1	001		1010	1	
EST	Right		1	0	1	3	4	4	0	1	0	-1	3	4	0	4		4	0	4
3	Left-Through-Right			0							0				0 0				0	
			Noi	rth-South:	335	No	orth-South:	447			th-South:	369			th-South:	481			th-South:	481
	CRITICAL V	OLUMES	₽	ast-West:			East-West:	814		E	ast-West:	823 1192	1	E	ast-West: SUM:	900 1381		E	ast-West: SUM:	900 1381
	VOLUME/CAPACITY (V/C) RATIO:		SUM:	1073 0.780		SUM:	0.917			SUM:	0.867			SUM:	1.004			SUW:	1.004
V/C	C LESS ATSAC/ATCS ADJU	•			0.780			0.917				0.767				0.904				0.904
"	LEVEL OF SERVICE				0.710 C			0.847 D				0.767 C				0.904 E				U.304
II	LL VEL OF SERVIC	JE (EUS):			C															

PROJECT IMPACT

Change in v/c due to project: 0.137 $\Delta v/c$ after mitigation: 0.137 Significant impacted? YES Fully mitigated? NO

11/9/2016-2:11 PM 15 Weekday PM - 9-30-16

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Mona B	lvd			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:	9	/30/2016	
39	East-West Street: Imperial	Hwy			Proje	ction Year			Pea	ık Hour:	РМ	Revie	wed by:			Project:	W	illowbroo	k
	No. of Phases losed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3?	NB 0	SB	2 0 0	NB	0 SE		NB	0	SB	2 0 0	NB	0	SB	2 0 0	NB	0	SB	2 0 0
	ATSAC-1 or ATSAC+ATCS-2? Override Capacity	EB 0	WB	0 1 0	EB	0 WE	3 0 1	EB	0	WB	0 2 0	EB	0	WB	0 2 0	EB	0	WB	0 2
_	Override Capacity	FXISTI	NG CONDI		FXISTI	NG PLUS PF	ROJECT	FUTUR	E CONDITI	ON W/O PR	- 0	FUTUR	E CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MITH	
	MOVEMENT		No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
ļ.,	~	Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	↑ Left ← Left-Through	186	0 1	186	3	189	189	0	204	0	204	3	207	0 1	207		207	0 1	207
NORTHBOUND	↑ Through ↑ Through-Right	68	0	254	7	75	264	0	75	0	279	7	82	0 0	289		82	0	289
RA	→ Right → Left-Through-Right	249	1	172	5	254	173	0	273	1	189	5	278	1 0	190		278	1	190
Ž	← Left-Right		0						nieumonia	0				0				0	10.0
	↓ Left	55	0	55	0	55	55	0	60	0	60	0	60	0	60		60	0	60
SOUTHBOUND	Left-Through Through	69	0	197	4	73	201	0	76	0	216	4	80	0	220		80	0	220
=	← Through-Right	73	0	0	0	73	0	0	80	0	0	0	80	0 0	0		80	0	0
SO			1							1				1 0				1 0	
11834	J Left	95	1	95	0	95	95	0	104	1	104	0	104	1	104		104	1	104
S S	→ Left-Through → Through	1631	0	624	172	1803	690	48	1838	0 2	701	172	2010	0 2	767		2010	0 2	767
EASTBOUND	Through-Right Right	242	1	242	24	266	266	0	266	1 0	266	24	290	1	290		290	1	290
EA	Left-Through-Right Left-Right	242	0	02.11	24	200	200		200	0	200	27	200	0	200		200	0	200
					100 ST 100 ST	22.00	-	BEES 2	272			1350	16 189		TI SUNT	MINES.	558 -		
2	✓ Left ✓ Left-Through	154	1	154	8	162	162	0	169	1	169	8	177	1	177		177	1 0	177
WESTBOUND	← Through ← Through-Right	1121	2	388	105	1226	423	46	1276	2	441	105	1381	2	476		1381	2	476
FEST	Right Left-Through-Right	43	0	43	0	43	43	0	47	0	47	0	47	0	47		47	0	47
3	Left-Right		0							0				0				0	427
	CRITICAL VOLUMES		th-South: ast-West:	383 778		rth-South: East-West:	390 852			th-South: ast-West:	420 870			th-South: ast-West:	427 944			h-South: st-West:	427 944
		_	SUM:	1161		SUM:	1242		_	SUM:	1290			SUM:	1371			SUM:	1371
	VOLUME/CAPACITY (V/C) RATIO:			0.774			0.828				0.860				0.914				0.914
V/C	LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.704 C			0.758 C				0.760 C				0.814 D				0.814 D
	LEVEL OF SERVICE (LOS).							L								<u></u>			U

PROJECT IMPACT

Change in v/c due to project: 0.054 Δ'
Significant impacted? YES

△v/c after mitigation: 0.054

Fully mitigated? NO

Intersection LOS Analysis Sheets

City of Los Angeles Mitigation

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	East-West Street: I-105 w/b R No. of Phases posed Ø'ing: N/S-1, E/W-2 or Both-3?		ve			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	h Farivar	Date:		10/3/2016	
7			Ramps			Projec	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
	osed Ø'ing: N/S-1, E/W-2 or B	3oth-3? DLA-3? TCS-2?	NB 0 EB 0	SB WB	3 0 0 0 1	NB EB	0 SE 0 WI		NB EB	0 0	SB WB	3 0 0 0 2	NB EB	0	SB WB	3 0 0 0 2	NB EB	0	SB WB	3 0 0 0 2
-	Override of	apacity	EXISTI	NG CONDI		EXISTI	NG PLUS PI		FUTUR	E CONDITION	ON W/O PR		FUTUR	E CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right		301 1119 0	2 0 2 0 0 0	166 560 0	29 83 0	330 1202 0	601 0	5 16 0	335 1244 0	2 0 2 0 0 0	622 0	29 83 0	364 1327 0	2 0 2 0 0 0	200 664 0		364 1327 0	2 0 2 0 0 0	200 664 0
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right		0 1086 734	0 0 2 0 1 0	0 543 734	0 30 26	0 1116 760	558 760	0 22 1	0 1214 806	0 0 2 0 1 0	0 607 806	0 30 26	0 1244 832	0 0 2 0 1 0	0 622 832		0 1244 832	0 0 2 0 1 0	0 622 832
EASTBOUND	☐ Left ☐ Left-Through ☐ Through ☐ Through-Right ☐ Right ☐ Left-Through-Right ☐ Left-Right		0 0	0 0 0 0 0	0 0		0 0 0	0 0	0 0	0 0	0 0 0 0 0	0 0	0 0 0	0 0	0 0 0 0 0 0	0 0		0 0	0 0 0 0 0	0 0
WESTBOUND	Left Left-Through Through Through-Right Right Left-Through-Right		116 4 372	1 0 0 1 1 0 0	116 188 0	0 0	116 4 372	116 188 0	24 0 0	151 4 408	1 1 0 0 1	78 78 408	0 0	151 4 408	1 1 0 0 1 0	78 78 408		151 4 408	1 0 0 1 1 0	151 206 0
	CRITICAL VOL			th-South: ast-West: SUM:	900 188 1088		rth-South: East-West: SUM:	942 188 1130			th-South: ast-West: SUM:	990 408 1398			th-South: ast-West: SUM:	1032 408 1440			h-South: ist-West: SUM:	1032 206 1238
V/C	VOLUME/CAPACITY (V/C) I LESS ATSAC/ATCS ADJUST LEVEL OF SERVICE	MENT:			0.764 0.694 B			0.793 0.723 C				0.981 0.881 D				1.011 0.911 E				0.869 0.769 C

PROJECT IMPACT

Change in v/c due to project: 0.030 $\Delta v/c$ after mitigation: -0.112 Significant impacted? YES Fully mitigated? YES

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street:	Central A	Ave			Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	Farivar	Date:		10/3/2016	
9	East-West Street:	120th St				Proje	ction Year	2035		Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbrod	k
Орр	No. of osed Ø'ing: N/S-1, E/W-2 or	f Phases Both-3?		. 1	2			2 0				2 0				2 0			Ú	2
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 W		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+	ATCS-27	EB 0	VV D	1	ED	O VVE	1	ED	U	WD	2	ED.	U	WD-	2	ED-	U	VVD	2
	Override (Capacity			0			0				0				0				0
	**************************************		EXISTI	NG CONDI			NG PLUS PI				ON W/O PR				ION W/ PR	-			CT W/ MITI	
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left		67	1	67	0	67	67	0	74	1	74	0	74	1	74		74	1	74
NORTHBOUND	← Left-Through ↑ Through		686	0 2	343	7	693	347	20	773	0 1	465	7	780	0	504		780	0 2	390
≌	t. Through-Right		000	0	343	l '	093	341	20	113	1	403	'	700	1	304		700	0	350
∥ È ∣	Right		134	1	71	72	206	131	9	156	0	156	72	228	0	228		228	1	142
2	++ Left-Through-Right			0							0				0				0	
THE REAL PROPERTY.	→ Left-Right			0				The second	-	-	0				0	-	-	NAC TON	0	TO BOOK OF
	└ Left		176	1	176	112	288	288	0	193	1	193	112	305	1	305		305	1	305
SOUTHBOUND	Left-Through			0							0				0				0	
	↓ Through		856	1	477	3	859	479	26	965	1	553	3	968	1	555		968	1	555
E	→ Through-Right :		98	0	98	0	98	98	33	141	0	141	0	141	0	141		141	0	141
8	Left-Through-Right			0	- 15		00				0		ľ		Ō				0	
65	→ Left-Right			0						_	0				0				0	
	Left	1000	119	1	119	0	119	119	13	144	1	144	0	144	1	144		144	1	144
9	→ Left-Through		119	0	119	"	113	119	13	144	0	1-4-4	"	3177	0	144		144	0	144
ਨੂੰ	→ Through		464	1	255	91	555	300	6	515	1	282	91	606	1	328		606	1	328
EASTBOUND	↑ Through-Right → Right		45	1	45		45			40	1 0	40	0	40	1	40		40	1	40
N SA	Right Left-Through-Right		45	0	45	0	45	45	0	49	0	49	"	49	0	49		49	0	49
	- Left-Right			0							0				0				0	
2 -8-		14 00 10	100	12-5-3	400		450	450	AS. SI		1000		PERSON IN	470	100 m	476	TEN SUR	476		476
□ □	✓ Left ✓ Left-Through		126	1 0	126	24	150	150	10	148	1 0	148	24	172	1	172		172	1 0	172
WESTBOUND	← Through		530	1	530	50	580	580	3	585	1	585	50	635	1	635		635	1	635
∥ ă	Through-Right			0	1			10 116			0	-7			0				0	5
ES.	Right Left-Through-Right		212	1 0	124	53	265	121	0	233	1 0	137	53	286	1	134		286	1 0	134
3	Left-Right			0							0				0				0	
			Nor	th-South:	544	No	rth-South:	635		Nor	th-South:	658		Nor	th-South:	809			th-South:	695
	CRITICAL V	OLUMES	E	ast-West:	649	1 4	East-West:	699		E	ast-West:	729		E	ast-West:	779		E	st-West:	779
	VOLUME/CAPACITY (V/C)) RATIO:		SUM:			SUM:	1334			SUM:	1387			SUM:	1588			SUM:	1474
N/C	LESS ATSAC/ATCS ADJUS				0.795			0.889				0.925				1.059	100			0.983
"	LEVEL OF SERVIC				0.725			0.819 D				0.825 D				0.959 E				0.883 D
	LEVEL OF SERVIC	,⊏ (LU3):	<u></u>		С			<u>u</u> U	<u></u>			U				E				ט

PROJECT IMPACT

Change in v/c due to project: 0.134 $\Delta v/c$ after mitigation: 0.058 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

1/S #:	North-South Street:	Compto	n Ave			Yea	r of Count	: 2016	Amt	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	
17	East-West Street:	East-West Street: Imperial Hwy No. of Phases Ø'ing: N/S-1, E/W-2 or Both-3? S: EREE-1 NRTOR-2 or OLA-32 NB 0 SE					ction Year	2035		Pea	ak Hour:	AM		wed by:			Project:	w	illowbrod	k
					2			2				2				2				2
Орр	oosed Ø'ing: N/S-1, E/W-2 or	Both-3?			0			0				0				0	111			0
Right	Turns: FREE-1, NRTOR-2 or	r OLA-3?	NB 0 EB 0	SB WB	0	NB EB	0 SE 0 W		NB EB	0 0	SB WB	0	NB EB	0	SB	0	NB	0	SB	0
	ATSAC-1 or ATSAC+	ATCS-2?	EB	VVB	1	EB	U VV	1	EB	U	WB	2	EB	0	WB	0 2	EB	0	WB	0
	Override				Ö			o				0				0				0
			EXISTI	NG CONDI	TION	EXIST	NG PLUS PI	ROJECT	FUTUR	E CONDITI	ON W/O PF	OJECT	FUTUR	E CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT			No. of	Lane	Project	Total	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane	Added	Total	No. of	Lane
			Volume	Lanes	Volume	Traffic	Volume	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume	Volume	Volume	Lanes	Volume
	Left		115	1	115	94	209	209	3	129	1	129	94	223	1	223		223	1	223
5	← Left-Through			0	005		074				0				0	S wife			0	
	↑ Through		335	1 0	335	39	374	374	1	369	1 0	369	39	408	1	408		408	1	408
NORTHBOUND	↑ Through-Right ✓ Right	N.	169	1	73	37	206	67	3	188	1	82	37	225	0	76		225	0	76
8	← Left-Through-Right		100	0		"	200	V	ľ	100	0	02	u,	220	0	,,		223	0	70
Z	← Left-Right			0							0				0				0	
100	the latest to the latest to	1500 L				E COL	IN SER	PERMIT	0.00		DE EVIL			2883	30 08	THE REAL PROPERTY.			J. 1000	
	Left		114	1	114	5	119	119	0	125	1	125	5	130	1	130		130	1	130
§	→ Left-Through Through		292	0	427	73	365	500	⊿	324	0	470	73	397	0	545		207	0	E45
	✓ Through-Right		232	1	421	'3	303	500	+	324	1	472	13	397	1	545		397	1	545
貞	Right		135	Ó	0	0	135	0	0	148	Ó	0	0	148	Ö	0		148	Ó	0
SOUTHBOUND	+ Left-Through-Right			0							0				0				0	
, I	لل Left-Right			0							0				0				0	
	ل Left	4 32	76	1	76	0	76	76	1	84	1			04	4			0.4	-12-01	
□	→ Left-Through		10	0	10	ı o	76	10	'	04	0	84	0	84	1 0	84		84	1 0	84
§	→ Through		667	2	280	57	724	355	9	741	2	312	57	798	2	388		798	2	388
EASTBOUND	→ Through-Right			1							1				1				1	
SA	Right		173	0	173	169	342	342	6	196	0	196	169	365	0	365		365	0	365
m l				0							0				0				0	
F100001.0	Leit-ragin	FIRE	DOWNERS.	ETOXES IN		III CONTRACTOR	- STE TO 1	Office Administra		W 152 3							NOT THE REAL	The same	U	eoreigi
	€ Left		192	1	192	86	278	278	1	212	1	212	86	298	1	298		298	1	298
∥≝∣	* Left-Through			0							0				0				0	1. 55
WESTBOUND	← Through Through-Right		1504	2	752	26	1530	765	7	1657	1	919	26	1683	1	932		1683	2	842
∥ SH	Through-Right Right		163	1	106	1	164	105	4	180	1 0	180	1	181	1	181		181	0	116
∥ÿ∣	Left-Through-Right		103	0	100	l '	104	103	'	100	0	100	,	101	0	101		101	0	110
_ >	} Left-Right			Ö							Ö				ő				0	
				th-South:	542		rth-South:	709			th-South:	601			th-South:	768			h-South:	768
	CRITICAL V	OLUMES	E	ast-West:	828	#	ast-West:	841		E	ast-West:	1003		Ea	st-West:	1016		Eá	st-West:	926
	VOLUME/CAPACITY (V/C	I PATIO:	-	SUM:	1370		SUM:	1550			SUM:	1604			SUM:	1784			SUM:	1694
					0.913			1.033				1.069				1.189				1.129
 	LESS ATSAC/ATCS ADJUS				0.843			0.963				0.969				1.089				1.029
	LEVEL OF SERVICE	E (LOS):			D	L		E				E				F				F

PROJECT IMPACT

Change in v/c due to project: 0.120 Δv/c after mitigation: 0.060
Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - AM Peak Hour

I/S #:	North-South Street: Imperial				Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	
36	East-West Street: I-105 w/t	Ramps			Proje	ction Year			Pea	ak Hour:	AM	Revie	wed by:			Project:	W	illowbroo	k
	No. of Phases losed Ø'ing: N/S-1, E/W-2 or Both-3? Turns: FREE-1, NRTOR-2 or OLA-3? ATSAC-1 or ATSAC+ATCS-2? Override Capacity	NB 0 EB 3	\$B WB	4 1 0 0 1	NB EB	0 SB 3 WE		NB EB	0 0	SB WB	4 1 0 0 2	NB EB	0 3	SB WB	4 1 0 0 2	NB EB	0	SB WB	4 1 0 0 2
	Overhide Supports	EXISTI	NG CONDI		EXIST	NG PLUS PF		FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUR	RE CONDIT	ION W/ PR		FUTURE	W/ PROJE	CT W/ MITI	
	MOVEMENT	Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right	539 11 137	2 1 0 0 1 0	183 183 0	9 12	833 20 149	284 284 0	3 0 0	594 12 150	1 1 0 0 1 0	303 303 0	294 9 12	888 21 162	1 0 0 1 0	455 455 0		888 21 162	2 1 0 0 1 0	303 303 0
SOUTHBOUND	Left Left-Through Through Through-Right Right Left-Through-Right Left-Right Left-Right	7 34 68	0 0 0 0 0 0	7 109 0	0 0	7 34 68	7 109 0	0 0 0	8 37 75	0 0 0 0 0 1	8 120 0	0 0 0	8 37 75	0 0 0 0 0 0	8 120 0		8 37 75	0 0 0 0 0 0	8 120 0
EASTBOUND	→ Left → Left-Through → Through-Right → Right ← Left-Through-Right Left-Right ← Left-Right	51 1012 224	1 0 3 1 1 0 0	51 253 41	7 89 139	58 1101 363	58 293 0	0 19 5	56 1129 251	1 0 3 1 1 0 0	56 282 100	7 89 139	63 1218 390	1 0 3 1 1 0 0	63 322 0		63 1218 390	1 0 3 1 1 0	63 322 0
WESTBOUND	Left Left-Through Through Through-Right Right Left-Through-Right	742 1346 13	2 0 2 1 0 0	408 453 13	2 142 4	744 1488 17	409 502 17	0 30 0	814 1507 14	2 0 2 1 0 0	448 507 14	2 142 4	816 1649 18	2 0 2 1 0 0	449 556 18		816 1649 18	2 0 2 1 0 0	449 556 18
	CRITICAL VOLUMES		th-South: ast-West: SUM:	292 661 953		rth-South: East-West: SUM:	393 702 1095			th-South: ast-West: SUM:	423 730 1153			th-South: ast-West: SUM:	575 771 1346			h-South: ist-West: SUM:	423 771 1194
V/C	VOLUME/CAPACITY (V/C) RATIO: C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):			0.693 0.623 B			0.796 0.726 C				0.839 0.739 C				0.979 0.879 D				0.868 0.768 C

PROJECT IMPACT

Change in v/c due to project: 0.140 $\Delta v/c$ after mitigation: 0.029 Significant impacted? YES Fully mitigated? YES

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street: Co	entral Ave					r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	- W T
7		105 w/b Ramp	s			Proje	ction Year	2035		Pea	ık Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
	No. of Ph posed Ø'ing: N/S-1, E/W-2 or Bo	th-3?	0 5	SB	3 0 0	NB	0 SE	3 0 3 0	ND.	0	60	3	A/D	0	0.5	3 0			25	3
Right	Turns: FREE-1, NRTOR-2 or OL	-A-3? NB EB		NB	0	EB	0 SE		NB EB	0	SB WB	0	NB EB	0	SB WB	0	NB EB	0	SB WB	0
	ATSAC-1 or ATSAC+ATC Override Cap	CS-2?			1 0			1 0			,	2		J	,,,,	2			112	2
		Е	KISTING	CONDIT	ION	EXIST	NG PLUS PI	ROJECT	FUTUR	E CONDITION	ON W/O PR	OJECT	FUTUF	RE CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT	Volu	ne L	lo. of anes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	Left	3	29	2	181	88	417	229	27	388	2	213	88	476	2	262		476	2	262
3	← Left-Through		44	0	472	78	1022	E44	45	1001	0	544	70	4450	0	500		4450	0	500
8	↑ Through ↑ Through-Right		44	0	4/2	/ 6	1022	511	45	1081	2	541	78	1159	2	580		1159	2	580
NORTHBOUND	Right	- 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0
§	← Left-Through-Right	- 1		0							0				0				0	
_	→ Left-Right			0							0				0				0	diam'r.
15.5.6	Left		0	0	0	0	0	0												
9	Left-Through	- 1	U	0	U	0	U	U	0	0	0	0	0	0	0	0		0	0	0
SOUTHBOUND	↓ Through	10	00	2	500	32	1032	516	46	1143	2	572	32	1175	2	588		1175	2	588
里	← Through-Right			0							0				0				0	
5	Right		56	1	556	55	611	611	5	615	1	615	55	670	1	670		670	1	670
ျူ	◆ Left-Through-Right ↓ Left-Right	- 1		0							0				0 0				0	
THE REAL PROPERTY.		0.31 (1.23					100		72 750	7 3.00			1353	JELLY.		OR SHOOT	- W. On	E HE EL	500 E	BARSIN
	Left		0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
∥ ¥	→ Left-Through	- 1		0							0		_		0				0	
EASTBOUND	→ Through → Through-Right	- 1	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
STE	Right	- 1	0	0	0		0	0	0	0	0	0	0	0	0	0		0	0	0
M M	Left-Through-Right	- 1		0							0		_	-	0			_	0	
roughteen co	-{ Left-Right			0							0				0				0	
F-12-4	€ Left		65	î	265	0	265	265	41	332	1	168	0	332	1	168	1530 W/	332	1	222
9	₹ Left-Through	'	UJ	Ó	203		203	203	41	332	1	100	"	332	1	100		აა∠	0	332
5	← Through		4	0	270	0	4	270	0	4	0	168	0	4	0	168		4	0	296
WESTBOUND	Through-Right			1			=05				0	7 70			0				1	
ES	Right Left-Through-Right		36	1	0	0	536	0	0	588	1 0	588	0	588	1	588		588	1	0
3	Left-Right			0							0				0				0	
			North-S	South:	737	No	rth-South:	840		Non	h-South:	828		Non	th-South:	932		Nort	h-South:	932
	CRITICAL VOLU	JMES		West:	270	Į £	ast-West:	270		Eá	st-West:	588		Ea	ast-West:	588		Ea	st-West:	332
-	VOLUME/CADACITY O//OLD	ATIO:		SUM:	1007		SUM:	1110		-	SUM:	1416			SUM:	1520			SUM:	1264
	VOLUME/CAPACITY (V/C) RA				0.707			0.779				0.994				1.067				0.887
V/C	LESS ATSAC/ATCS ADJUSTM	- 1			0.637			0.709				0.894				0.967				0.787
	LEVEL OF SERVICE (I	LOS):			В			С				D				E				C

PROJECT IMPACT

Change in v/c due to project: 0.073 Δv/c after mitigation: -0.107
Significant impacted? YES Fully mitigated? YES

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Central A				Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	
9	East-West Street:	120th St				Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	k
	No. or nosed Ø'ing: N/S-1, E/W-2 or Turns: FREE-1, NRTOR-2 or ATSAC-1 or ATSAC+,	OLA-3?	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SE		NB EB	0	SB WB	2 0 0 0 0	NB EB	0	SB WB	2 0 0 0 2	NB EB	0 0	SB WB	2 0 0 0 2
	Override				Ö			Ö				0				0				0
			EXISTI	NG CONDI	TION	EXIST	ING PLUS PI	ROJECT	FUTUR	E CONDITI	ON W/O PR	OJECT	FUTUR	E CONDIT	ION W/ PR	OJECT	FUTURE	W/ PROJE	CT W/ MITI	GATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
BOUND	Left ← Left-Through ↑ Through		144 845	1 0 2	144 423	0 5	144 850	1 44 425	0 52	158 979	1 0 1	158 573	0 5	158 984	1 0 1	158 595		158 984	1 0 2	158 492
NORTHBOUND	↑ Through-Right ↑ Right ↑ Left-Through-Right ↑ Left-Right		132	0 1 0 0	48	40	172	55	21	166	1 0 0 0	166	40	206	1 0 0 0	206		206	0 1 0 0	66
SOUTHBOUND			75 770	1 0 1 1	75 445	78 6	153 776	153 448	30	82 875	1 0 1 1	82 547	78 6	160 881	1 0 1	160 550		160 881	1 0 1 1	160 550
SOUTH	Right Left-Through-Right Left-Right		120	0 0 0	120	0	120	120	87	219	0 0 0	219	0	219	0 0 0	219		219	0 0 0	219
EASTBOUND	J Left → Left-Through → Through ¬ Through-Right ¬ Right		76 225 139	1 0 1 1	76 182 139	0 71 0	76 296 139	76 218 139	67 8	150 255 153	1 0 1 1 0	150 204 153	0 71 0	150 326 153	1 0 1 1 0	150 240 153		150 326 153	1 0 1 1	150 240 153
EAS	Left-Through-Right Left-Right		133	0	100	U	103	109	· ·	100	0	100	U	100	0	133		133	0	100
WESTBOUND	€ Left ₹ Left-Through ← Through ♣ Through-Right		169 475	1 0 1 0	169 475	65 115	234 590	234 590	31 11	216 532	1 0 1 0	216 532	65 115	281 647	1 0 1 0	281 647		281 647	1 0 1 0	281 647
WEST	Right Left-Through-Right Left-Right		80	1 0 0	43	136	216	140	0	88	1 0 0	47	136	224	1 0 0	144		224	1 0 0	144
	CRITICAL V	OLUMES		th-South: ast-West: SUM:	589 551 1140		rth-South: East-West: SUM:	592 666 1258			th-South: ast-West: SUM:	705 682 1387			th-South: ast-West: SUM:	755 797 1552			h-South: st-West: SUM:	708 797 1505
	VOLUME/CAPACITY (V/C)				0.760			0.839				0.925				1.035				1.003
V/C	C LESS ATSAC/ATCS ADJUSTMENT: LEVEL OF SERVICE (LOS):				0.690 B			0.769 C				0.825 D				0.935 E				0.903 E

PROJECT IMPACT

Change in v/c due to project: 0.110 $\Delta v/c$ after mitigation: 0.078 Significant impacted? YES Fully mitigated? NO

Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Compto	ı Ave			Yea	r of Count	: 2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	
17	East-West Street:	Imperial	Hwy			Ргоје	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbro	ok
	osed Ø'ing: N/S-1, E/W-2 o Turns: FREE-1, NRTOR-2 o ATSAC-1 or ATSAC+	r OLA-3?	NB 0 EB 0	SB WB	2 0 0 0 1	NB EB	0 SE 0 WI		NB EB	0 0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2	NB EB	0	SB WB	2 0 0 0 2
-	Overnue	Capacity	EXISTI	NG CONDI		EXIST	ING PLUS PI		FUTUR	E CONDITI	ON W/O PR		FUTUE	E CONDIT	ON W/ PR		FUTURE	W/ PROJE	CT W/ MIT	IGATION
	MOVEMENT		Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
NORTHBOUND	Left Left-Through Through-Right Right Left-Through-Right Left-Through-Right		99 307 169	1 0 1 0 1 0	99 307 137	174 84 69	273 391 238	391 181	11 5 2	120 342 187	1 0 1 0 1 0	120 342 150	174 84 69	294 426 256	1 0 1 0 1 0	294 426 194		294 426 256	1 0 1 0 1 0	294 426 194
SOUTHBOUND	↓ Left ↓ Left-Through ↓ Through ↓ Through-Right ↓ Right ↓ Left-Through-Right ↓ Left-Right		216 260 102	1 0 0 1 0 0	216 362 0	4 53 0	220 313 102	220 415 0	2 2	239 287 113	1 0 0 1 0 0	239 400 0	4 53 0	243 340 113	1 0 0 1 0 0	243 453 0		243 340 113	1 0 0 1 0 0	243 453 0
EASTBOUND	→ Left → Left-Through → Through-Right Right Left-Through-Right Left-Right		79 1448 87	1 0 2 1 0 0	79 512 87	0 51 105	79 1499 192	79 564 192	1 6 8	88 1595 103	1 0 2 1 0 0	88 566 103	0 51 105	88 1646 208	1 0 2 1 0 0	88 618 208		88 1646 208	1 0 2 1 0 0	88 618 208
WESTBOUND	← Left Classification Left-Through Through-Right Right Left-Through-Right Left-Right	e ng Saya	64 742 234	1 0 2 0 1 0	64 371 126	51 60 3	115 802 237	115 401 127	4 8 2	74 822 259	1 0 1 1 0 0	74 541 259	51 60 3	125 882 262	1 0 1 1 0 0	125 572 262		125 882 262	1 0 2 0 1 0	125 441 141
	├ Left-Right 0 North-South: 55 CRITICAL VOLUMES East-West:		523 576 1099		rth-South: East-West: SUM:	688 679 1367			th-South: ast-West: SUM:	581 640 1221			h-South: ast-West: SUM:	747 743 1490			th-South: ast-West: SUM:	747 743 1490		
V/C	VOLUME/CAPACITY (V/O LESS ATSAC/ATCS ADJU- LEVEL OF SERVIO	STMENT:			0.733 0.663 B			0.911 0.841 D				0.814 0.714 C				0.993 0.893 D				0.993 0.893 D

PROJECT IMPACT

Change in v/c due to project: 0.179 $\Delta v/c$ after mitigation: 0.179 Significant impacted? YES Fully mitigated? NO

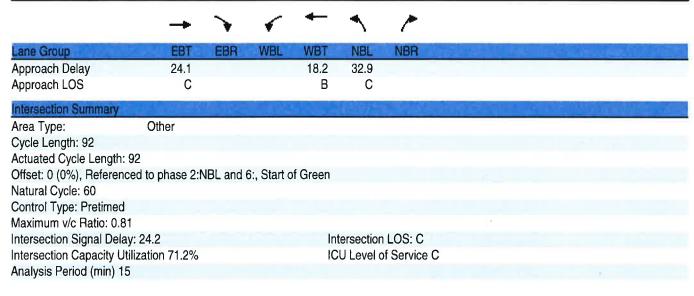
Willowbrook TOD Specific Plan Weekday - PM Peak Hour

I/S #:	North-South Street:	Imperial				Yea	r of Count	2016	Amb	ient Grov	vth: (%):	0.49	Condu	cted by:	Saeedel	n Farivar	Date:		10/3/2016	5
36		I-105 w/b	Ramps			Proje	ction Year	2035		Pea	ak Hour:	PM	Revie	wed by:			Project:	W	illowbrod	ok
''	No. of I osed Ø'ing: N/S-1, E/W-2 or E Turns: FREE-1, NRTOR-2 or (NB 0	SB	1 0	NB	0 SE	_	NB	0	SB	4 1 0	NB	0	SB	4 1 0	NB	0	SB	4 1 0
	ATSAC-1 or ATSAC+A	TCS-2?	EB 3	WB	0	EB	3 WE	3 0	EB	0	WB	0	EB	3	WB	0 2	EB	3	WB	0
	Override Ca	apacity			0			0				0				0				0
	MOVEMENT	-	EXISTI	NG CONDI			NG PLUS P				ON W/O PR				ION W/ PR			W/ PROJE		
			Volume	No. of Lanes	Lane Volume	Project Traffic	Total Volume	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume	Added Volume	Total Volume	No. of Lanes	Lane Volume
	↑ Left ←↑ Left-Through		549	2	186	217	766	260	4	606	1	308	217	823	1	420		823	2	280
NORTHBOUND	← Left-Through ↑ Through		8	0	186	7	15	260	0	9	1 0	308	7	16	1 0	420		16	1	280
₹	↑ Through-Right			0			,0	200	ľ	J	0	000	· '	10	0	120		10	0	200
\ <u>\times</u>	Right		274	1	109	10	284	118	0	301	1	119	10	311	1	129		311	1	129
¥	←↓→ Left-Through-Right ←↓→ Left-Right			0							0				0				0	
E-250				TENES.		Selection .	12 25 36	No.	E 15 75 75 1	5.775			F1 3 5 1	4,100			W-10,50	72. 18	201010	117.00
⋴	Left		9	0	9	0	9	9	0	10	0	10	0	10	0	10		10	0	10
SOUTHBOUND			22	0	56	0	22	56	0	24	0	61	0	24	0	61		24	0	61
⊻	← Through-Right			0		3.1			ľ		0	V.	Ĭ	2-7	0			27	0	0,
∥	→ Right → Left-Through-Right		25	0	0	0	25	0	0	27	0	0	0	27	0	0		27	0	0
%	Left-Right			0							0				0				1 - 0	
CERTIFICA		THE PERSON	- 85		1000	Nº 11-5				1000	OF THE		Salar Salar	W 172	TO COURT	200		130		
l <u>□</u> l	J Left→ Left-Through		47	1	47	18	65	65	0	52	1	52	18	70	1	70		70	1	70
EASTBOUND	→ Through		1628	3	407	186	1814	482	48	1834	3	459	186	2020	3	535		2020	3	535
	→ Through-Right			1							1				1				1	
AS	Right Left-Through-Right		342	1 0	156	253	595	0	25	400	1 0	246	253	653	1 0	0		653	1 0	0
"	∠ Left-Right			o o							0				0				0	
MILES			100	150,150	AST AND		20.4			201			NT W		CR. Y	HAZ	E 7 F 7		1	
e	✓ Left ✓ Left-Through		602	2	331	2	604	332	0	661	2	364	2	663	2	365		663	2	365
WESTBOUND	← Through		820	2	274	103	923	309	46	946	2	316	103	1049	2	351		1049	2	351
ığ	Through-Right		l a	1	1	_	4	بقوال			1	- 2 - 2			1				1	
👸	Right Left-Through-Right		1	0		3	4	4	0	1	0	1	3	4	0 0	4		4	0	4
	├ Left-Right			0	Leis II						0				0				0	
	CRITICAL VOI	LUMES		th-South: ast-West:	242 738	1	rth-South: ast-West:	316 814			th-South: ast-West:	369 823			th-South: ast-West:	481 900			h-South: st-West:	341 900
				SUM:	980		SUM:	1130			SUM:	1192			SUM:	1381		E	SUM:	1241
	VOLUME/CAPACITY (V/C)	RATIO:			0.713	4		0.822				0.867				1.004				0.903
V/C	LESS ATSAC/ATCS ADJUST	MENT:			0.643			0.752				0.767				0.904				0.803
	LEVEL OF SERVICE	(LOS):			В			С				С				Ε				D

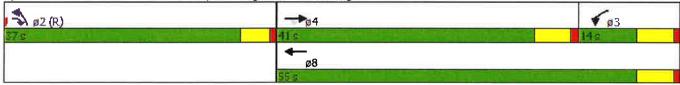
PROJECT IMPACT

Change in v/c due to project: 0.137 $\Delta v/c$ after mitigation: 0.036 Significant impacted? YES Fully mitigated? NO

Appendix E Freeway Off-Ramp Analysis


Freeway Off-Ramp Analysis

Existing Conditions

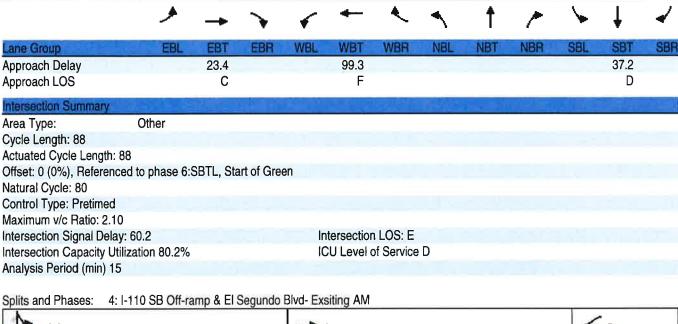

	\rightarrow	-	•	-			
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	REPART NUMBER OF STREET
Lane Configurations	十 个	7	ሻ	ተተተ	- AA		
Volume (vph)	944	241	97	1139	702	177	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95	
Frt	0.00	0.850		0.0.	0.970	0.00	
Flt Protected		0.000	0.950		0.962		
Satd. Flow (prot)	3471	1553	1736	4988	3307	0	
Flt Permitted			0.950		0.962		
Satd. Flow (perm)	3471	1553	1736	4988	3307	0	
Right Turn on Red		Yes		1000	0007	Yes	
Satd. Flow (RTOR)		223			38	100	
Link Speed (mph)	30	LLU		30	30		
Link Distance (ft)	568			630	393	53	
Travel Time (s)	12.9			14.3	8.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	1026	262	105	1238	763	192	
Shared Lane Traffic (%)	1020	202	103	1230	700	132	
Lane Group Flow (vph)	1026	262	105	1238	955	^	
Enter Blocked Intersection	No	No	No	No	No	0 No	
Lane Alignment	Left	Right	Left	Left	Left	Right	
Median Width(ft)	12			12	24		
Link Offset(ft)	0			0	0		
Crosswalk Width(ft)	16			16	16		
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)		9	15		15	9	
Turn Type	NA	pm+ov	Prot	NA	Prot		
Protected Phases	4	2	3	8	2		
Permitted Phases		4					
Minimum Split (s)	22.0	22.0	10.0	22.0	22.0		
Total Split (s)	41.0	37.0	14.0	55.0	37.0		
Total Split (%)	44.6%	40.2%	15.2%	59.8%	40.2%		
Maximum Green (s)	35.0	32.0	8.0	49.0	32.0		
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0		
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0		
_ead/Lag	Lead		Lag				
_ead-Lag Optimize?	Yes		Yes				
Walk Time (s)	5.0	5.0		5.0	5.0		
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		
Pedestrian Calls (#/hr)	0	0		0	0		
Act Effct Green (s)	35.0	73.0	8.0	49.0	32.0		
Actuated g/C Ratio	0.38	0.79	0.09	0.53	0.35		
/c Ratio	0.78	0.21	0.70	0.47	0.81		
Control Delay	30.0	0.9	66.3	14.1	32.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	30.0	0.9	66.3	14.1	32.9		
_OS	С	Α	Ε	В	С		

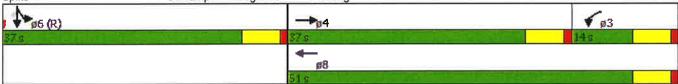
Existing 7/7/2016 Baseline

4: I-110 NB Off-ramp & El Segundo Blvd- Existing AM

Splits and Phases: 4: I-110 NB Off-ramp & El Segundo Blvd- Existing AM

	-	*	•	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1026	262	105	1238	955
v/c Ratio	0.78	0.21	0.70	0.47	0.81
Control Delay	30.0	0.9	66.3	14.1	32.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	30.0	0.9	66.3	14.1	32.9
Queue Length 50th (ft)	326	4	73	185	297
Queue Length 95th (ft)	421	20	#167	228	392
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1320	1278	150	2656	1175
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.78	0.21	0.70	0.47	0.81
Intersection Summary	J. 163	1111		401	11/20


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


Lanes, Volumes, Timings 4: I-110 SB Off-ramp & El Segundo Blvd- Exsiting AM

	۶	-	*	•	•	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		4	ተ					J.	4	7
Volume (vph)	0	702	541	304	1656	0	0	0	0	511	0	839
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.935									0.867	0.850
Flt Protected				0.950						0.950	0.994	
Satd. Flow (prot)	0	4663	0	1736	4988	0	0	0	0	1649	1433	1475
Flt Permitted				0.950						0.950	0.994	
Satd. Flow (perm)	0	4663	0	1736	4988	0	0	0	0	1649	1433	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		244									112	112
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.02	763	588	330	1800	0	0	0	0.02	555	0.02	912
Shared Lane Traffic (%)		. 00	000	000	1000					10%		47%
Lane Group Flow (vph)	0	1351	0	330	1800	0	0	0	0	499	485	483
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	LOIL	12	riigiit	Loit	12	riigiit	Lon	12	rugiit	Lon	12	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			.0			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	1.00	1.00	9	15	1.00	9	1.00	1.00	9
Turn Type	13	NA	3	Prot	NA	<u> </u>	10			Split	NA	Perm
Protected Phases		4		3	8					6	6	1 Cilli
Permitted Phases				J	U					U	U	6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		37.0		14.0	51.0					37.0	37.0	37.0
Total Split (%)		42.0%		15.9%	58.0%					42.0%	42.0%	42.0%
Maximum Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0										
Lost Time Adjust (s)		0.0		1.0 0.0	1.0 0.0					1.0	1.0	1.0
- , ,				6.0	6.0					6.0		
Total Lost Time (s)		6.0			0.0					0.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes	.					50	F 0	F 0
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0.0	0					0	0	0
Act Effct Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Actuated g/C Ratio		0.35		0.09	0.51					0.35	0.35	0.35
v/c Ratio		0.75		2.10	0.71					0.86	0.84	0.82
Control Delay		23.4		540.8	18.4					43.4	35.2	32.8
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		23.4		540.8	18.4					43.4	35.2	32.8
LOS		С		F	В					D	D	С

Existing 7/7/2016 Baseline

4: I-110 SB Off-ramp & El Segundo Blvd- Exsiting AM

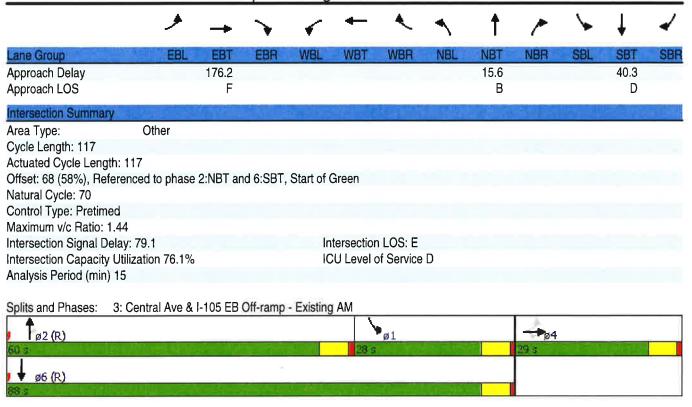
Existing 7/7/2016 Baseline

	-	•	—	-	↓	4
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	1351	330	1800	499	485	483
v/c Ratio	0.75	2.10	0.71	0.86	0.84	0.82
Control Delay	23.4	540.8	18.4	43.4	35.2	32.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	23.4	540.8	18.4	43.4	35.2	32.8
Queue Length 50th (ft)	236	~352	317	320	254	237
Queue Length 95th (ft)	302	#546	383	#546	#492	#457
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	1800	157	2550	580	577	592
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	- 0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.75	2.10	0.71	0.86	0.84	0.82

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

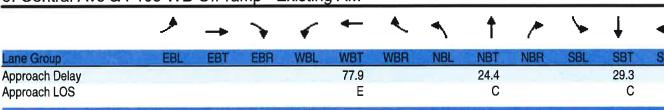
Lanes, Volumes, Timings 3: Central Ave & I-105 EB Off-ramp - Existing AM

Lane Group EBL EBT EBR WBL WBT WBR NBL NBR SBL	0 0 1900 5 1.00 8 0 Yes
Volume (vph) 664 13 538 0 0 0 0 768 335 567 66 Ideal Flow (vphpl) 1900 1	0 1900 5 1.00 8 0 Yes
Ideal Flow (vphpl) 1900 <td>1900 1.00 1.00 3 0 Yes</td>	1900 1.00 1.00 3 0 Yes
Lane Util. Factor 0.95 0.91 0.95 1.00 1.00 1.00 0.91 1.00 0.97 0.95 Fit 0.943 0.850 0.850 0.850 0.850 0.950 0.971 0.950 0.950 0.950 0.950 0.950 0.950 0.971 0.950 0.9	3 0 Yes
Frt 0.943 0.850 0.850 Flt Protected 0.950 0.971 0.950 Satd. Flow (prot) 1633 1508 1461 0 0 0 4940 1538 3335 345 Flt Permitted 0.950 0.971 0.950	3 0 Yes
Fit Protected 0.950 0.971 0.950 Satd. Flow (prot) 1633 1508 1461 0 0 0 0 4940 1538 3335 343 Flt Permitted 0.950 0.971 0.950 <td< td=""><td>9 0 Yes</td></td<>	9 0 Yes
Satd. Flow (prot) 1633 1508 1461 0 0 0 4940 1538 3335 343 Flt Permitted 0.950 0.971 0.950 Satd. Flow (perm) 1633 1508 1461 0 0 0 4940 1538 3335 343 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 23 283 364 Link Speed (mph) 30 30 30 30	9 0 Yes
Flt Permitted 0.950 0.971 0.950 Satd. Flow (perm) 1633 1508 1461 0 0 0 0 4940 1538 3335 343 Right Turn on Red Satd. Flow (RTOR) 23 283 Yes Yes Yes Satd. Flow (RTOR) 23 283 364 364 Link Speed (mph) 30 30 30 30	9 0 Yes
Satd. Flow (perm) 1633 1508 1461 0 0 0 4940 1538 3335 343 Right Turn on Red Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 23 283 364 <t< td=""><td>Yes</td></t<>	Yes
Right Turn on Red Yes Yes Yes Satd. Flow (RTOR) 23 283 364 Link Speed (mph) 30 30 30 30	Yes
Satd. Flow (RTOR) 23 283 364 Link Speed (mph) 30 30 30	3
Link Speed (mph) 30 30 30	3
	3
11 Di + (0)	
Link Distance (ft) 655 745 582 55	
Travel Time (s) 14.9 16.9 13.2 12	,
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.92
Adj. Flow (vph) 722 14 585 0 0 0 0 835 364 616 75	7 0
Shared Lane Traffic (%) 37% 29%	
Lane Group Flow (vph) 455 451 415 0 0 0 0 835 364 616 75	7 0
Enter Blocked Intersection No No No No No No No No No	No No
Lane Alignment Left Left Right Left Right Left Left Right Left Left Left Left Left Left Left Lef	t Right
Median Width(ft) 12 12 24	ļ
Link Offset(ft) 0 0)
Crosswalk Width(ft) 16 16	3
Two way Left Turn Lane	
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Turning Speed (mph) 15 9 15 9 15	9
Turn Type Perm NA Perm NA Perm Prot N	•
Protected Phases 4 2 1	3
Permitted Phases 4 4 2	
Minimum Split (s) 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.	
Total Split (s) 29.0 29.0 29.0 60.0 60.0 28.0 88	
Total Split (%) 24.8% 24.8% 24.8% 51.3% 51.3% 23.9% 75.2	
Maximum Green (s) 23.0 23.0 23.0 54.0 54.0 22.0 82)
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0)
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0	
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0)
Lead/Lag Lead Lead Lag	
Lead-Lag Optimize? Yes Yes Yes	
Walk Time (s) 5.0 5.0 5.0 5.0 5.0	
Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0)
Pedestrian Calls (#/hr) 0 0 0 0)
Act Effct Green (s) 23.0 23.0 23.0 54.0 54.0 22.0 82	
Actuated g/C Ratio 0.20 0.20 0.20 0.46 0.46 0.19 0.	
v/c Ratio 1.42 1.44 0.81 0.37 0.40 0.98 0.3)
Control Delay 241.1 247.5 27.6 21.0 3.3 79.6 7	
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
Total Delay 241.1 247.5 27.6 21.0 3.3 79.6 7)
LOS F F C C A E	١

Synchro 8 Report Existing 7/7/2016 Baseline Page 1

3: Central Ave & I-105 EB Off-ramp - Existing AM

3: Central Ave & I-105 EB Off-ramp - Existing AM


	•	-	*	†	-	1	. ↓
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	455	451	415	835	364	616	727
v/c Ratio	1.42	1.44	0.81	0.37	0.40	0.98	0.30
Control Delay	241.1	247.5	27.6	21.0	3.3	79.6	7.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	241.1	247.5	27.6	21.0	3.3	79.6	7.0
Queue Length 50th (ft)	~584	~593	121	175	0	289	117
Queue Length 95th (ft)	#842	#867	#330	215	62	#431	149
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	321	314	514	2280	905	627	2409
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.42	1.44	0.81	0.37	0.40	0.98	0.30

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	•	→	•	•	+	*	1	†	-	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	ની	7	44	ተ ተ			**	7
Volume (vph)	0	0	0	116	4	372	301	1119	0	0	1086	734
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util, Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Flt Protected				0.950	0.955		0.950					
Satd. Flow (prot)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.955		0.950					
Satd. Flow (perm)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)						113						
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	126	4	404	327	1216	0	0	1180	798
Shared Lane Traffic (%)				48%								
Lane Group Flow (vph)	0	0	0	66	64	404	327	1216	0	0	1180	798
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12		40.0	12			24			24	3
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				8	8		5	2			6	
Permitted Phases						8						6
Minimum Split (s)				21.1	21.1	21.1	10.0	22.0			22.0	22.0
Total Split (s)				27.0	27.0	27.0	18.0	87.0			69.0	69.0
Total Split (%)				23.7%	23.7%	23.7%	15.8%	76.3%			60.5%	60.5%
Maximum Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Yellow Time (s)				4.0	4.0	4.0	5.0	5.0			5.0	5.0
All-Red Time (s)				1.0	1.0	1.0	1.0	1.0			1.0	1.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				5.0	5.0	5.0	6.0	6.0			6.0	6.0
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Walk Time (s)				5.0	5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Actuated g/C Ratio				0.19	0.19	0.19	0.11	0.71			0.55	0.55
v/c Ratio				0.21	0.20	1.04	0.93	0.50			0.62	0.94
Control Delay				40.8	40.7	89.8	84.6	8.2			19.2	44.3
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				40.8	40.7	89.8	84.6	8.2			19.2	44.3
LOS				D	D	F	F	A			В	D

Area Type: Other

Cycle Length: 114

Actuated Cycle Length: 114

Offset: 0 (0%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Natural Cycle: 100
Control Type: Pretimed
Maximum v/c Ratio: 1.04

Intersection Signal Delay: 33.8 Intersection LOS: C
Intersection Capacity Utilization 71.5% ICU Level of Service C

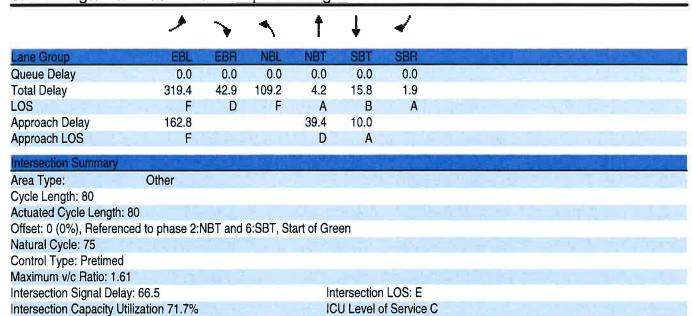
Analysis Period (min) 15

Splits and Phases: 3: Central Ave & I-105 WB Off-ramp - Existing AM

3: Central Ave & I-105 WB Off-ramp - Existing AM

	1	—	•		Ť	↓	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	66	64	404	327	1216	1180	798
v/c Ratio	0.21	0.20	1.04	0.93	0.50	0.62	0.94
Control Delay	40.8	40.7	89.8	84.6	8.2	19.2	44.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.8	40.7	89.8	84.6	8.2	19.2	44.3
Queue Length 50th (ft)	51	50	~299	149	222	354	622
Queue Length 95th (ft)	104	101	#536	#254	274	437	#968
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	315	316	388	351	2442	1899	849
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.20	1.04	0.93	0.50	0.62	0.94

Intersection Summary


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	•	-	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ħ	7	7	ተተተ	44	77
Volume (vph)	411	537	328	650	662	486
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1000	1000	0
Storage Lanes	1	1	120			2
Taper Length (ft)	25		25			
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
	1.00		1.00	0.91	0.95	
Frt	0.050	0.850	0.050			0.850
Fit Protected	0.950	4500	0.950	10.10	0.400	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		420				528
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070			942	903	
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	447	584	357	707	720	528
Shared Lane Traffic (%)	77 <i>1</i>	004	557	, 01	120	020
Lane Group Flow (vph)	447	584	357	707	720	528
Enter Blocked Intersection	No	No.	No	No	No	No
			Left			
Lane Alignment	Left	Right	Leit	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4				6
Minimum Split (s)	21.1	21.1	8.7	21.4	21.1	21.1
Total Split (s)	18.0	18.0	20.0	62.0	42.0	42.0
Total Split (%)	22.5%	22.5%	25.0%	77.5%	52.5%	52.5%
Maximum Green (s)	12.9	12.9	15.3	56.6	36.9	36.9
Yellow Time (s)	4.1	4.1	3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1	5.1	4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?						
Walk Time (s)	5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0	0
Act Effct Green (s)	12.9	12.9	15.3	56.6	36.9	36.9
Actuated g/C Ratio	0.16	0.16	0.19	0.71	0.46	0.46
v/c Ratio	1.61	0.10	1.09	0.20	0.45	0.40
Control Delay	319.4	42.9	109.2	4.2	15.8	1.9

Analysis Period (min) 15

3: Wilmington & I-105 EB Off-ramp - Existing AM

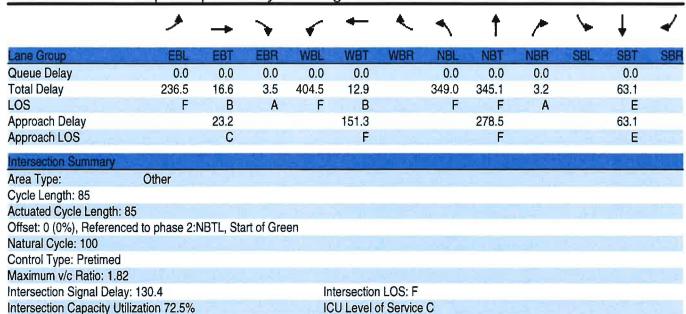
Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - Existing AM

3: Wilmington & I-105 EB Off-ramp - Existing AM

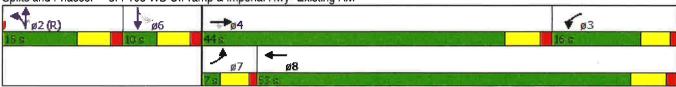
	<i>•</i>	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	447	584	357	707	720	528
v/c Ratio	1.61	0.97	1.09	0.20	0.45	0.34
Control Delay	319.4	42.9	109.2	4.2	15.8	1.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	319.4	42.9	109.2	4.2	15.8	1.9
Queue Length 50th (ft)	~391	101	~244	43	148	0
Queue Length 95th (ft)	#600	#361	#437	58	202	32
Internal Link Dist (ft)	990			862	823	
Turn Bay Length (ft)			120			
Base Capacity (vph)	277	600	328	3495	1585	1533
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.61	0.97	1.09	0.20	0.45	0.34

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	*	•	4-	•	1	†	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	tttp	7	1,1	ተተጉ		*	स	7		4	
Volume (vph)	51	1012	224	742	1346	13	539	11	137	7	37	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.997	0.850		0.999	7,71			0.850		0.918	
Flt Protected	0.950	0.001	0.000	0.950	0.000		0.950	0.954	0.000		0.997	
Satd. Flow (prot)	1719	5845	1246	3335	4935	0	1633	1640	1538	0	1656	0
Flt Permitted	0.950	0010	12-10	0.950	4000	·	0.950	0.954	1000	· ·	0.944	U
Satd. Flow (perm)	1719	5845	1246	3335	4935	0	1633	1640	1538	0	1568	0
Right Turn on Red	1713	3043	Yes	0000	4300	Yes	1000	1040	Yes	U	1300	Yes
Satd. Flow (RTOR)		6	219		3	163			245		69	165
		30	219		30			30	243		30	
Link Speed (mph)												
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)	0.00	25.7	0.00	0.00	23.9	0.00	0.00	13.3	0.00	0.00	11.1	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	55	1100	243	807	1463	14	586	12	149	8	40	74
Shared Lane Traffic (%)			10%				49%					
Lane Group Flow (vph)	55	1124	219	807	1477	0	299	299	149	0	122	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		2	2			6	
Permitted Phases			4						2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	16.0	53.0		15.0	15.0	15.0	10.0	10.0	
Total Split (%)	8.2%	51.8%	51.8%	18.8%	62.4%		17.6%	17.6%	17.6%	11.8%	11.8%	
Maximum Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4	4.4	4.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	110	0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lead	Lead	Lag	Lag		0.0	0.0	0.0		0.0	-
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Walk Time (s)	163	5.0	5.0	163	5.0		5.0	5.0	5.0	5.0	5.0	-
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
. ,			0		0		0				0	
Pedestrian Calls (#/hr)	0.0	0		44.0				0	0	0		The same of
Act Effet Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4		4.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.13	0.55		0.11	0.11	0.11		0.05	
v/c Ratio	1.20	0.43	0.32	1.82	0.54		1.66	1.65	0.39		0.84	
Control Delay	236.5	16.6	3.5	404.5	12.9		349.0	345.1	3.2		63.1	


Synchro 8 Report Page 1 Existing 7/6/2016 Baseline

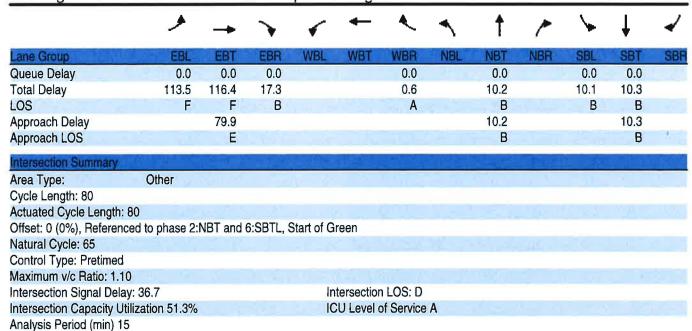
Analysis Period (min) 15

3: I-105 WB Off-ramp & Imperial Hwy- Existing AM

Splits and Phases: 3: I-105 WB Off-ramp & Imperial Hwy- Existing AM

3: I-105 WB Off-ramp & Imperial Hwy- Existing AM

	*	-	*	•	-		†	1	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	- A
Lane Group Flow (vph)	55	1124	219	807	1477	299	299	149	122	
v/c Ratio	1.20	0.43	0.32	1.82	0.54	1.66	1.65	0.39	0.84	
Control Delay	236.5	16.6	3.5	404.5	12.9	349.0	345.1	3.2	63.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	236.5	16.6	3.5	404.5	12.9	349.0	345.1	3.2	63.1	
Queue Length 50th (ft)	~43	145	0	~407	205	~296	~295	0	34	
Queue Length 95th (ft)	#132	181	55	#541	252	#491	#491	4	#149	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2623	679	443	2735	180	181	387	146	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.20	0.43	0.32	1.82	0.54	1.66	1.65	0.39	0.84	


Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	<i>></i>	→	*	•	4	•	4	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ર્ન	79			7		个个个		7	^	
Volume (vph)	614	3	346	0	0	11	0	907	14	30	602	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.998				
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4930	0	1719	3438	0
Flt Permitted	0.950	0.953	1000		•	,,,,,		.000		0.252	0.00	
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4930	0	456	3438	0
Right Turn on Red	1000	1000	Yes	•	U	Yes		4000	Yes	400	0400	Yes
Satd. Flow (RTOR)			288			102		4	103			103
Link Speed (mph)		30	200		30	102		30			30	
		817			156			598			555	
Link Distance (ft)												
Travel Time (s)	0.00	18.6	0.00	0.00	3.5	0.00	0.00	13.6	0.00	0.00	12.6	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	667	3	376	0	0	12	0	986	15	33	654	0
Shared Lane Traffic (%)	50%					- 10		1001	_		05.4	
Lane Group Flow (vph)	333	337	376	0	0	12	0	1001	0	33	654	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA	Perm			Perm		NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases			4			8				6		
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	20.0	20.0	20.0			10.0		50.0		50.0	50.0	
Total Split (%)	25.0%	25.0%	25.0%			12.5%		62.5%		62.5%	62.5%	
Maximum Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effct Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Actuated g/C Ratio	0.19	0.19	0.19			0.06		0.56		0.56	0.56	
v/c Ratio	1.10	1.10	0.19			0.06		0.36		0.30	0.34	
		116.4				0.06		10.2		10.1	10.3	
Control Delay	113.5	110.4	17.3			0.0		10.2		10.1	10.3	

3: Long Beach Blvd & I-105 EB Off-ramp - Existing AM

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - Existing AM

	≯	-	*		†	-	↓
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	333	337	376	12	1001	33	654
v/c Ratio	1.10	1.10	0.72	0.06	0.36	0.13	0.34
Control Delay	113.5	116.4	17.3	0.6	10.2	10.1	10.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	113.5	116.4	17.3	0.6	10.2	10.1	10.3
Queue Length 50th (ft)	~241	~246	46	0	112	9	104
Queue Length 95th (ft)	#438	#445	#172	0	144	26	143
Internal Link Dist (ft)		737			518		475
Turn Bay Length (ft)			110			180	
Base Capacity (vph)	304	305	520	191	2750	254	1916
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.10	1.10	0.72	0.06	0.36	0.13	0.34

Intersection Summary

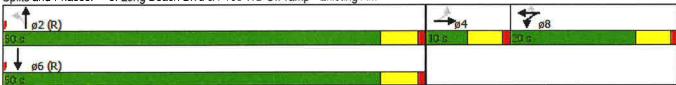
Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 WB Off-ramp - Existing AM

	۶	→	*	•	←	*	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	f a	7	7	ተተተ			11	
Volume (vph)	13	0	5	165	27	792	11	1123	0	0	1218	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.964			0.860	0.850					0.995	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1682	0	1719	1478	1461	1719	4940	0	0	4915	0
Flt Permitted		0.709		0.950			0.151					
Satd. Flow (perm)	0	1237	0	1719	1478	1461	273	4940	0	0	4915	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102			133	133					11	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	14	0	5	179	29	861	12	1221	0	0	1324	48
Shared Lane Traffic (%)						49%						1
Lane Group Flow (vph)	0	19	0	179	451	439	12	1221	0	0	1372	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4			0.1.1	24.4	8	2	04.4			04.4	
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		20.0	20.0	20.0	50.0	50.0			50.0	
Total Split (%)	12.5%	12.5%		25.0%	25.0%	25.0%	62.5%	62.5%			62.5%	
Maximum Green (s)	4.9	4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?	F 0	F 0		F 0		F 0	5 0	F 0			F 0	
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		140	140	140	0	0			0	
Act Effct Green (s)		4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Actuated g/C Ratio		0.06		0.19	0.19	0.19	0.56	0.56			0.56	
v/c Ratio		0.11		0.56	1.18	1.16	0.08	0.44			0.50	
Control Delay		1.3		37.2	127.9	119.7	9.9	11.0			11.5	


Existing 7/7/2016 Baseline

Analysis Period (min) 15

3: Long Beach Blvd & I-105 WB Off-ramp - Existing AM

	٠	→	*	•	-	4	4	†	<i>></i>	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Delay		1.3		37.2	127.9	119.7	9.9	11.0			11.5	
LOS		Α		D	F	F	Α	В			В	
Approach Delay		1.3			109.4			11.0			11.5	
Approach LOS		Α			F			В			В	
Intersection Summary					10.3	489 = 1		k P se ii		(Harry		
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 8	0											
Offset: 0 (0%), Reference	d to phase 2:	NBTL and	6:SBT, 8	Start of G	reen							
Natural Cycle: 75												
Control Type: Pretimed												
Maximum v/c Ratio: 1.18												
Intersection Signal Delay:	39.6			In	tersection	n LOS: D						
Intersection Capacity Utili	zation 70.7%			IC	CU Level	of Service	C					

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp - Existing AM

	-	*	♣—	*	1	†	↓
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	19	179	451	439	12	1221	1372
v/c Ratio	0.11	0.56	1.18	1.16	0.08	0.44	0.50
Control Delay	1.3	37.2	127.9	119.7	9.9	11.0	11.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	1.3	37.2	127.9	119.7	9.9	11.0	11.5
Queue Length 50th (ft)	0	98	~272	~257	3	145	169
Queue Length 95th (ft)	0	175	#500	#482	13	183	212
Internal Link Dist (ft)	135		493			413	470
Turn Bay Length (ft)				140	150		
Base Capacity (vph)	171	320	383	380	152	2754	2744
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.56	1.18	1.16	0.08	0.44	0.50

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Wilmington Ave & SR-91 EB Off-ramp - Existing AM

	۶	-	*	•	—	•	•	†	/	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	413						^	77.77	14.54	^	
Volume (vph)	771	445	225	0	0	0	0	973	217	162	495	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.965							0.850			
Flt Protected	0.950	0.985								0.950		1500
Satd. Flow (prot)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.985								0.950		
Satd. Flow (perm)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		38							236			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	3.13
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	838	484	245	0	0	0	0	1058	236	176	538	0
Shared Lane Traffic (%)	37%											
Lane Group Flow (vph)	528	1039	0	0	0	0	0	1058	236	176	538	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	3.11
Link Offset(ft)		0		To the same	0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		Set N										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		1	6	
Permitted Phases								_	2			
Minimum Split (s)	21.1	21.1						21.4	21.4	10.0	26.5	
Total Split (s)	31.0	31.0						33.0	33.0	33.0	66.0	
Total Split (%)	32.0%	32.0%						34.0%	34.0%	34.0%	68.0%	
Maximum Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Yellow Time (s)	4.0	4.0						4.0	4.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0						5.0	5.0	6.0	6.0	
Lead/Lag	5.0	3.0						Lag	Lag	Lead	0.0	
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0	163	5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Actuated g/C Ratio								0.29	0.29	0.28	0.62	
	0.27	0.27	_									
v/c Ratio	1.26	1.20						1.07 82.5	0.25	0.19	0.25	
Control Delay	167.6	133.1	0 1 5						4.3	27.4	8.7	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	167.6	133.1						82.5	4.3	27.4	8.7	
LOS	F	F						F	A	С	Α_	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

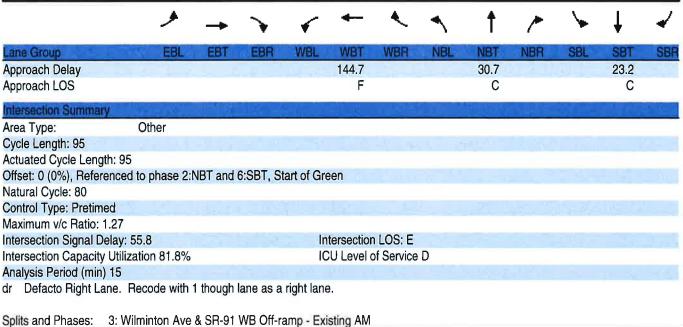
Lane Group EBL EBT NBT NBR SBL SBT Lane Group Flow (vph) 528 1039 1058 236 176 538 v/c Ratio 1.26 1.20 1.07 0.25 0.19 0.25 Control Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 <th></th> <th>•</th> <th>→</th> <th>†</th> <th>~</th> <th>-</th> <th>. ↓</th>		•	→	†	~	-	. ↓
v/c Ratio 1.26 1.20 1.07 0.25 0.19 0.25 Control Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Control Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Lane Group Flow (vph)	528	1039	1058	236	176	538
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	v/c Ratio	1.26	1.20	1.07	0.25	0.19	0.25
Total Delay 167.6 133.1 82.5 4.3 27.4 8.7 Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Control Delay	167.6	133.1	82.5	4.3	27.4	8.7
Queue Length 50th (ft) ~542 ~506 ~458 0 51 86 Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Queue Length 95th (ft) #805 #669 #612 35 83 117 Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) Base Capacity (vph) 419 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Total Delay	167.6	133.1	82.5	4.3	27.4	8.7
Internal Link Dist (ft) 510 324 339 Turn Bay Length (ft) Base Capacity (vph) 419 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Queue Length 50th (ft)	~542	~506	~458	0	51	86
Turn Bay Length (ft) Base Capacity (vph) 419 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Queue Length 95th (ft)	#805	#669	#612	35	83	117
Base Capacity (vph) 419 866 992 949 928 2126 Starvation Cap Reductn 0 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Internal Link Dist (ft)		510	324			339
Starvation Cap Reductn 0 0 0 0 0 Spillback Cap Reductn 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0	Turn Bay Length (ft)						
Spillback Cap Reductn 0 0 0 0 0 0 Storage Cap Reductn 0 0 0 0 0 0	Base Capacity (vph)	419	866	992	949	928	2126
Storage Cap Reductn 0 0 0 0 0	Starvation Cap Reductn	0	0	0	0	0	0
	Spillback Cap Reductn	0	0	0	0	0	0
Reduced v/c Batio 1.26 1.20 1.07 0.25 0.19 0.25	Storage Cap Reductn	0	0	0	0	0	0
11.20 1.20 1.10 0.20 0.10 0.20	Reduced v/c Ratio	1.26	1.20	1.07	0.25	0.19	0.25

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Wilminton Ave & SR-91 WB Off-ramp - Existing AM


	۶	→	*	•	←	*	1	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	47>		ħ	个 个			ተተጉ	
Volume (vph)	0	0	0	175	90	576	536	1234	0	0	455	482
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.874						0.923	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	2875	0	1719	3438	0	0	4560	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	2875	0	1719	3438	0	0	4560	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					84						257	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	190	98	626	583	1341	0	0	495	524
Shared Lane Traffic (%)				10%	12.21							
Lane Group Flow (vph)	0	0	0	171	743	0	583	1341	0	0	1019	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12		2011	12			12	79		12	9
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								7 d j = 1			100	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1100	9	15		9	15		9	15		9
Turn Type				Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				23.0	23.0		37.0	72.0			35.0	
Total Split (%)				24.2%	24.2%		38.9%	75.8%			36.8%	
Maximum Green (s)				17.0	17.0		31.0	66.0			29.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag				0.0	0.0		Lag	0.0			Lead	
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0		163	5.0			5.0	
				11.0	11.0			11.0			11.0	
Flash Dont Walk (s)				0	0			0			0	
Pedestrian Calls (#/hr)					17.0		31.0	66.0			29.0	
Act Effct Green (s)				17.0								
Actuated g/C Ratio				0.18	0.18		0.33	0.69			0.31	
v/c Ratio				0.61	1.90dr		1.04	0.56			0.65	
Control Delay				46.4	167.3		82.2	8.4			23.2	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
Total Delay				46.4	167.3		82.2	8.4			23.2	
LOS				D	F		F	Α			С	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

Ø6 (R)

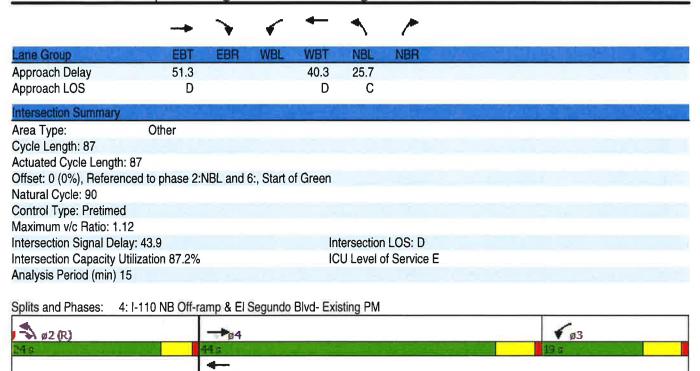
9/27/2016

Page 2

₹ø8 ø2 (R) **♦**

	*	←		†	. ↓
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	171	743	583	1341	1019
v/c Ratio	0.61	1.90dr	1.04	0.56	0.65
Control Delay	46.4	167.3	82.2	8.4	23.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	46.4	167.3	82.2	8.4	23.2
Queue Length 50th (ft)	126	~349	~459	222	173
Queue Length 95th (ft)	218	#497	#705	282	230
Internal Link Dist (ft)		500		324	339
Turn Bay Length (ft)					
Base Capacity (vph)	279	583	560	2388	1570
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.61	1.27	1.04	0.56	0.65

Intersection Summary


- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.

 Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

Existing 7/7/2016 Baseline

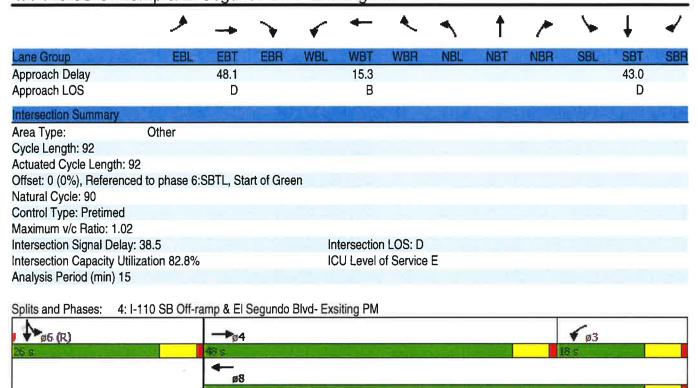
	-	7	1	-	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	74	7	ተተተ	AAA	
Volume (vph)	1473	443	268	707	318	265
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
					0.97	
Lane Util. Factor	0.95	1.00	1.00	0.91		0.95
Frt		0.850	0.000		0.932	
Flt Protected			0.950		0.973	
Satd. Flow (prot)	3471	1553	1736	4988	3214	0
Flt Permitted			0.950		0.973	
Satd. Flow (perm)	3471	1553	1736	4988	3214	0
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		81			221	
Link Speed (mph)	30			30	30	
Link Distance (ft)	568			630	393	
Travel Time (s)	12.9			14.3	8.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
	1601	482	291	768	346	288
Adj. Flow (vph)	1001	402	291	100	340	200
Shared Lane Traffic (%)	4004	400	004	700	004	0
Lane Group Flow (vph)	1601	482	291	768	634	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Turn Type	NA	pm+ov	Prot	NA	Prot	
Protected Phases	4	2	3	8	2	
Permitted Phases	4	4	J	U	۷	
	00.0		10.0	00.0	04.4	
Minimum Split (s)	22.0	21.1	10.0	22.0	21.1	
Total Split (s)	44.0	24.0	19.0	63.0	24.0	
Total Split (%)	50.6%	27.6%	21.8%	72.4%	27.6%	
Maximum Green (s)	38.0	19.0	13.0	57.0	19.0	
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0	. 00	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	
			10.0			
Act Effct Green (s)	38.0	63.0	13.0	57.0	19.0	
Actuated g/C Ratio	0.44	0.72	0.15	0.66	0.22	
v/c Ratio	1.06	0.42	1.12	0.24	0.73	
Control Delay	65.2	5.1	130.0	6.3	25.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	65.2	5.1	130.0	6.3	25.7	
LOS	Ε	Α	F	Α	С	

Synchro 8 Report Existing 7/7/2016 Baseline Page 1

	-	*	1	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1601	482	291	768	634
v/c Ratio	1.06	0.42	1.12	0.24	0.73
Control Delay	65.2	5.1	130.0	6.3	25.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	65.2	5.1	130.0	6.3	25.7
Queue Length 50th (ft)	~614	81	~223	66	129
Queue Length 95th (ft)	#775	137	#409	86	202
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1516	1146	259	3268	874
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.06	0.42	1.12	0.24	0.73

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 4: I-110 SB Off-ramp & El Segundo Blvd- Exsiting PM

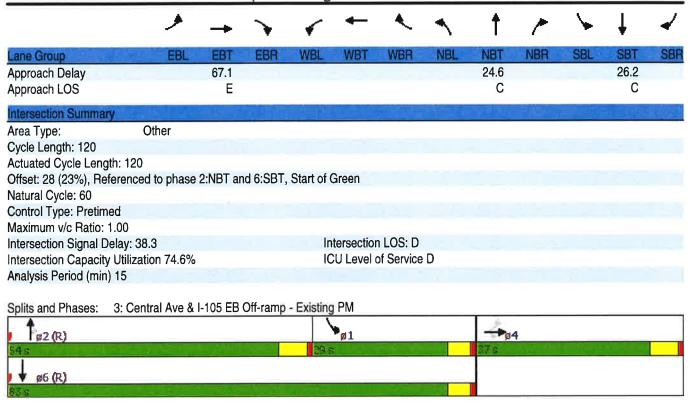
	۶	→	*	•	←	•		†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተ ቀሴ		Y	ተተተ					M	4	7
Volume (vph)	0	1508	607	157	883	0	0	0	0	437	0	424
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.957									0.920	0.850
Flt Protected				0.950						0.950	0.977	
Satd. Flow (prot)	0	4773	0	1736	4988	0	0	0	0	1649	1494	1475
Flt Permitted				0.950						0.950	0.977	
Satd. Flow (perm)	0	4773	0	1736	4988	0	0	0	0	1649	1494	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		145									107	158
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1639	660	171	960	0	0	0	0	475	0	461
Shared Lane Traffic (%)										31%		36%
Lane Group Flow (vph)	0	2299	0	171	960	0	0	0	0	328	313	295
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	•
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA		Prot	NA					Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases												6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		48.0		18.0	66.0					26.0	26.0	26.0
Total Split (%)		52.2%		19.6%	71.7%					28.3%	28.3%	28.3%
Maximum Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Actuated g/C Ratio		0.46		0.13	0.65					0.22	0.22	0.22
v/c Ratio		1.02		0.76	0.30					0.92	0.77	0.66
Control Delay		48.1		60.9	7.2					67.5	36.1	23.2
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		48.1		60.9	7.2					67.5	36.1	23.2
LOS		D		E	Α					Е	D	C

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

4: I-110 SB Off-ramp & El Segundo Blvd- Exsiting PM

Lane Group EBT WBL WBT SBL SBR Lane Group Flow (vph) 2299 171 960 328 313 295 v/c Ratio 1.02 0.76 0.30 0.92 0.77 0.66 Control Delay 48.1 60.9 7.2 67.5 36.1 23.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
Lane Group Flow (vph) 2299 171 960 328 313 295 v/c Ratio 1.02 0.76 0.30 0.92 0.77 0.66 Control Delay 48.1 60.9 7.2 67.5 36.1 23.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
v/c Ratio 1.02 0.76 0.30 0.92 0.77 0.66 Control Delay 48.1 60.9 7.2 67.5 36.1 23.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
Control Delay 48.1 60.9 7.2 67.5 36.1 23.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
Total Delay 48.1 60.9 7.2 67.5 36.1 23.2
Queue Length 50th (ft) ~576 117 94 236 150 88
Queue Length 95th (ft) #724 #237 118 #437 #320 206
Internal Link Dist (ft) 722 703 240
Turn Bay Length (ft)
Base Capacity (vph) 2257 226 3253 358 408 444
Starvation Cap Reductn 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0
Reduced v/c Ratio 1.02 0.76 0.30 0.92 0.77 0.66

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Central Ave & I-105 EB Off-ramp - Existing PM

	۶	-	•	•	—	•	•	†	-	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7					ተተተ	7	77	† †	
Volume (vph)	477	240	378	0	0	0	0	825	385	463	793	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.984	0.850						0.850			
Flt Protected	0.950	0.987								0.950		
Satd. Flow (prot)	1633	1599	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.987								0.950		
Satd. Flow (perm)	1633	1599	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		5	192						181			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	518	261	411	0.32	0.52	0.02	0.52	897	418	503	862	0.02
Shared Lane Traffic (%)	21%	201	11%	U	· ·		0	001	410	000	002	
Lane Group Flow (vph)	409	415	366	0	0	0	0	897	418	503	862	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
	Leit	12	nigitt	Leit	12	Hight	Leit	24	rtigitt	Leit	24	riigitt
Median Width(ft) Link Offset(ft)		0			0			0			0	
		16			16			16			16	
Crosswalk Width(ft)		10			10			10			10	
Two way Left Turn Lane	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9
Turning Speed (mph)		A I A	Perm	13		9	13	NA	Perm	Prot	NA	Э
Turn Type	Perm	NA	Penn					2	reiiii	1		
Protected Phases	4	4	4					2	0	l l	6	
Permitted Phases	4	00.0	4					00.0	2	0.0	00.0	
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	9.0	22.0	
Total Split (s)	37.0	37.0	37.0					54.0	54.0	29.0	83.0	
Total Split (%)	30.8%	30.8%	30.8%					45.0%	45.0%	24.2%	69.2%	
Maximum Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	5.0	5.0	
Lead/Lag								Lead	Lead	Lag		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0					0	0		0	
Act Effct Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Actuated g/C Ratio	0.26	0.26	0.26					0.40	0.40	0.20	0.65	
v/c Ratio	0.97	1.00	0.71					0.45	0.58	0.75	0.39	
Control Delay	81.9	88.0	26.9					27.3	18.8	53.4	10.4	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	81.9	88.0	26.9					27.3	18.8	53.4	10.4	
LOS	F	F	С					С	В	D	В	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

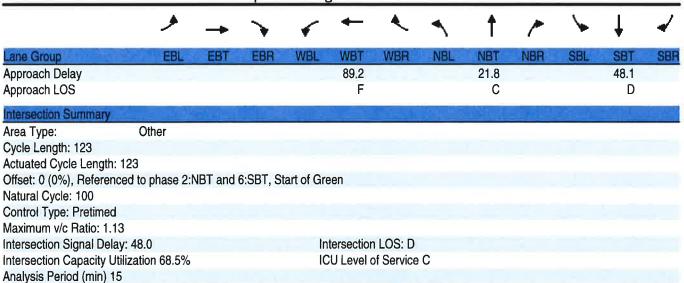
3: Central Ave & I-105 EB Off-ramp - Existing PM

3: Central Ave & I-105 EB Off-ramp - Existing PM

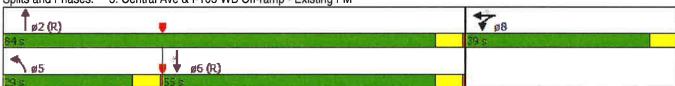
	▶	→	*	†	-	-	Ţ
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	409	415	366	897	418	503	862
v/c Ratio	0.97	1.00	0.71	0.45	0.58	0.75	0.39
Control Delay	81.9	88.0	26.9	27.3	18.8	53.4	10.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	81.9	88.0	26.9	27.3	18.8	53.4	10.4
Queue Length 50th (ft)	396	420	155	220	167	229	181
Queue Length 95th (ft)	#653	#703	303	268	293	303	226
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	421	416	519	1976	723	667	2234
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.97	1.00	0.71	0.45	0.58	0.75	0.39
Intersection Summary	-		W	71		(MEL	W.Y

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


Lanes, Volumes, Timings 3: Central Ave & I-105 WB Off-ramp - Existing PM

	*	-	*	•	—	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	र्स	7	44	十十			十十	7
Volume (vph)	0	0	0	265	0	536	329	944	0	0	1000	556
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Flt Protected				0.950	0.950		0.950					
Satd. Flow (prot)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.950		0.950					
Satd. Flow (perm)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Right Turn on Red	- i		Yes			Yes		-	Yes			No
Satd. Flow (RTOR)						131						
Link Speed (mph)		30			30	101		30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.92	0.52	0.92	288	0.32	583	358	1026	0.32	0.32	1087	604
	U	U	U	50%	U	303	330	1020	U	U	1007	004
Shared Lane Traffic (%)	0	0	0	144	144	583	358	1026	0	0	1087	604
Lane Group Flow (vph)	0	0										
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane				4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				8	8		5	2			6	
Permitted Phases						8						6
Minimum Split (s)				21.5	21.5	21.5	9.5	21.5			21.5	21.5
Total Split (s)				39.0	39.0	39.0	29.0	84.0			55.0	55.0
Total Split (%)				31.7%	31.7%	31.7%	23.6%	68.3%			44.7%	44.7%
Maximum Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				5.5	5.5	5.5	5.5	5.5			5.5	5.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Walk Time (s)				5.0	5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Actuated g/C Ratio				0.27	0.27	0.27	0.19	0.64			0.40	0.40
v/c Ratio				0.32	0.32	1.13	0.56	0.47			0.79	0.98
Control Delay				38.2	38.2	114.4	49.0	12.3			37.1	67.8
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				38.2	38.2	114.4	49.0	12.3			37.1	67.8
LOS				D	D	F	D	В			D	Е
LO3				<u> </u>	<u> </u>	F	<i>U</i>	ט			U	


Existing 7/7/2016 Baseline

Synchro 8 Report

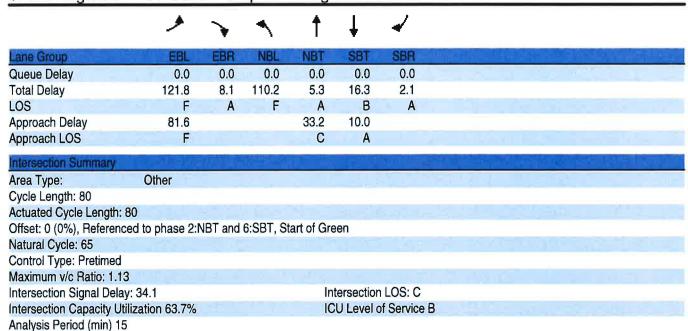
3: Central Ave & I-105 WB Off-ramp - Existing PM

Splits and Phases: 3: Central Ave & I-105 WB Off-ramp - Existing PM

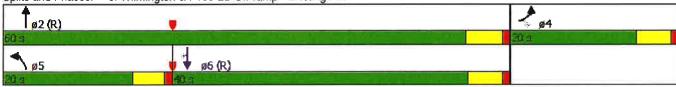
3: Central Ave & I-105 WB Off-ramp - Existing PM

	•	-	•	1	†	ļ	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	144	144	583	358	1026	1087	604
v/c Ratio	0.32	0.32	1.13	0.56	0.47	0.79	0.98
Control Delay	38.2	38.2	114.4	49.0	12.3	37.1	67.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	38.2	38.2	114.4	49.0	12.3	37.1	67.8
Queue Length 50th (ft)	115	115	~551	161	247	471	560
Queue Length 95th (ft)	192	192	#824	221	303	575	#856
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	444	444	514	637	2194	1383	618
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.32	0.32	1.13	0.56	0.47	0.79	0.98

Intersection Summary


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	*	-	1	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	TOL	LON	NDL	†	十 十	77.77
Volume (vph)	331	181	329	911	534	425
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1300	1300	0
Storage Lanes	1	1	120			2
Taper Length (ft)	25		25			2
		1.00		0.91	0.95	0.88
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	
Frt	0.050	0.850	0.050			0.850
Flt Protected	0.950	4500	0.950	40.40	0.400	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		197				462
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070			942	903	
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	360	197	358	990	580	462
Shared Lane Traffic (%)	000		300	300	500	102
Lane Group Flow (vph)	360	197	358	990	580	462
Enter Blocked Intersection	No	No	No	No	No	No
			Left	Left	Left	
Lane Alignment	Left	Right	Leit			Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		4				6
Minimum Split (s)	21.1	21.1	8.7	21.4	21.1	21.1
Total Split (s)	20.0	20.0	20.0	60.0	40.0	40.0
Total Split (%)	25.0%	25.0%	25.0%	75.0%	50.0%	50.0%
Maximum Green (s)	14.9	14.9	15.3	54.6	34.9	34.9
Yellow Time (s)	4.1	4.1	3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1	5.1	4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?						
Walk Time (s)	5.0	5.0		5.0	5.0	5.0
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0	0		0	0	0
Act Effct Green (s)	14.9	14.9	15.3	54.6	34.9	34.9
Actuated g/C Ratio	0.19	0.19	0.19	0.68	0.44	0.44
v/c Ratio	1.12	0.44	1.09	0.29	0.39	0.32
Control Delay	121.8	8.1	110.2	5.3	16.3	2.1
Control Dolay	121.0	0.1	110.2	0.0	10.0	۷, ۱

Synchro 8 Report Existing 7/6/2016 Baseline Page 1

3: Wilmington & I-105 EB Off-ramp - Existing PM

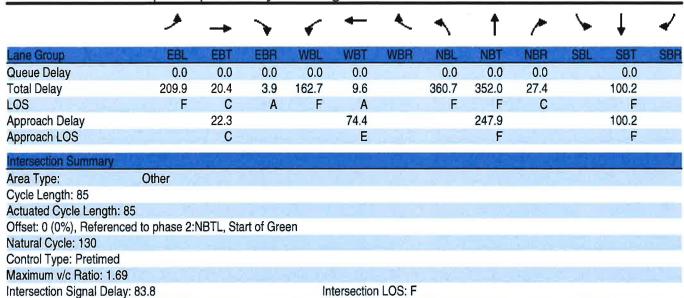
Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - Existing PM

	•	-	4	†	. ↓	4	
FATE WILLIAM TO THE	- Pri	COO	KIDI:	KIDT	OPT	enn	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR	Milliagraph Tri Tink Oreal
Lane Group Flow (vph)	360	197	358	990	580	462	
v/c Ratio	1.12	0.44	1.09	0.29	0.39	0.32	
Control Delay	121.8	8.1	110.2	5.3	16.3	2.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	121.8	8.1	110.2	5.3	16.3	2.1	
Queue Length 50th (ft)	~253	0	~245	73	119	0	
Queue Length 95th (ft)	#446	64	#438	94	167	32	
Internal Link Dist (ft)	990			862	823		
Turn Bay Length (ft)			120				
Base Capacity (vph)	320	446	328	3371	1499	1441	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	1.13	0.44	1.09	0.29	0.39	0.32	

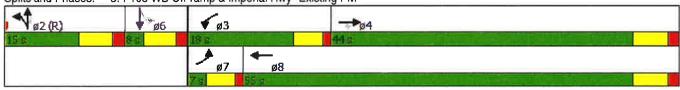
Intersection Summary

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

0	۶	-	*	•	←	4	1	†	<i>></i>	/	ļ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4111	7	77	ተተጉ		Ť	स	7		4	
Volume (vph)	47	1628	342	602	820	1	549	8	274	9	22	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.997	0.850						0.850		0.940	
Flt Protected	0.950			0.950			0.950	0.954			0.992	
Satd. Flow (prot)	1719	5845	1246	3335	4940	0	1633	1640	1538	0	1687	0
Flt Permitted	0.950			0.950			0.950	0.954			0.970	
Satd. Flow (perm)	1719	5845	1246	3335	4940	0	1633	1640	1538	0	1650	0
Right Turn on Red			Yes			Yes			Yes	7		Yes
Satd. Flow (RTOR)		5	335						230		27	
Link Speed (mph)		30	000		30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	51	1770	372	654	891	1	597	9	298	10	24	27
Shared Lane Traffic (%)		1170	10%	7 00 1	THE STATE OF	13	49%		200	-		75.8
Lane Group Flow (vph)	51	1807	335	654	892	0	304	302	298	0	61	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	24	rugin	Lon	24	riigiit	Lon	12	= II III	b. L.O.	12	ragin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	.,,,,	9	15	,,,,,,	9	15		9
Turn Type	Prot	NA	Perm	Prot	NA	100	Split	NA	Perm	Perm	NA	7.0
Protected Phases	7	4		3	8		2	2			6	
Permitted Phases			4	100				0.00	2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	18.0	55.0		15.0	15.0	15.0	8.0	8.0	
Total Split (%)	8.2%	51.8%	51.8%	21.2%	64.7%		17.6%	17.6%	17.6%	9.4%	9.4%	
Maximum Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	2.4	2.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lag	Lag	Lead	Lag		0.0	0.0	0.0		0.0	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Walk Time (s)	100	5.0	5.0	100	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	
Act Effct Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	U	2.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.16	0.58		0.11	0.11	0.11		0.03	
v/c Ratio	1.11	0.45	0.45	1.26	0.31		1.69	1.67	0.80		0.03	
Control Delay	209.9	20.4	3.9	162.7	9.6		360.7	352.0	27.4		100.2	
Control Delay	208.8	20.4	3.8	102.7	5.0		500.7	002.0	41.4		100.2	


Intersection Capacity Utilization 78.3%

Analysis Period (min) 15

3: I-105 WB Off-ramp & Imperial Hwy- Existing PM

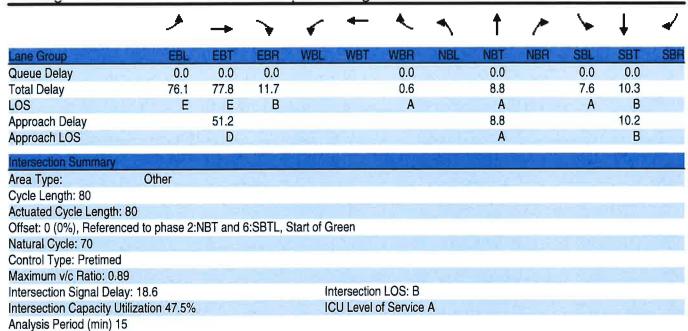
Splits and Phases: 3: I-105 WB Off-ramp & Imperial Hwy- Existing PM

ICU Level of Service D

	•	-	*	•	-		†		↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL.	NBT	NBR	SBT	
Lane Group Flow (vph)	51	1807	335	654	892	304	302	298	61	
v/c Ratio	1.11	0.69	0.45	1.26	0.31	1.69	1.67	0.80	0.85	
Control Delay	209.9	20.4	3.9	162.7	9.6	360.7	352.0	27.4	100.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	209.9	20.4	3.9	162.7	9.6	360.7	352.0	27.4	100.2	
Queue Length 50th (ft)	~38	274	0	~273	99	~304	~301	41	22	
Queue Length 95th (ft)	#123	328	67	#400	127	#500	#495	#192	#111	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2622	743	521	2853	180	181	374	72	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1,11	0.69	0.45	1.26	0.31	1.69	1.67	0.80	0.85	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 EB Off-ramp - Existing PM


0	۶	→	*	€	•	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	र्स	7			71		ተተኈ		Ť	十十	
Volume (vph)	328	1	215	0	0	14	0	991	4	14	920	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.999				
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4935	0	1719	3438	0
Flt Permitted	0.950	0.953								0.232		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4935	0	420	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			234			102		1				100
Link Speed (mph)		30	LOT		30	IVL		30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	357		234	0.92	0.92	15	0.92	1077	4	15	1000	0.92
Adj. Flow (vph)		1	234	U	U	15	U	1077	4	10	1000	U
Shared Lane Traffic (%)	50%	100	004	_	^	4.5	_	1001	0	45	1000	_
Lane Group Flow (vph)	178	180	234	0	0	15	0	1081	0	15 No.	1000	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA	Perm			Perm		NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases			4			8				6	7.4	
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	15.0	15.0	15.0			12.0		53.0		53.0	53.0	
Total Split (%)	18.8%	18.8%	18.8%			15.0%		66.3%		66.3%	66.3%	
Maximum Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effct Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Actuated g/C Ratio	0.12	0.12	0.12			0.09		0.60		0.60	0.60	
v/c Ratio	0.88	0.89	0.59			0.07		0.37		0.06	0.49	
Control Delay	76.1	77.8	11.7			0.6		8.8		7.6	10.3	
Control Delay	70.1	11.0	11.7			0.0		0.0		7.0	10.0	

Existing 7/6/2016 Baseline

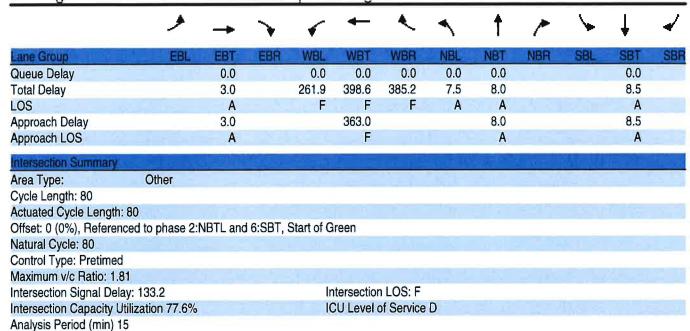
3: Long Beach Blvd & I-105 EB Off-ramp - Existing PM

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - Existing PM

	•	-	*	4	†	-	ļ	
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT	
Lane Group Flow (vph)	178	180	234	15	1081	15	1000	
/c Ratio	0.88	0.89	0.59	0.07	0.37	0.06	0.49	
Control Delay	76.1	77.8	11.7	0.6	8.8	7.6	10.3	
ueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	76.1	77.8	11.7	0.6	8.8	7.6	10.3	
ueue Length 50th (ft)	112	113	0	0	111	3	163	
ueue Length 95th (ft)	#255	#258	75	0	142	13	217	
ernal Link Dist (ft)		737			518		475	
rn Bay Length (ft)			110			180		
ase Capacity (vph)	202	202	395	228	2936	249	2045	
arvation Cap Reductn	0	0	0	0	0	0	0	
illback Cap Reductn	0	0	0	0	0	0	0	
orage Cap Reductn	0	0	0	0	0	0	0	
educed v/c Ratio	0.88	0.89	0.59	0.07	0.37	0.06	0.49	
tersection Summary		4 4 7 4					A	Carl Charles

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 WB Off-ramp- Existing PM

	٠	→	*	•	-	4	4	†	~	\	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		۲	ĵ.	7	N.	ተተተ			ተተኈ	
Volume (vph)	26	0	9	285	9	987	15	1064	0	0	1221	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.964			0.853	0.850					0.998	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1682	0	1719	1466	1461	1719	4940	0	0	4930	0
Flt Permitted		0.709		0.950			0.167					
Satd. Flow (perm)	0	1237	0	1719	1466	1461	302	4940	0	0	4930	0
Right Turn on Red		, LO	Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102	8		138	138					6	
Link Speed (mph)	45	30			30	100		30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	28	0.92	10	310	10	1073	16	1157	0.52	0.32	1327	22
Adj. Flow (vph)	20	U	10	310	10	50%	10	1137		0	1321	22
Shared Lane Traffic (%)	0	38	0	310	547	536	16	1157	0	0	1349	0
Lane Group Flow (vph)	0					No	No	No	No	No	No	No
Enter Blocked Intersection	No	No	No	No	No							
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane			4.00	4 00	4.00	4.00	4.00	4.00	4 00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15	244	9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4	- W - C				8	2					
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		15.0	15.0	15.0	55.0	55.0			55.0	
Total Split (%)	12.5%	12.5%		18.8%	18.8%	18.8%	68.8%	68.8%			68.8%	
Maximum Green (s)	4.9	4.9		9.9	9.9	9.9	49.6	49.6			49.6	4 3 4
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)		4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Actuated g/C Ratio		0.06		0.12	0.12	0.12	0.62	0.62			0.62	
		0.22		1.46	1.81	1.78	0.09	0.38			0.44	
v/c Ratio		0.22		1, 10	1.01							

Existing 7/7/2016 Baseline

Synchro 8 Report Page 1

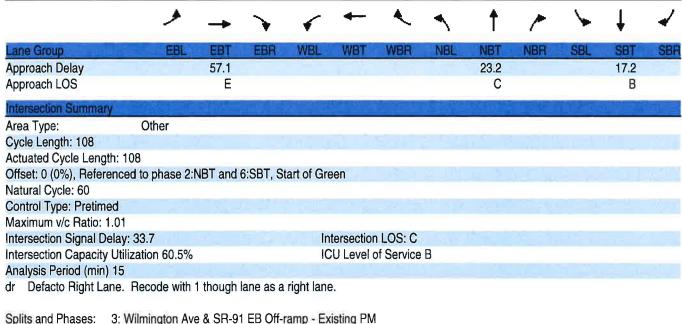
3: Long Beach Blvd & I-105 WB Off-ramp- Existing PM

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp- Existing PM

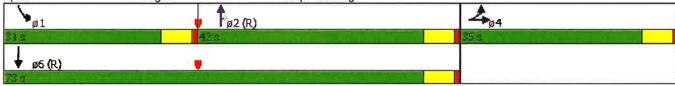
Lane Group EBT WBL WBT WBR NBL NBT SBT Lane Group Flow (vph) 38 310 547 536 16 1157 1349 v/c Ratio 0.22 1.46 1.81 1.78 0.09 0.38 0.44' Control Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Length 50th (ft) 0 ~258 ~451 ~436 4 112 138 Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
Lane Group Flow (vph) 38 310 547 536 16 1157 1349 v/c Ratio 0.22 1.46 1.81 1.78 0.09 0.38 0.44* Control Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Length 50th (ft) 0 ~258 ~451 ~436 4 112 138 Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
v/c Ratio 0.22 1.46 1.81 1.78 0.09 0.38 0.44' Control Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Length 50th (ft) 0 ~258 ~451 ~436 4 112 138 Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
Queue Delay 0.0
Total Delay 3.0 261.9 398.6 385.2 7.5 8.0 8.5 Queue Length 50th (ft) 0 ~258 ~451 ~436 4 112 138 Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
Queue Length 50th (ft) 0 ~258 ~451 ~436 4 112 138 Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
Queue Length 95th (ft) 0 #441 #695 #677 13 142 172 Internal Link Dist (ft) 135 493 413 470
Internal Link Dist (ft) 135 493 413 470
Turn Bay Length (ft) 140 150
Base Capacity (vph) 171 212 302 301 187 3062 3058
Starvation Cap Reductn 0 0 0 0 0 0
Spillback Cap Reductn 0 0 0 0 0 0
Storage Cap Reductn 0 0 0 0 0 0
Reduced v/c Ratio 0.22 1.46 1.81 1.78 0.09 0.38 0.44

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

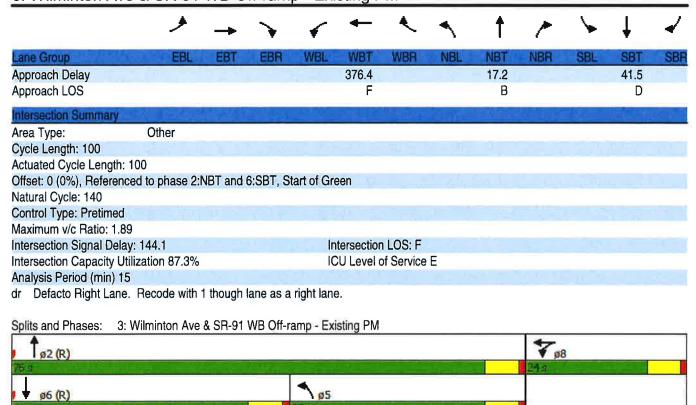
Queue shown is maximum after two cycles.

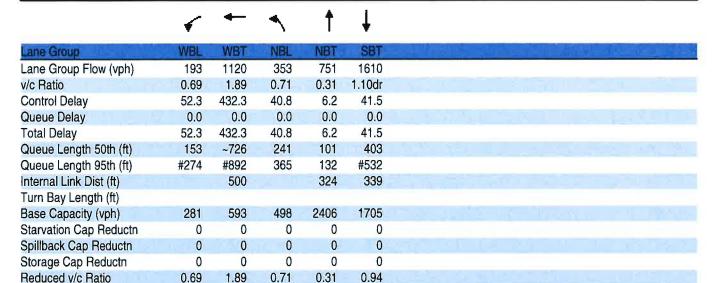

Lanes, Volumes, Timings 3: Wilmington Ave & SR-91 EB Off-ramp - Existing PM

	۶	-	*	•	—	•	1	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	474						个 个	7 7	14	十 十	
Volume (vph)	433	182	502	0	0	0	0	569	240	256	814	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.896							0.850			
Flt Protected	0.950	0.997								0.950		
Satd. Flow (prot)	1564	2942	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.997								0.950		
Satd. Flow (perm)	1564	2942	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		167							261			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	J. N.
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	471	198	546	0	0	0	0	618	261	278	885	0
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	424	791	0	0	0	0	0	618	261	278	885	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J		12			24			24	-
Link Offset(ft)		0		31-1	0			0			0	-
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		1	6	
Permitted Phases									2			
Minimum Split (s)	22.0	22.0						22.0	22.0	10.0	22.0	
Total Split (s)	35.0	35.0						42.0	42.0	31.0	73.0	
Total Split (%)	32.4%	32.4%					1000	38.9%	38.9%	28.7%	67.6%	
Maximum Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Yellow Time (s)	5.0	5.0						5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0						6.0	6.0	6.0	6.0	
Lead/Lag	76.7							Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Actuated g/C Ratio	0.27	0.27						0.33	0.33	0.23	0.62	
v/c Ratio	1.01	1.06dr						0.54	0.24	0.36	0.42	
Control Delay	87.3	41.0						31.4	3.8	36.4	11.2	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	87.3	41.0						31.4	3.8	36.4	11.2	
LOS	F	D						C	A	D	В	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

3: Wilmington Ave & SR-91 EB Off-ramp - Existing PM


	•	→	†	-	-	. ↓
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	424	791	618	261	278	885
v/c Ratio	1.01	1.06dr	0.54	0.24	0.36	0.42
Control Delay	87.3	41.0	31.4	3.8	36.4	11.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	87.3	41.0	31.4	3.8	36.4	11.2
Queue Length 50th (ft)	~394	279	217	0	100	183
Queue Length 95th (ft)	#663	#412	286	36	146	232
Internal Link Dist (ft)		510	324			339
Turn Bay Length (ft)						
Base Capacity (vph)	419	912	1146	1076	771	2132
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.01	0.87	0.54	0.24	0.36	0.42


Intersection Summary

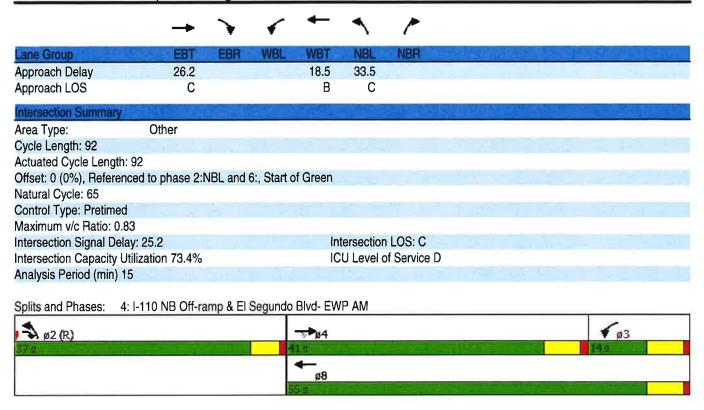
- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

Lanes, Volumes, Timings 3: Wilminton Ave & SR-91 WB Off-ramp - Existing PM

	۶	-	*	•	←	•	4	†	~	>	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ň	414		*5	^			ተተጉ	
Volume (vph)	0	0	0	197	834	177	325	691	0	0	837	644
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.974						0.935	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	3204	0	1719	3438	0	0	4619	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	3204	0	1719	3438	0	0	4619	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					20						137	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	214	907	192	353	751	0	0	910	700
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	193	1120	0	353	751	0	0	1610	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	12	riigiit	Lon	12	i agini	Loit	12	rugitt	Lon	12	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	(M	9	15	1.00	9	15	1.00	9
Turn Type	10		•	Split	NA		Prot	NA		,,,	NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				24.0	24.0		35.0	76.0			41.0	
Total Split (%)				24.0%	24.0%		35.0%	76.0%			41.0%	
Maximum Green (s)				18.0	18.0		29.0	70.0			35.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	- 2 2
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)	_			0.0	0.0		0.0	0.0			0.0	ST.
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag				0.0	0.0		Lag	0.0			Lead	
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0		163	5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				18.0	18.0	70	29.0	70.0			35.0	
Actuated g/C Ratio				0.18	0.18		0.29	0.70			0.35	
v/c Ratio				0.18	1.89		0.29	0.70			1.10dr	
Control Delay				52.3	432.3		40.8	6.2			41.5	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
Total Delay				52.3	432.3		40.8	6.2			41.5	
LOS				D	F		D	Α			D	

Intersection Summary

- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.


Synchro 8 Report Existing 7/7/2016 Baseline

Freeway Off-Ramp Analysis

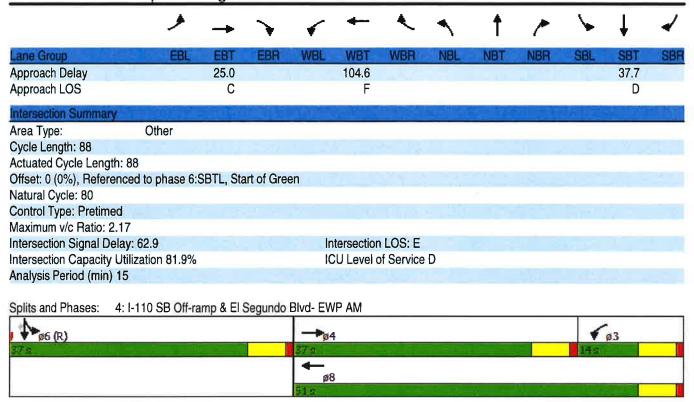
Existing + Project Conditions

	-	-	•	←	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	十 十	7	7	ተተተ	AAA	(ALC)
Volume (vph)	1002	241	99	1180	702	192
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95
Frt	0.53	0.850	1.00	0.81	0.968	0.30
Flt Protected		0.030	0.950		0.962	
	3471	1553	1736	4988	3300	0
Satd. Flow (prot)	3471	1553	0.950	4900	0.962	0
Flt Permitted	0.474	4550	1736	4000		_
Satd. Flow (perm)	3471	1553	1/30	4988	3300	0
Right Turn on Red		Yes			10	Yes
Satd. Flow (RTOR)		213			43	
Link Speed (mph)	30			30	30	
Link Distance (ft)	568			630	393	
Travel Time (s)	12.9			14.3	8.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1089	262	108	1283	763	209
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1089	262	108	1283	972	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	ragnt	Loit	12	24	- ugitt
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	10			10	10	
	1.00	1.00	1.00	1.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	
Turning Speed (mph)	B.I.A			NIA		9
Turn Type	NA	pm+ov	Prot	NA	Prot	
Protected Phases	4	2	3	8	2	
Permitted Phases		4				
Minimum Split (s)	22.0	22.0	10.0	22.0	22.0	
Total Split (s)	41.0	37.0	14.0	55.0	37.0	
Total Split (%)	44.6%	40.2%	15.2%	59.8%	40.2%	
Maximum Green (s)	35.0	32.0	8.0	49.0	32.0	
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead	0.0	Lag		0.0	
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0	100	5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
					0	
Pedestrian Calls (#/hr)	0	72.0	0.0	40.0		
Act Effct Green (s)	35.0	73.0	8.0	49.0	32.0	
Actuated g/C Ratio	0.38	0.79	0.09	0.53	0.35	
v/c Ratio	0.82	0.21	0.72	0.48	0.83	
Control Delay	32.3	0.9	68.3	14.3	33.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	32.3	0.9	68.3	14.3	33.5	
LOS	С	Α	Ε	В	С	

4: I-110 NB Off-ramp & El Segundo Blvd- EWP AM

	-	*	•	←	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	4000	į,
Lane Group Flow (vph)	1089	262	108	1283	972		
v/c Ratio	0.82	0.21	0.72	0.48	0.83		
Control Delay	32.3	0.9	68.3	14.3	33.5		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	32.3	0.9	68.3	14.3	33.5		
Queue Length 50th (ft)	355	6	75	195	304		
Queue Length 95th (ft)	457	21	#174	239	400		
Internal Link Dist (ft)	488			550	313		
Turn Bay Length (ft)							
Base Capacity (vph)	1320	1276	150	2656	1175		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.82	0.21	0.72	0.48	0.83		
Intersection Summary	ing an Will	. 24		4.77	3118	ST III	1100

⁹⁵th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

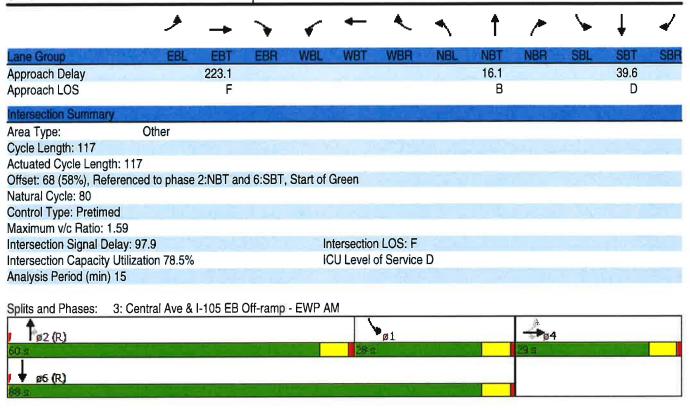

Synchro 8 Report Page 3 Existing 7/7/2016 Baseline

4: I-110 SB Off-ramp & El Segundo Blvd- EWP AM

	۶	-	*	1	←	•	1	.†	1	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		N.	ተተተ					T.	4	74
Volume (vph)	0	754	541	313	1689	0	0	0	0	517	0	839
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.937									0.867	0.850
Flt Protected				0.950						0.950	0.994	
Satd. Flow (prot)	0	4673	0	1736	4988	0	0	0	0	1649	1433	1475
Flt Permitted				0.950						0.950	0.994	
Satd. Flow (perm)	0	4673	0	1736	4988	0	0	0	0	1649	1433	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		226									112	112
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	820	588	340	1836	0	0	0	0	562	0	912
Shared Lane Traffic (%)										10%		47%
Lane Group Flow (vph)	0	1408	0	340	1836	0	0	0	0	506	485	483
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12	3		12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	-31	9	15		9	15	1111	9	15	5 2 11	9
Turn Type		NA		Prot	NA	-				Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases												6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		37.0		14.0	51.0					37.0	37.0	37.0
Total Split (%)		42.0%		15.9%	58.0%					42.0%	42.0%	42.0%
Maximum Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Actuated g/C Ratio		0.35		0.09	0.51					0.35	0.35	0.35
v/c Ratio		0.79		2.17	0.72					0.87	0.84	0.82
Control Delay		25.0		568.5	18.7					44.7	35.2	32.8
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		25.0		568.5	18.7					44.7	35.2	32.8
LOS		25.0 C		500.5 F	10.7 B					44.7 D	35.2 D	32.0 C
										U	U	

Existing 7/7/2016 Baseline

4: I-110 SB Off-ramp & El Segundo Blvd- EWP AM


	-	6	4	-	. ↓	4
Control Control		1ATEN	14 mm	2001	OOT	000
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	1408	340	1836	506	485	483
v/c Ratio	0.79	2.17	0.72	0.87	0.84	0.82
Control Delay	25.0	568.5	18.7	44.7	35.2	32.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	25.0	568.5	18.7	44.7	35.2	32.8
Queue Length 50th (ft)	257	~366	328	327	254	237
Queue Length 95th (ft)	327	#563	395	#557	#492	#457
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	1792	157	2550	580	577	592
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.79	2.17	0.72	0.87	0.84	0.82

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	*	•	—	•	1	†	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7					ተተተ	7	ايراير	44	
Volume (vph)	720	13	615	0	0	0	0	823	335	567	699	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.937	0.850						0.850			
Flt Protected	0.950	0.973								0.950		
Satd. Flow (prot)	1633	1501	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.973								0.950		
Satd. Flow (perm)	1633	1501	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		28	266						364			
Link Speed (mph)	77. 77	30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	783	14	668	0	0	0	0	895	364	616	760	0
Shared Lane Traffic (%)	35%		31%									
Lane Group Flow (vph)	509	495	461	0	0	0	0	895	364	616	760	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24	J J		24	3.11
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					J							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	Jan San	9	15		9	15	1 1	9	15		9
Turn Type	Perm	NA	Perm					NA	Perm	Prot	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						2			
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	10.0	22.0	
Total Split (s)	29.0	29.0	29.0					60.0	60.0	28.0	88.0	
Total Split (%)	24.8%	24.8%	24.8%					51.3%	51.3%	23.9%	75.2%	
Maximum Green (s)	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag	0.0		CIRC L					Lead	Lead	Lag		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0					0	0		0	
Act Effct Green (s)	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
Actuated g/C Ratio	0.20	0.20	0.20					0.46	0.46	0.19	0.70	
v/c Ratio	1.59	1.56	0.92					0.39	0.40	0.98	0.32	
Control Delay	310.6	299.0	45.0					21.4	3.3	79.6	7.1	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	310.6	299.0	45.0					21.4	3.3	79.6	7.1	
LOS	310.6 F	299.0 F	45.0 D					21.4 C	3.3 A	79.0 E	Α	
	F		U					0	^	L	^	_

3: Central Ave & I-105 EB Off-ramp - EWP AM

	۶	-	•	†	1	-	↓
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	509	495	461	895	364	616	760
v/c Ratio	1.59	1.56	0.92	0.39	0.40	0.98	0.32
Control Delay	310.6	299.0	45.0	21.4	3.3	79.6	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	310.6	299.0	45.0	21.4	3.3	79.6	7.1
Queue Length 50th (ft)	~691	~678	200	190	0	289	124
Queue Length 95th (ft)	#958	#958	#458	232	62	#431	157
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	321	317	500	2280	905	627	2409
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.59	1.56	0.92	0.39	0.40	0.98	0.32
Internation Comment					-		

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

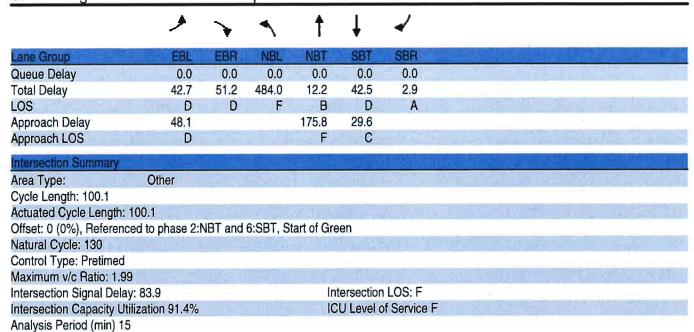
Lanes, Volumes, Timings 3: Central Ave & I-105 WB Off-ramp - EWP AM

	۶	→	•	•	+	•	4	†	~	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	र्स	7	1/4	^			44	74
Volume (vph)	0	0	0	116	4	372	330	1202	0	0	1116	760
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Flt Protected				0.950	0.955		0.950					
Satd. Flow (prot)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.955		0.950					
Satd. Flow (perm)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)						95						
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	126	4	404	359	1307	0	0	1213	826
Shared Lane Traffic (%)				48%								
Lane Group Flow (vph)	0	0	0	66	64	404	359	1307	0	0	1213	826
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	,		12	9		24			24	-
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				8	8		5	2			6	
Permitted Phases						8						6
Minimum Split (s)				21.1	21.1	21.1	10.0	22.0			22.0	22.0
Total Split (s)				27.0	27.0	27.0	18.0	87.0			69.0	69.0
Total Split (%)				23.7%	23.7%	23.7%	15.8%	76.3%			60.5%	60.5%
Maximum Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Yellow Time (s)				4.0	4.0	4.0	5.0	5.0			5.0	5.0
All-Red Time (s)				1.0	1.0	1.0	1.0	1.0			1.0	1.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				5.0	5.0	5.0	6.0	6.0			6.0	6.0
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Walk Time (s)				5.0	5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Actuated g/C Ratio				0.19	0.19	0.19	0.11	0.71			0.55	0.55
v/c Ratio				0.21	0.20	1.08	1.02	0.54			0.64	0.97
Control Delay				40.8	40.7	104.6	104.5	8.7			19.6	50.7
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				40.8	40.7	104.6	104.5	8.7			19.6	50.7
LOS		52		D	D	F	F	Α			В	D

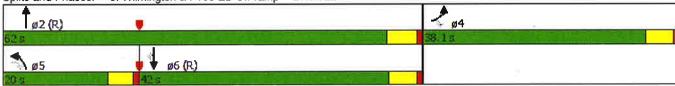
Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

Synchro 8 Report Existing 7/7/2016 Baseline

	•	•	•	1	†	↓	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	66	64	404	359	1307	1213	826
v/c Ratio	0.21	0.20	1.08	1.02	0.54	0.64	0.97
Control Delay	40.8	40.7	104.6	104.5	8.7	19.6	50.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	40.8	40.7	104.6	104.5	8.7	19.6	50.7
Queue Length 50th (ft)	51	50	~327	~173	249	370	669
Queue Length 95th (ft)	104	101	#564	#288	306	456	#1024
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	315	316	373	351	2442	1899	849
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.21	0.20	1.08	1.02	0.54	0.64	0.97


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	<i>></i>	-	4	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	-	7	ħ	ተተተ	44	15.15
Volume (vph)	415	741	479	903	1066	513
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120			0
Storage Lanes	1	1	1			2
Taper Length (ft)	25	NA TON	25	the section		TO BE D
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
Frt	1.00	0.850	1.00			0.850
Flt Protected	0.950	0.000	0.950			0.000
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950	1000	0.950	10-10	0400	2101
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red	1/19	Yes	1/19	4340	0400	Yes
	TOTAL UT	15		-		558
Satd. Flow (RTOR)	20	15		20	30	556
Link Speed (mph)	30	AT BUILD	The same	30		-
Link Distance (ft)	1070		10,000	942	903	
Travel Time (s)	24.3			21.4	20.5	11222
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	451	805	521	982	1159	558
Shared Lane Traffic (%)	-W 10 'S'			71 - 171	1100	H x 5
Lane Group Flow (vph)	451	805	521	982	1159	558
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12		19616	12	12	E 1997
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16		100	16	16	4
Two way Left Turn Lane	-					
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4	Cilli	5	2	6	Citti
Permitted Phases	4	4.5		_		6
	20.1	4 5	8.7	21.4	21.1	21.1
Minimum Split (s)	38.1					
Total Split (s)	38.1		20.0	62.0	42.0	42.0
Total Split (%)	38.1%		20.0%	61.9%	42.0%	42.0%
Maximum Green (s)	33.0		15.3	56.6	36.9	36.9
Yellow Time (s)	4.1		3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	30-	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1		4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?		II NOW			ALUKI	
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0	100		11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	33.0	53.0	15.3	56.6	36.9	36.9
Actuated g/C Ratio	0.33	0.53	0.15	0.57	0.37	0.37
v/c Ratio	0.80	0.98	1.99	0.37	0.91	0.41
Control Delay	42.7	51.2	484.0	12.2	42.5	2.9
Control Delay	42.7	31.2	404.0	12.2	42.5	2.9

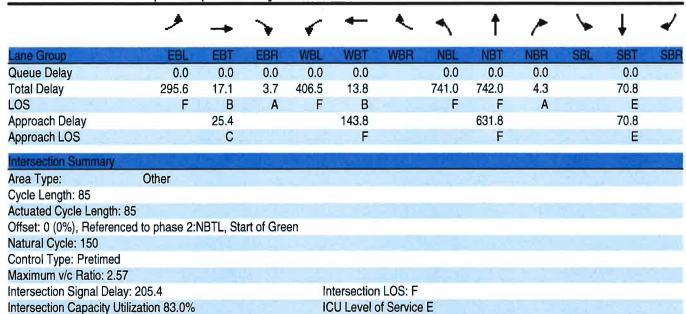
Synchro 8 Report Existing 7/6/2016 Baseline

3: Wilmington & I-105 EB Off-ramp - EWP AM

Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - EWP AM

	•	*	•	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	451	805	521	982	1159	558
v/c Ratio	0.80	0.98	1.99	0.35	0.91	0.41
Control Delay	42.7	51.2	484.0	12.2	42.5	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	42.7	51.2	484.0	12.2	42.5	2.9
Queue Length 50th (ft)	311	567	~624	140	438	0
Queue Length 95th (ft)	#499	#907	#865	173	#601	44
Internal Link Dist (ft)	990			862	823	
Turn Bay Length (ft)			120			
Base Capacity (vph)	566	821	262	2793	1267	1350
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.80	0.98	1.99	0.35	0.91	0.41

- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


Synchro 8 Report Existing 7/6/2016 Baseline

1.	۶	-	•	•	-	•	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4111	7	44	^		7	ન	7		4	
Volume (vph)	58	1101	363	744	1488	17	833	20	149	7	34	68
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.987	0.850		0.998				0.850		0.916	
Fit Protected	0.950			0.950			0.950	0.955			0.997	
Satd. Flow (prot)	1719	5787	1246	3335	4930	0	1633	1642	1538	0	1653	0
Flt Permitted	0.950			0.950			0.950	0.955			0.921	
Satd. Flow (perm)	1719	5787	1246	3335	4930	0	1633	1642	1538	0	1527	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29	284		3				245		63	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	63	1197	395	809	1617	18	905	22	162	8	37	74
Shared Lane Traffic (%)	271	200	28%				49%			7.7		
Lane Group Flow (vph)	63	1308	284	809	1635	0	462	465	162	0	119	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	24	rugin	Lon	24	rugin	LOIL	12	riigini	Lon	12	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)	17.77	16			16			16			16	
Two way Left Turn Lane		10			10			,0			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4	Citi	3	8		2	2	I Citil	1 Cilli	6	
Permitted Phases		4	4	3			_	_	2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	16.0	53.0		15.0	15.0	15.0	10.0	10.0	
Total Split (%)	8.2%	51.8%	51.8%	18.8%	62.4%		17.6%	17.6%	17.6%	11.8%	11.8%	
Maximum Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4	4.4	4.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
All-Red Time (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	
Lost Time Adjust (s)				4.7	5.9		5.6	5.6	5.6		5.6	
Total Lost Time (s)	4.7	5.9	5.9				0.0	0.0	0.0		5.0	
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes		ΕO	E O	E O	E O	5.0	
Walk Time (s)		5.0	5.0		5.0		5.0	5.0	5.0	5.0		
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0.0	0	0	44.0	0		0	0	0	0	0	
Act Effct Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4		4.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.13	0.55		0.11	0.11	0.11		0.05	
v/c Ratio	1.37	0.50	0.40	1.83	0.60		2.57	2.57	0.42		0.86	
Control Delay	295.6	17.1	3.7	406.5	13.8		741.0	742.0	4.3		70.8	

Existing 7/6/2016 Baseline

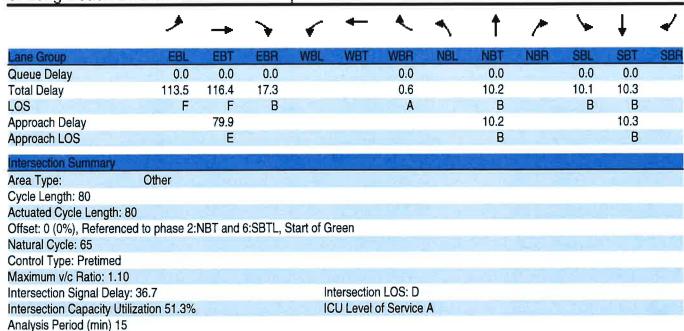
Analysis Period (min) 15

3: I-105 WB Off-ramp & Imperial Hwy- EWP AM

Splits and Phases: 3: I-105 WB Off-ramp & Imperial Hwy- EWP AM

	*	-	*	•	←	1	†	~	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	63	1308	284	809	1635	462	465	162	119	
v/c Ratio	1.37	0.50	0.40	1.83	0.60	2.57	2.57	0.42	0.86	
Control Delay	295.6	17.1	3.7	406.5	13.8	741.0	742.0	4.3	70.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	295.6	17.1	3.7	406.5	13.8	741.0	742.0	4.3	70.8	
Queue Length 50th (ft)	~54	173	0	~408	237	~528	~532	0	36	
Queue Length 95th (ft)	#148	213	62	#543	290	#757	#761	14	#153	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2609	715	443	2733	180	181	387	138	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.37	0.50	0.40	1.83	0.60	2.57	2.57	0.42	0.86	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	1	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	4	7			7		ተተቡ		Ĭ	ተተ	
Volume (vph)	614	3	346	0	0	11	0	907	14	30	602	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.998				
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4930	0	1719	3438	0
Flt Permitted	0.950	0.953								0.252		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4930	0	456	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			288			102		4				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	667	3	376	0	0	12	0	986	15	33	654	0
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	333	337	376	0	0	12	0	1001	0	33	654	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA	Perm			Perm		NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases			4			8				6		
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	20.0	20.0	20.0			10.0		50.0		50.0	50.0	
Total Split (%)	25.0%	25.0%	25.0%			12.5%		62.5%		62.5%	62.5%	
Maximum Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effct Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Actuated g/C Ratio	0.19	0.19	0.19			0.06		0.56		0.56	0.56	
v/c Ratio	1.10	1.10	0.72			0.06		0.36		0.13	0.34	
Control Delay	113.5	116.4	17.3			0.6		10.2		10.1	10.3	

Synchro 8 Report Existing 7/6/2016 Baseline

3: Long Beach Blvd & I-105 EB Off-ramp - EWP AM

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - EWP AM

	۶	-	•	*	†	-	1
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	333	337	376	12	1001	33	654
v/c Ratio	1.10	1.10	0.72	0.06	0.36	0.13	0.34
Control Delay	113.5	116.4	17.3	0.6	10.2	10.1	10.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	113.5	116.4	17.3	0.6	10.2	10.1	10.3
Queue Length 50th (ft)	~241	~246	46	0	112	9	104
Queue Length 95th (ft)	#438	#445	#172	0	144	26	143
Internal Link Dist (ft)		737			518		475
Turn Bay Length (ft)			110			180	
Base Capacity (vph)	304	305	520	191	2750	254	1916
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.10	1.10	0.72	0.06	0.36	0.13	0.34

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

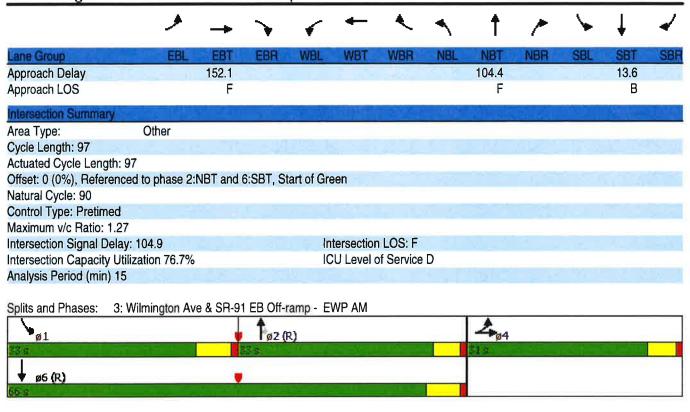

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

1	۶	→	*	•	•	4	1	†	~	-	+	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	þ	7	7	ተተተ			ተተኈ	
Volume (vph)	13	0	5	165	27	797	11	1123	0	0	1218	44
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.964			0.860	0.850					0.995	
Fit Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1682	0	1719	1478	1461	1719	4940	0	0	4915	0
Flt Permitted		0.709	-	0.950			0.151			_		
Satd. Flow (perm)	0	1237	0	1719	1478	1461	273	4940	0	0	4915	0
Right Turn on Red		.201	Yes			Yes			Yes	·		Yes
Satd. Flow (RTOR)		102			133	133					11	
Link Speed (mph)		30			30	100		30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
	14	0.92	5	179	29	866	12	1221	0.92	0.92	1324	48
Adj. Flow (vph)	14	U	3	179	29		12	1221	U	0	1324	40
Shared Lane Traffic (%)	N-V-II	10	_	170	450	49%	10	1001	_	_	1070	
Lane Group Flow (vph)	0	19	0	179	453	442	12 Na	1221	0	0	1372	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4					8	2					
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		20.0	20.0	20.0	50.0	50.0			50.0	
Total Split (%)	12.5%	12.5%		25.0%	25.0%	25.0%	62.5%	62.5%			62.5%	
Maximum Green (s)	4.9	4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)		4.9		14.9	14.9	14.9	44.6	44.6			44.6	177
Actuated g/C Ratio		0.06		0.19	0.19	0.19	0.56	0.56			0.56	
v/c Ratio		0.11		0.19	1.18	1.16	0.08	0.44			0.50	
Control Delay		1.3		37.2	129.9	122.6	9.9	11.0			11.5	
Control Delay		1.3		31.2	129.9	122.0	9.9	11.0			0.11	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

	۶	-	*	•	←	4	4	†	<i>></i>	-		4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Delay		1.3		37.2	129.9	122.6	9.9	11.0			11.5	
LOS		Α		D	F	F	Α	В			В	
Approach Delay		1.3			111.5			11.0			11.5	
Approach LOS		Α			F			В			В	
Intersection Summary	11,386,3			975	N. 1	6	100		100	William	Same	744
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 80	0											
Offset: 0 (0%), Reference	d to phase 2:N	IBTL and	6:SBT, 9	Start of G	reen							
Natural Cycle: 75												
Control Type: Pretimed												
Maximum v/c Ratio: 1.18												
Intersection Signal Delay:	40.3			In	tersection	n LOS: D						
Intersection Capacity Utili:	zation 70.9%			IC	CU Level	of Service	C					
Analysis Period (min) 15												

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp - EWP AM


	→	•	-	*	4	†	ļ	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Group Flow (vph)	19	179	453	442	12	1221	1372	
v/c Ratio	0.11	0.56	1.18	1.16	0.08	0.44	0.50	
Control Delay	1.3	37.2	129.9	122.6	9.9	11.0	11.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	1.3	37.2	129.9	122.6	9.9	11.0	11.5	
Queue Length 50th (ft)	0	98	~274	~262	3	145	169	
Queue Length 95th (ft)	0	175	#502	#488	13	183	212	
Internal Link Dist (ft)	135		493			413	470	
Turn Bay Length (ft)				140	150			
Base Capacity (vph)	171	320	383	380	152	2754	2744	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.11	0.56	1.18	1.16	0.08	0.44	0.50	

[~] Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

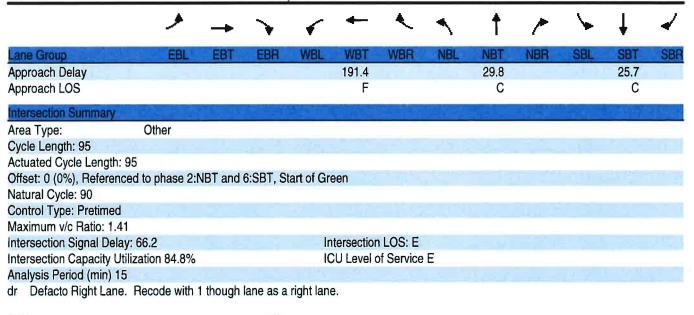
	٠	-	•	•	—	•	4	†	~	>	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	47>						个个	7474	1/4	ተተ	
Volume (vph)	793	445	225	0	0	0	0	1077	217	185	564	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.965							0.850			
Flt Protected	0.950	0.985								0.950		
Satd. Flow (prot)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.985								0.950		
Satd. Flow (perm)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		37							220			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	862	484	245	0	0	0	0	1171	236	201	613	0
Shared Lane Traffic (%)	38%											
Lane Group Flow (vph)	534	1057	0	0	0	0	0	1171	236	201	613	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	_		24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		. 1	6	
Permitted Phases									2			
Minimum Split (s)	21.1	21.1						21.4	21.4	10.0	26.5	
Total Split (s)	31.0	31.0						33.0	33.0	33.0	66.0	
Total Split (%)	32.0%	32.0%						34.0%	34.0%	34.0%	68.0%	
Maximum Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Yellow Time (s)	4.0	4.0						4.0	4.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0					TT Z	0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0						5.0	5.0	6.0	6.0	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Actuated g/C Ratio	0.27	0.27						0.29	0.29	0.28	0.62	
v/c Ratio	1.27	1.22						1.18	0.25	0.22	0.29	
Control Delay	173.2	141.5						124.4	5.4	27.7	9.0	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	173.2	141.5						124.4	5.4	27.7	9.0	
LOS	F	F						F	Α	С	Α	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

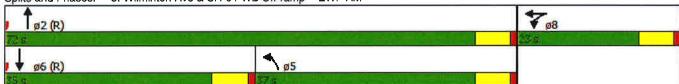
	•	-	†	~	-	↓
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	534	1057	1171	236	201	613
v/c Ratio	1.27	1.22	1.18	0.25	0.22	0.29
Control Delay	173.2	141.5	124.4	5.4	27.7	9.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	173.2	141.5	124.4	5.4	27.7	9.0
Queue Length 50th (ft)	~552	~523	~550	4	58	101
Queue Length 95th (ft)	#817	#686	#707	40	93	136
Internal Link Dist (ft)		510	324			339
Turn Bay Length (ft)						
Base Capacity (vph)	419	866	992	937	928	2126
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.27	1.22	1.18	0.25	0.22	0.29

Synchro 8 Report Existing 7/7/2016 Baseline

[~] Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	•	•	4-	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	4ि		7	^			ተተቡ	
Volume (vph)	0	0	0	175	90	623	536	1359	0	0	547	494
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.872						0.929	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	2869	0	1719	3438	0	0	4589	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	2869	0	1719	3438	0	0	4589	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					64						246	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	190	98	677	583	1477	0	0	595	537
Shared Lane Traffic (%)				10%			0,000			-		
Lane Group Flow (vph)	0	0	0	171	794	0	583	1477	0	0	1132	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	rugin	Lon	12	, ugue	2010	12	rugiit	Lon	12	, ngin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1700	9	15		9	15		9
Turn Type	10			Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				23.0	23.0		37.0	72.0			35.0	
Total Split (%)				24.2%	24.2%		38.9%	75.8%			36.8%	
Maximum Green (s)				17.0	17.0		31.0	66.0			29.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag				0.0	0.0		Lag	0.0			Lead	
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0		103	5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				17.0	17.0		31.0	66.0			29.0	
Actuated g/C Ratio				0.18	0.18		0.33	0.69			0.31	
v/c Ratio				0.16	2.16dr		1.04	0.62			0.72	
				46.4	222.6		82.2	9.2			25.7	
Control Delay				0.0				0.0			0.0	
Queue Delay					0.0		0.0					
Total Delay				46.4	222.6		82.2	9.2			25.7	
LOS				D	F		F	А			С	


Existing 7/7/2016 Baseline

Synchro 8 Report Page 1

3: Wilminton Ave & SR-91 WB Off-ramp - EWP AM

Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - EWP AM



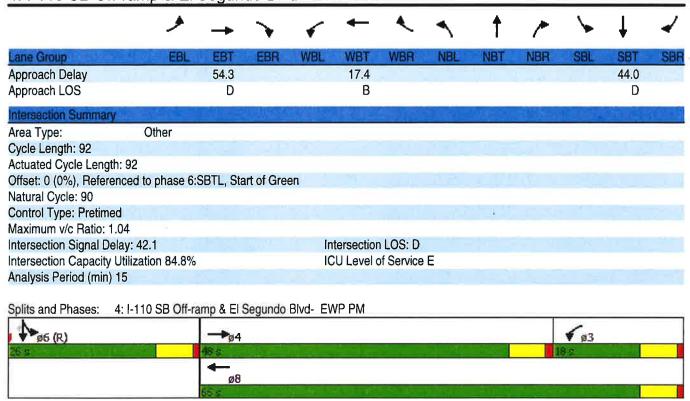
Lane Group	WBL	WBT	NBL	NBT	SBT	하는데 하는 맛이 보고 그리고 있었다. 병교로
Lane Group Flow (vph)	171	794	583	1477	1132	
v/c Ratio	0.61	2.16dr	1.04	0.62	0.72	
Control Delay	46.4	222.6	82.2	9.2	25.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	46.4	222.6	82.2	9.2	25.7	
Queue Length 50th (ft)	126	~407	~459	261	209	
Queue Length 95th (ft)	218	#558	#705	331	272	
Internal Link Dist (ft)		500		324	339	
Turn Bay Length (ft)						
Base Capacity (vph)	279	565	560	2388	1571	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.61	1.41	1.04	0.62	0.72	

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

	-	*	•	-	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	#	ሻ	十十十	N/A	III and the second
Volume (vph)	1518	443	274	787	318	276
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95
Frt	0.00	0.850	1.00	0.01	0.930	0.00
Flt Protected		0.000	0.950		0.974	
Satd. Flow (prot)	3471	1553	1736	4988	3210	0
Flt Permitted	J47 I	1000	0.950	7300	0.974	U
	3471	1553	1736	4988	3210	0
Satd. Flow (perm)	34/1	Yes	1730	4900	3210	Yes
Right Turn on Red					000	res
Satd. Flow (RTOR)	00	76		00	230	
Link Speed (mph)	30			30	30	
Link Distance (ft)	568			630	393	
Travel Time (s)	12.9			14.3	8.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1650	482	298	855	346	300
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1650	482	298	855	646	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane				N I		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	1.00	1.00	9
Turn Type	NA	pm+ov	Prot	NA	Prot	3
Protected Phases	4	pm+ov 2	3	8	2	
	4		3	Ō	4	
Permitted Phases	00.0	4	40.0	00.0	04.4	
Minimum Split (s)	22.0	21.1	10.0	22.0	21.1	
Total Split (s)	44.0	24.0	19.0	63.0	24.0	
Total Split (%)	50.6%	27.6%	21.8%	72.4%	27.6%	
Maximum Green (s)	38.0	19.0	13.0	57.0	19.0	
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	38.0	63.0	13.0	57.0	19.0	
Actuated g/C Ratio	0.44	0.72	0.15	0.66	0.22	
v/c Ratio	1.09	0.42	1.15	0.26	0.73	
Control Delay	76.7	5.2	138.9	6.5	25.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	76.7	5.2	138.9	6.5	25.7	
LOS	Е	Α	F	Α	С	

4: I-110 NB Off-ramp & El Segundo Blvd- EWP PM

Splits and Phases: 4: I-110 NB Off-ramp & El Segundo Blvd- EWP PM



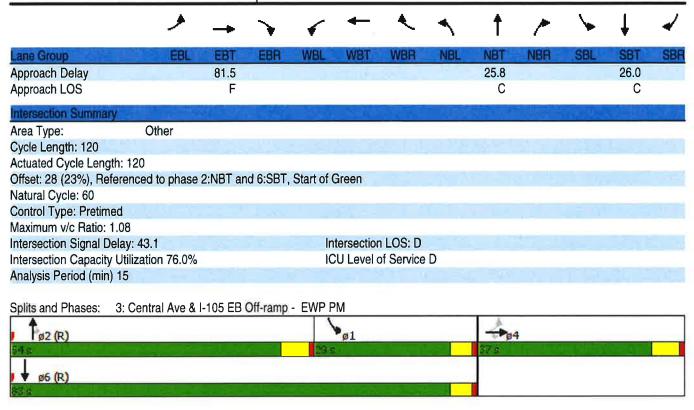
	\rightarrow	*	•	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1650	482	298	855	646
v/c Ratio	1.09	0.42	1.15	0.26	0.73
Control Delay	76.7	5.2	138.9	6.5	25.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	76.7	5.2	138.9	6.5	25.7
Queue Length 50th (ft)	~650	83	~233	75	131
Queue Length 95th (ft)	#811	139	#420	97	204
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1516	1145	259	3268	880
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.09	0.42	1.15	0.26	0.73

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT Lane Configurations ↑↑↑ ↑ ↑↑↑ ↑	424 1900 0.95 0.850
Volume (vph) 0 1549 607 176 943 0 0 0 441 0 Ideal Flow (vphpl) 1900 <td< th=""><th>424 1900 0.95</th></td<>	424 1900 0.95
Volume (vph) 0 1549 607 176 943 0 0 0 441 0 Ideal Flow (vphpl) 1900 <td< td=""><td>424 1900 0.95</td></td<>	424 1900 0.95
Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	1900 0.95
	0.95
Land Juli 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Frt 0.958 0.923	
Flt Protected 0.950 0.976	
Satd. Flow (prot) 0 4778 0 1736 4988 0 0 0 1649 1498	1475
Flt Permitted 0.950 0.976	
Satd. Flow (perm) 0 4778 0 1736 4988 0 0 0 1649 1498	1475
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 141 107	137
Link Speed (mph) 30 30 30	
Link Distance (ft) 802 783 340 320	
Travel Time (s) 18.2 17.8 7.7 7.3	
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	0.92
Adj. Flow (vph) 0 1684 660 191 1025 0 0 0 479 (461
Shared Lane Traffic (%)	35%
Lane Group Flow (vph) 0 2344 0 191 1025 0 0 0 326 314	300
Enter Blocked Intersection No No No No No No No No No No	No
Lane Alignment Left Left Right Left Right Left Left Left Left	Right
Median Width(ft) 12 12 12 12	
Link Offset(ft) 0 0 0	
Crosswalk Width(ft) 16 16 16 16	
Two way Left Turn Lane	100
Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Turning Speed (mph) 15 9 15 9 15	9
Turn Type NA Prot NA Split NA	Perm
Protected Phases 4 3 8 6 6	
Permitted Phases	6
Minimum Split (s) 22.0 10.0 22.0 22.0	22.0
Total Split (s) 48.0 18.0 66.0 26.0 26.0	26.0
Total Split (%) 52.2% 19.6% 71.7% 28.3% 28.3%	28.3%
Maximum Green (s) 42.0 12.0 60.0 20.0	20.0
Yellow Time (s) 5.0 5.0 5.0 5.0	5.0
All-Red Time (s) 1.0 1.0 1.0 1.0	1.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0	0.0
Total Lost Time (s) 6.0 6.0 6.0 6.0	6.0
Lead/Lag Lead Lag	
Lead-Lag Optimize? Yes Yes	
Walk Time (s) 5.0 5.0 5.0	5.0
Flash Dont Walk (s) 11.0 11.0 11.0	11.0
Pedestrian Calls (#/hr) 0 0 0	0
Act Effct Green (s) 42.0 12.0 60.0 20.0 20.0	20.0
Actuated g/C Ratio 0.46 0.13 0.65 0.22 0.22	0.22
v/c Ratio 1.04 0.85 0.32 0.91 0.77	0.70
Control Delay 54.3 71.3 7.3 66.5 36.1	27.8
Queue Delay 0.0 0.0 0.0 0.0 0.0	0.0
Total Delay 54.3 71.3 7.3 66.5 36.1	27.8
LOS D E A E D	С

Existing 7/7/2016 Baseline

	-	1	←	-	↓	1
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	2344	191	1025	326	314	300
v/c Ratio	1.04	0.85	0.32	0.91	0.77	0.70
Control Delay	54.3	71.3	7.3	66.5	36.1	27.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	54.3	71.3	7.3	66.5	36.1	27.8
Queue Length 50th (ft)	~632	132	102	235	150	109
Queue Length 95th (ft)	#750	#274	128	#435	#319	#231
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	2257	226	3253	358	409	427
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.04	0.85	0.32	0.91	0.77	0.70

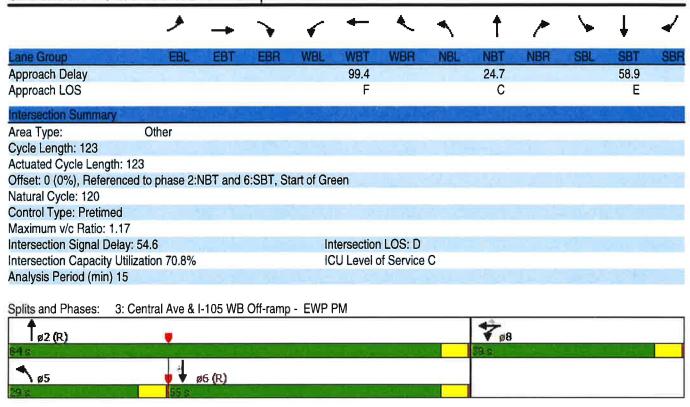

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	*	•	—	•	4	:: ✝	~	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	74					ተተተ	7	14/4	十十	
Volume (vph)	513	240	422	0	0	0	0	955	385	463	825	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.979	0.850						0.850			
Flt Protected	0.950	0.986								0.950		
Satd. Flow (prot)	1633	1590	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.986								0.950		
Satd. Flow (perm)	1633	1590	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7	179						181			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	558	261	459	0	0	0	0	1038	418	503	897	0
Shared Lane Traffic (%)	22%		14%									
Lane Group Flow (vph)	435	448	395	0	0	0	0	1038	418	503	897	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	9		12	3		24	3		24	-
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane									115		e in	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA	Perm					NA	Perm	Prot	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4						2			
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	9.0	22.0	
Total Split (s)	37.0	37.0	37.0					54.0	54.0	29.0	83.0	
Total Split (%)	30.8%	30.8%	30.8%					45.0%	45.0%	24.2%	69.2%	
Maximum Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	5.0	5.0	
Lead/Lag	- 5.0		0.0					Lead	Lead	Lag	0.0	ST.
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0	100	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0					0	0		0	
Act Effct Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Actuated g/C Ratio	0.26	0.26	0.26					0.40	0.40	0.20	0.65	
v/c Ratio	1.03	1.08	0.20					0.40	0.40	0.20	0.40	
Control Delay	96.6	109.0	33.7					28.5	18.8	53.4	10.6	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	96.6	109.0	33.7					28.5	18.8	53.4	10.6	
LOS	90.0 F	109.0 F	33.7 C					20.5 C	10.0 B	55.4 D	10.6 B	
LUS	Г		U					U	D	U	D	

Existing 7/7/2016 Baseline

3: Central Ave & I-105 EB Off-ramp - EWP PM



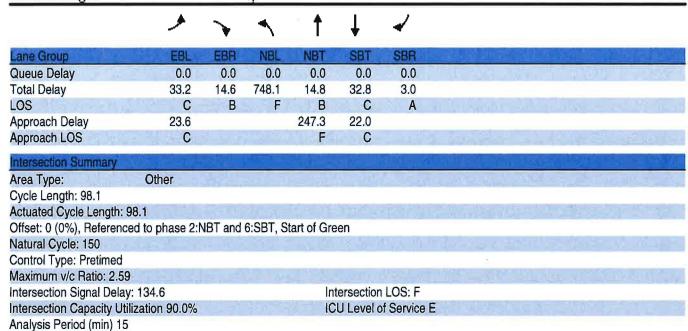
	•	→	•	†	/	-	↓	
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT	
Lane Group Flow (vph)	435	448	395	1038	418	503	897	
v/c Ratio	1.03	1.08	0.77	0.53	0.58	0.75	0.40	
Control Delay	96.6	109.0	33.7	28.5	18.8	53.4	10.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	96.6	109.0	33.7	28.5	18.8	53.4	10.6	
Queue Length 50th (ft)	~455	~505	203	264	167	229	191	
Queue Length 95th (ft)	#712	#780	#377	317	293	303	238	
Internal Link Dist (ft)		575		502			478	
Turn Bay Length (ft)								
Base Capacity (vph)	421	415	510	1976	723	667	2234	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.03	1.08	0.77	0.53	0.58	0.75	0.40	

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

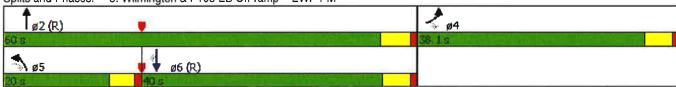
^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

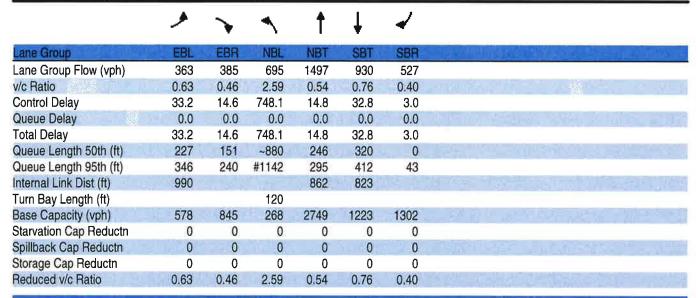
	۶	→	<u></u>	√	+	•	•	<u>†</u>	~	\	 	- ✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ሻ	ન	7	77	^			44	7
Volume (vph)	0	0	0	265	0	536	417	1022	0	0	1032	611
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt					0,00	0.850						0.850
Flt Protected				0.950	0.950		0.950					
Satd. Flow (prot)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.950		0.950		K III			
Satd. Flow (perm)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)						109						
Link Speed (mph)		30			30			30			30	10
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9	W. I		16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	288	0	583	453	1111	0	0	1122	664
Shared Lane Traffic (%)				50%								
Lane Group Flow (vph)	0	0	0	144	144	583	453	1111	0	0	1122	664
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	2010	12	, ugu	2011	12		2011	24	1 119110		24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane									N LEVE			
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	4	9	15	7.00	9	15		9	15		9
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				8	8	1 01111	5	2			6	1 01111
Permitted Phases						8						6
Minimum Split (s)				21.5	21.5	21.5	9.5	21.5			21.5	21.5
Total Split (s)				39.0	39.0	39.0	29.0	84.0			55.0	55.0
Total Split (%)				31.7%	31.7%	31.7%	23.6%	68.3%			44.7%	44.7%
Maximum Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				5.5	5.5	5.5	5.5	5.5			5.5	5.5
Lead/Lag				5.5	5.5	0.0	Lead	5.5			Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Walk Time (s)				5.0	5.0	5.0	163	5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Actuated g/C Ratio				0.27	0.27	0.27	0.19	0.64			0.40	0.40
v/c Ratio				0.27	0.27	1.17	0.19	0.51			0.40	1.07
				38.2	38.2	129.6	53.6	12.9			38.3	93.7
Control Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Queue Delay				38.2	38.2	129.6					38.3	
Total Delay							53.6	12.9				93.7
LOS				D	D	F	D	В			D	F

	\checkmark	←	*	1	†	ļ	4	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR	THE ROLL HAVE THERE
Lane Group Flow (vph)	144	144	583	453	1111	1122	664	
v/c Ratio	0.32	0.32	1.17	0.71	0.51	0.81	1.07	
Control Delay	38.2	38.2	129.6	53.6	12.9	38.3	93.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	38.2	38.2	129.6	53.6	12.9	38.3	93.7	
Queue Length 50th (ft)	115	115	~584	210	277	493	~703	
Queue Length 95th (ft)	192	192	#856	280	339	602	#981	
Internal Link Dist (ft)		665			502	478		
Turn Bay Length (ft)								
Base Capacity (vph)	444	444	498	637	2194	1383	618	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.32	0.32	1.17	0.71	0.51	0.81	1.07	


Intersection Summary

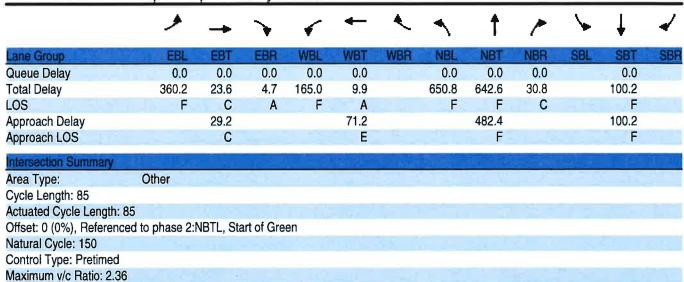
- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	۶	7	4	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	K	7	7	ተተተ	^	77.77
Volume (vph)	334	354	639	1377	856	485
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1300	1900	0
Storage Lanes	1	1	120	1831-11-3		2
	25		25	1000		_
Taper Length (ft)		1.00		0.01	0.95	0.88
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	
Frt	0.050	0.850	0.050	15 m/5		0.850
Flt Protected	0.950	4000	0.950	10.10	0.400	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		32				527
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070		10/	942	903	2012
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	363	385	695	1497	930	527
Shared Lane Traffic (%)	000	303	000	1701	300	JLI
Lane Group Flow (vph)	363	385	695	1497	930	527
		No	No		No	No
Enter Blocked Intersection	No			No		
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12	PE		12	12	
Link Offset(ft)	0	_	-	0	0	0.187
Crosswalk Width(ft)	16	100		16	16	point.
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases	St. Janin	45	100	100	1 60	6
Minimum Split (s)	38.1	, 0	8.7	21.4	21.1	21.1
Total Split (s)	38.1	- V-2-	20.0	60.0	40.0	40.0
Total Split (%)	38.8%		20.4%	61.2%	40.8%	40.8%
				54.6	34.9	34.9
Maximum Green (s)	33.0		15.3			
Yellow Time (s)	4.1		3.7	4.4	4.1	4.1
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1		4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?						
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	33.0	53.0	15.3	54.6	34.9	34.9
Actuated g/C Ratio	0.34	0.54	0.16	0.56	0.36	0.36
v/c Ratio	0.63	0.46	2.59	0.54	0.76	0.40
	33.2	14.6	748.1	14.8	32.8	3.0
Control Delay	33.2	14.0	/40.1	14.0	32.0	3.0


Existing 7/6/2016 Baseline

3: Wilmington & I-105 EB Off-ramp - EWP PM

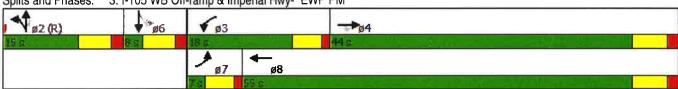
Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - EWP PM


Intersection Summary

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Existing 7/6/2016 Baseline

	۶	→	*	•	-	*	1	†	1	-	ļ	1
Lane Group	EBL	EBT	EBA	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	###	7	44	11		7	स	7		4	
Volume (vph)	65	1814	595	604	923	4	766	15	284	9	22	25
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.987	0.850		0.999				0.850		0.940	
Flt Protected	0.950			0.950			0.950	0.954			0.992	
Satd. Flow (prot)	1719	5787	1246	3335	4935	0	1633	1640	1538	0	1687	0
Flt Permitted	0.950			0.950			0.950	0.954			0.970	
Satd. Flow (perm)	1719	5787	1246	3335	4935	0	1633	1640	1538	0	1650	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		29	466		10				230		27	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	71	1972	647	657	1003	4	833	16	309	10	24	27
Shared Lane Traffic (%)			28%				49%	11 128				
Lane Group Flow (vph)	71	2153	466	657	1007	0	425	424	309	0	61	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	122	24	,	1 - 3 - 5	24			12			12	2
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	.,,,,	9	15		9	15		9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		2	2			6	
Permitted Phases		-	4					S 11	2	6	E IDA	100
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	18.0	55.0		15.0	15.0	15.0	8.0	8.0	1
Total Split (%)	8.2%	51.8%	51.8%	21.2%	64.7%		17.6%	17.6%	17.6%	9.4%	9.4%	
Maximum Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	2.4	2.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lag	Lag	Lead	Lag		0.0	0.0	0.0		0.0	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Walk Time (s)	103	5.0	5.0	100	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0	- 1	11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	
Act Effct Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	U	2.4	
		0.45	0.45	0.16	0.58			0.11			0.03	
Actuated g/C Ratio	0.03	0.45	0.45	1.26	0.35		0.11 2.36	2.34	0.11		0.03	
v/c Ratio												
Control Delay	360.2	23.6	4.7	165.0	9.9		650.8	642.6	30.8		100.2	


3: I-105 WB Off-ramp & Imperial Hwy- EWP PM

Intersection Capacity Utilization 88.6% Analysis Period (min) 15

Intersection Signal Delay: 136.7

Splits and Phases: 3: I-105 WB Off-ramp & Imperial Hwy- EWP PM

Intersection LOS: F

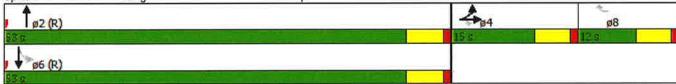
ICU Level of Service E

	•	→	*	•	+	4	†	-	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	- 71	2153	466	657	1007	425	424	309	61	
v/c Ratio	1.54	0.83	0.57	1.26	0.35	2.36	2.34	0.83	0.85	
Control Delay	360.2	23.6	4.7	165.0	9.9	650.8	642.6	30.8	100.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	360.2	23.6	4.7	165.0	9.9	650.8	642.6	30.8	100.2	
Queue Length 50th (ft)	~65	355	0	~275	115	~475	~473	48	22	
Queue Length 95th (ft)	#164	421	79	#402	146	#697	#695	#208	#111	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2609	815	521	2851	180	181	374	72	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.54	0.83	0.57	1.26	0.35	2.36	2.34	0.83	0.85	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

	۶	→	*	•	←	•	•	†	1	>	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	स	7			7		ተተጉ		M	十 十	
Volume (vph)	328	1	215	0	0	14	0	991	4	14	920	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.999				THE R
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4935	0	1719	3438	0
Flt Permitted	0.950	0.953								0.232		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4935	0	420	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			234			102		1				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	357	1	234	0	0	15	0	1077	4	15	1000	0
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	178	180	234	0	0	15	- 0	1081	0	15	1000	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA	Perm			Perm		NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases			4			8		1		6		7 7
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	15.0	15.0	15.0			12.0		53.0		53.0	53.0	
Total Split (%)	18.8%	18.8%	18.8%			15.0%		66.3%		66.3%	66.3%	
Maximum Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effct Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Actuated g/C Ratio	0.12	0.12	0.12			0.09		0.60		0.60	0.60	
v/c Ratio	0.88	0.89	0.59			0.07		0.37		0.06	0.49	
Control Delay	76.1	77.8	11.7			0.6		8.8		7.6	10.3	

Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 EB Off-ramp - EWP PM

	•	-	*	•	←	•	•	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Delay	76.1	77.8	11.7			0.6		8.8		7.6	10.3	
LOS	E	E	В			Α		Α		Α	В	
Approach Delay		51.2						8.8			10.2	
Approach LOS		D						Α			В	
Intersection Summary	252515				9741	44.8				البيية	100	
Area Type:	Other											
Cycle Length: 80												
Actuated Cycle Length: 8	0											
Offset: 0 (0%), Reference	ed to phase 2:N	NBT and	6:SBTL, S	Start of G	reen							
Natural Cycle: 70												
Control Type: Pretimed												
Maximum v/c Ratio: 0.89												
Intersection Signal Delay:	: 18.6			ln	tersection	LOS: B						
Intersection Capacity Utili	ization 47.5%			IC	U Level o	of Service	Α					
Analysis Period (min) 15												

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - EWP PM

Synchro 8 Report Existing 7/6/2016 Baseline Page 2

	٠		*	4	†	1	↓
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	178	180	234	15	1081	15	1000
v/c Ratio	0.88	0.89	0.59	0.07	0.37	0.06	0.49
Control Delay	76.1	77.8	11.7	0.6	8.8	7.6	10.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	76.1	77.8	11.7	0.6	8.8	7.6	10.3
Queue Length 50th (ft)	112	113	0	0	111	3	163
Queue Length 95th (ft)	#255	#258	75	0	142	13	217
Internal Link Dist (ft)		737			518		475
Turn Bay Length (ft)			110			180	
Base Capacity (vph)	202	202	395	228	2936	249	2045
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.88	0.89	0.59	0.07	0.37	0.06	0.49
Intersection Summary	We had			144	- 4	ar ing	Av Q

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

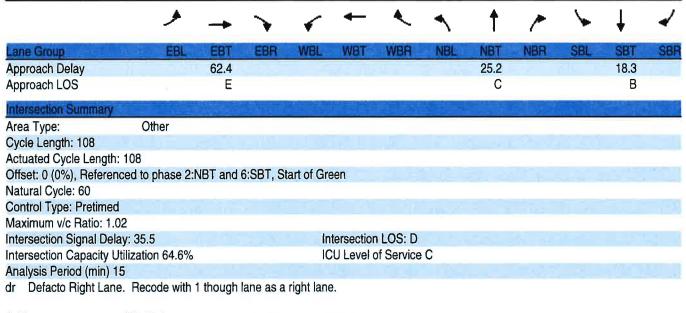
	۶	→	*	•	←	4	4	†	~	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		T	₽	7	ሻ	ተተተ			11	
Volume (vph)	26	0	9	285	9	990	15	1064	0	0	1221	20
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.964			0.853	0.850					0.998	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1682	0	1719	1466	1461	1719	4940	0	0	4930	0
Flt Permitted		0.709		0.950			0.167					
Satd. Flow (perm)	0	1237	0	1719	1466	1461	302	4940	0	0	4930	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102			138	138					6	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	28	0	10	310	10	1076	16	1157	0	0	1327	22
Shared Lane Traffic (%)						50%						
Lane Group Flow (vph)	0	38	0	310	548	538	16	1157	0	0	1349	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	100
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4					8	2					
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		15.0	15.0	15.0	55.0	55.0			55.0	
Total Split (%)	12.5%	12.5%		18.8%	18.8%	18.8%	68.8%	68.8%			68.8%	
Maximum Green (s)	4.9	4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	TALE.
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)		4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Actuated g/C Ratio		0.06		0.12	0.12	0.12	0.62	0.62			0.62	
v/c Ratio		0.22		1.46	1.81	1.79	0.09	0.38			0.44	
Control Delay		3.0		261.9	400.0	388.1	7.5	8.0			8.5	
20.11101 Dolay		0.0		_01.0	100.0	000.1	7.0	0.0			J.U	

ø6 (R)

Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 WB Off-ramp- EWP PM

	٠	→	•	•	←	4	1	†	~	1	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Delay		3.0		261.9	400.0	388.1	7.5	8.0			8.5	
LOS		Α		F	F	F	Α	Α			Α	
Approach Delay		3.0			364.8			8.0			8.5	
Approach LOS		Α			F			Α			Α	
Intersection Summary	0.00	Mary I		100	WE Su		417	4. 15°				
Area Type:	Other							-				
Cycle Length: 80												
Actuated Cycle Length: 8	B0											
Offset: 0 (0%), Reference	ed to phase 2:N	NBTL and	6:SBT,	Start of G	ireen							
Natural Cycle: 80												
Control Type: Pretimed												
Maximum v/c Ratio: 1.81												
Intersection Signal Delay	/: 134.0			Ir	ntersection	LOS: F						
Intersection Capacity Uti				IC	CU Level	of Service	D					
Analysis Period (min) 15												
Splits and Phases: 3:	Long Beach Blv	/d & I-10	5 WB Off	-ramp- E	WP PM							
, ↑ p _{g2 (R)}								♣ 94		₹ ø8		

Synchro 8 Report Page 2 Existing 7/7/2016 Baseline


	-	1	-	•		†	↓
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	38	310	548	538	16	1157	1349
v/c Ratio	0.22	1.46	1.81	1.79	0.09	0.38	0.44
Control Delay	3.0	261.9	400.0	388.1	7.5	8.0	8.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.0	261.9	400.0	388.1	7.5	8.0	8.5
Queue Length 50th (ft)	0	~258	~452	~440	4	112	138
Queue Length 95th (ft)	0	#441	#695	#682	13	142	172
Internal Link Dist (ft)	135		493			413	470
Turn Bay Length (ft)				140	150		
Base Capacity (vph)	171	212	302	301	187	3062	3058
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.22	1.46	1.81	1.79	0.09	0.38	0.44

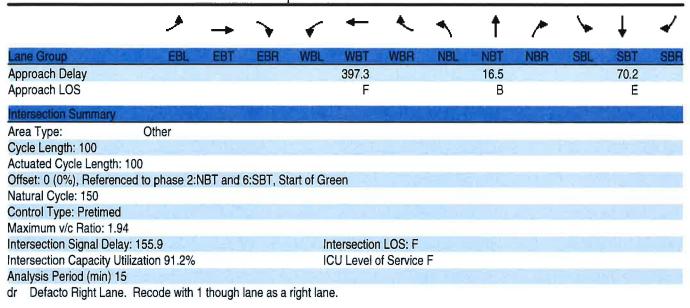
Intersection Summary


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

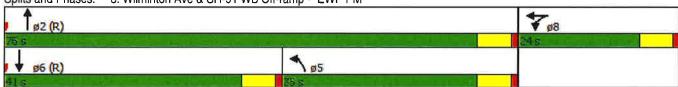
^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	-	*	•	—	*	4	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	T	414						44	77.77	44	^	
Volume (vph)	448	182	502	0	0	0	0	654	240	307	929	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.898							0.850			
Flt Protected	0.950	0.996								0.950		
Satd. Flow (prot)	1564	2946	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.996								0.950		
Satd. Flow (perm)	1564	2946	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes	-		Yes			Yes			Yes
Satd. Flow (RTOR)		127	, 00			, , , ,			261			
Link Speed (mph)		30			30			30	201		30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
			546					711		334		
Adj. Flow (vph)	487	198	540	0	0	0	0	111	261	334	1010	0
Shared Lane Traffic (%)	12%	000	^	^	0	0	^	744	004	004	4040	0
Lane Group Flow (vph)	429	802	0	0	0	0	0	711	261	334	1010	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		1	6	
Permitted Phases									2			
Minimum Split (s)	22.0	22.0						22.0	22.0	10.0	22.0	
Total Split (s)	35.0	35.0						42.0	42.0	31.0	73.0	
Total Split (%)	32.4%	32.4%						38.9%	38.9%	28.7%	67.6%	
Maximum Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Yellow Time (s)	5.0	5.0						5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	-
Total Lost Time (s)	6.0	6.0						6.0	6.0	6.0	6.0	
Lead/Lag				700				Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0	103	5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
								0	0		0	
Pedestrian Calls (#/hr) Act Effct Green (s)	0 29.0	0 29.0						36.0	36.0	25.0	67.0	
Actuated g/C Ratio	0.27	0.27						0.33	0.33	0.23	0.62	
v/c Ratio	1.02	1.13dr						0.62	0.24	0.43	0.47	
Control Delay	90.2	47.5						33.1	3.8	37.5	11.9	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	90.2	47.5						33.1	3.8	37.5	11.9	
LOS	F	D						С	Α	D	В	

Splits and Phases: 3: Wilmington Ave & SR-91 EB Off-ramp - EWP PM


	<u> </u>	-	†	~	1	Ţ
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	429	802	711	261	334	1010
v/c Ratio	1.02	1.13dr	0.62	0.24	0.43	0.47
Control Delay	90.2	47.5	33.1	3.8	37.5	11.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	90.2	47.5	33.1	3.8	37.5	11.9
Queue Length 50th (ft)	~417	305	259	0	122	219
Queue Length 95th (ft)	#672	#452	336	36	175	276
Internal Link Dist (ft)		510	324			339
Turn Bay Length (ft)						
Base Capacity (vph)	419	883	1146	1076	771	2132
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.02	0.91	0.62	0.24	0.43	0.47

Intersection Summary


- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

	۶	-	*	•	—	4	4	†	~	1	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				ħ	414		ሻ	44			ተተጉ	
Volume (vph)	0	0	0	197	834	207	325	791	0	0	1005	669
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.971						0.940	
Flt Protected		200		0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	3195	0	1719	3438	0	0	4644	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	3195	0	1719	3438	0	0	4644	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					24						137	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	214	907	225	353	860	0	0	1092	727
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	193	1153	0	353	860	0	0	1819	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12		2010	12	, uguk
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					- in			A DO				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15	W. T.	9	15		9
Turn Type				Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				24.0	24.0		35.0	76.0			41.0	
Total Split (%)				24.0%	24.0%		35.0%	76.0%			41.0%	
Maximum Green (s)				18.0	18.0		29.0	70.0			35.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	100
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0			5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				18.0	18.0		29.0	70.0			35.0	
Actuated g/C Ratio				0.18	0.18		0.29	0.70			0.35	
v/c Ratio				0.69	1.94		0.71	0.36			1.14dr	
Control Delay				52.3	455.1		40.8	6.5			70.2	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
Total Delay				52.3	455.1		40.8	6.5			70.2	
LOS				D	F		40.0 D	Α			70.2 E	

3: Wilminton Ave & SR-91 WB Off-ramp - EWP PM

Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - EWP PM

Existing 7/7/2016 Baseline

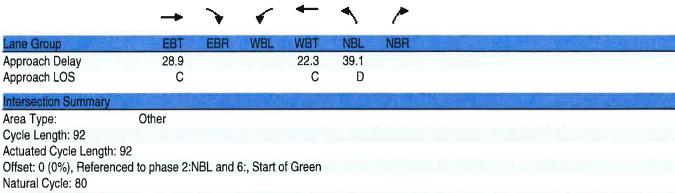
	•	4-		- 1	↓
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	193	1153	353	860	1819
v/c Ratio	0.69	1.94	0.71	0.36	1.14dr
Control Delay	52.3	455.1	40.8	6.5	70.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	52.3	455.1	40.8	6.5	70.2
Queue Length 50th (ft)	153	~753	241	121	~538
Queue Length 95th (ft)	#274	#920	365	155	#656
Internal Link Dist (ft)		500		324	339
Turn Bay Length (ft)					
Base Capacity (vph)	281	594	498	2406	1714
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.69	1.94	0.71	0.36	1.06

Intersection Summary

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

dr Defacto Right Lane. Recode with 1 though lane as a right lane.

Existing 7/7/2016 Baseline

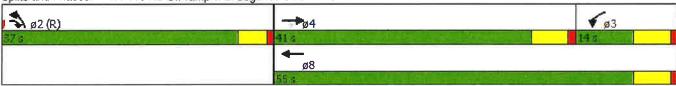

Freeway Off-Ramp Analysis

Future Without Project Conditions

	-	-	•	4	•	
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	**	7	*	^	N N	131, 41
Volume (vph)	1064	263	126	1375	766	204
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95
Frt	0.00	0.850		0.01	0.968	0.00
Flt Protected		0.000	0.950		0.962	
Satd. Flow (prot)	3471	1553	1736	4988	3300	0
Flt Permitted	0111	1000	0.950	1000	0.962	
Satd. Flow (perm)	3471	1553	1736	4988	3300	0
Right Turn on Red	0771	Yes	1700	4000	0000	Yes
Satd. Flow (RTOR)		135			41	163
Link Speed (mph)	30	133		30	30	
	568			630	393	
Link Distance (ft)						
Travel Time (s)	12.9	0.00	0.00	14.3	8.9	0.00
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1157	286	137	1495	833	222
Shared Lane Traffic (%)				~		
Lane Group Flow (vph)	1157	286	137	1495	1055	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)		9	15		15	9
Turn Type	NA	pm+ov	Prot	NA	Prot	
Protected Phases	4	2	3	8	2	
Permitted Phases		4	J	J	_	
Minimum Split (s)	22.0	22.0	10.0	22.0	22.0	
Total Split (s)	41.0	37.0	14.0	55.0	37.0	
Total Split (%)	44.6%	40.2%	15.2%	59.8%	40.2%	
	35.0	32.0	8.0	49.0	32.0	
Maximum Green (s) Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)						
` ,	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	35.0	73.0	8.0	49.0	32.0	
Actuated g/C Ratio	0.38	0.79	0.09	0.53	0.35	
v/c Ratio	0.88	0.23	0.91	0.56	0.90	
Control Delay	35.6	1.6	97.7	15.4	39.1	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	35.6	1.6	97.7	15.4	39.1	
LOS	D	A	F	В	D	

Existing 7/7/2016 Baseline

4: I-110 NB Off-ramp & El Segundo Blvd- FWOP AM



Natural Cycle: 80 Control Type: Pretimed Maximum v/c Ratio: 0.91

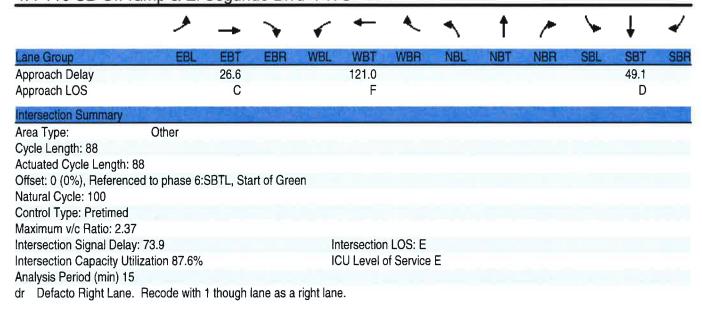
Intersection Signal Delay: 28.9 Intersection LOS: C
Intersection Capacity Utilization 78.8% ICU Level of Service D

Analysis Period (min) 15

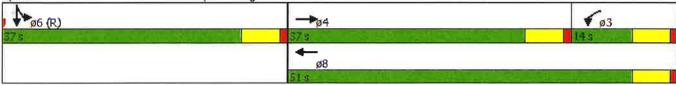
Splits and Phases: 4: I-110 NB Off-ramp & El Segundo Blvd- FWOP AM

	→	*	1	—	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1157	286	137	1495	1055
v/c Ratio	0.88	0.23	0.91	0.56	0.90
Control Delay	35.6	1.6	97.7	15.4	39.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	35.6	1.6	97.7	15.4	39.1
Queue Length 50th (ft)	388	18	97	241	344
Queue Length 95th (ft)	#537	37	#228	292	#492
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1320	1260	150	2656	1174
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.88	0.23	0.91	0.56	0.90

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

	۶	→	\rightarrow	•	-	•	•	†	1	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተጉ		7	ተተተ					7	4	7
Volume (vph)	0	784	591	342	1819	0	0	0	0	574	0	916
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.936									0.868	0.850
Fit Protected				0.950						0.950	0.994	
Satd. Flow (prot)	0	4668	0	1736	4988	0	0	0	0	1649	1434	1475
Flt Permitted				0.950						0.950	0.994	
Satd. Flow (perm)	0	4668	0	1736	4988	0	0	0	0	1649	1434	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		239									112	112
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	852	642	372	1977	0	0	0	0	624	0	996
Shared Lane Traffic (%)										10%		47%
Lane Group Flow (vph)	0	1494	0	372	1977	0	0	0	0	562	530	528
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA		Prot	NA					Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases												6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		37.0		14.0	51.0					37.0	37.0	37.0
Total Split (%)		42.0%		15.9%	58.0%					42.0%	42.0%	42.0%
Maximum Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Actuated g/C Ratio		0.35		0.09	0.51					0.35	0.35	0.35
v/c Ratio		0.90dr		2.37	0.78					0.97	0.92	0.89
Control Delay		26.6		657.2	20.1					60.5	45.3	41.0
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		26.6		657.2	20.1					60.5	45.3	41.0
LOS		С		F	С					Е	D	D

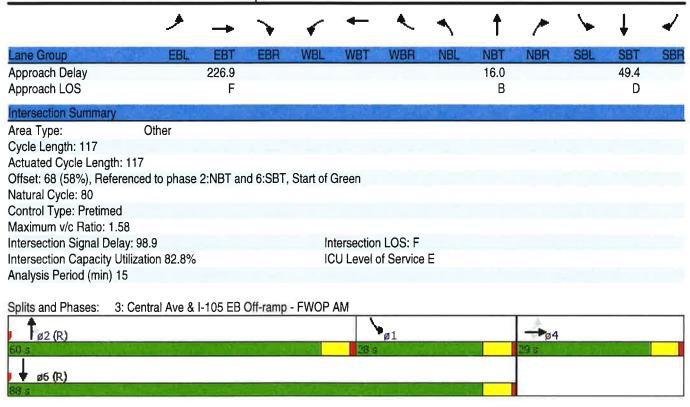

Existing 7/7/2016 Baseline

Synchro 8 Report Page 1

4: I-110 SB Off-ramp & El Segundo Blvd- FWOP AM

Splits and Phases: 4: I-110 SB Off-ramp & El Segundo Blvd- FWOP AM

4: I-110 SB Off-ramp & El Segundo Blvd- FWOP AM


	-	1	-		↓	4
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	1494	372	1977	562	530	528
v/c Ratio	0.90dr	2.37	0.78	0.97	0.92	0.89
Control Delay	26.6	657.2	20.1	60.5	45.3	41.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	26.6	657.2	20.1	60.5	45.3	41.0
Queue Length 50th (ft)	280	~411	370	381	300	281
Queue Length 95th (ft)	354	#615	445	#648	#571	#532
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	1799	157	2550	580	577	592
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.83	2.37	0.78	0.97	0.92	0.89
ALC: NO THE LINE						

Intersection Summary

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

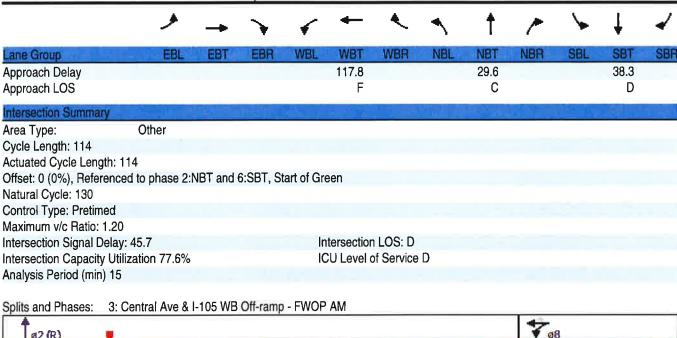
*	۶	→	•	•	+	4	•	†	<i>></i>	/	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7					ተ	7	1/1/	ተተ	
Volume (vph)	727	14	599	0	0	0	0	856	381	618	776	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.941	0.850						0.850			
Flt Protected	0.950	0.972								0.950		
Satd. Flow (prot)	1633	1506	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.972			T i					0.950		
Satd. Flow (perm)	1633	1506	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		25	227			, 00			414			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	790	15	651	0.02	0	0	0	930	414	672	843	0
Shared Lane Traffic (%)	36%	10	30%		U		J	000		012	010	
Lane Group Flow (vph)	506	494	456	0	0	0	0	930	414	672	843	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	riigiit	Lon	12	rugiii	Loit	24	riigiit	Lon	24	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10						10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type	Perm	NA	Perm	10		J	10	NA	Perm	Prot	NA	U
Protected Phases	T CITII	4	1 Gilli					2	1 01111	1	6	
Permitted Phases	4	-	4					_	2		U	
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	10.0	22.0	
Total Split (s)	29.0	29.0	29.0					60.0	60.0	28.0	88.0	
Total Split (%)	24.8%	24.8%	24.8%					51.3%	51.3%	23.9%	75.2%	
Maximum Green (s)	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag	0.0	0.0	0.0					Lead	Lead	Lag	0.0	
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0	163	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0					0	0		0	
Act Effet Green (s)	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
		0.20	0.20					0.46	0.46	0.19	0.70	
Actuated g/C Ratio	0.20							0.46	0.46	1.07	0.70	
v/c Ratio	1.58	1.56	0.97					21.6	3.4	102.0		
Control Delay	306.7	299.9	59.3								7.4	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	306.7	299.9	59.3					21.6	3.4	102.0	7.4	
LOS	F	F	E					С	А	F	Α	

3: Central Ave & I-105 EB Off-ramp - FWOP AM

	*	-	•	†	-	-	↓
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	506	494	456	930	414	672	843
v/c Ratio	1.58	1.56	0.97	0.41	0.44	1.07	0.35
Control Delay	306.7	299.9	59.3	21.6	3.4	102.0	7.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	306.7	299.9	59.3	21.6	3.4	102.0	7.4
Queue Length 50th (ft)	~685	~680	240	199	0	~347	142
Queue Length 95th (ft)	#951	#960	#513	242	65	#490	178
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	321	316	469	2280	932	627	2409
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.58	1.56	0.97	0.41	0.44	1.07	0.35
Intersection Summary	HEAT IS	97,754		75	ui H	VA. OI	1

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


Lanes, Volumes, Timings 3: Central Ave & I-105 WB Off-ramp - FWOP AM

	۶	-	>	•	-	*	4	†	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	લી	7	44	个个			^	7
Volume (vph)	0	0	0	151	4	406	333	1237	0	0	1207	802
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Fit Protected				0.950	0.955		0.950					
Satd. Flow (prot)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.955		0.950					
Satd. Flow (perm)	0	0	0	1633	1642	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)			, , ,			88						
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0.92	0.52	0.52	164	4	441	362	1345	0.52	0.52	1312	872
	U	U	U	49%	- 4	441	302	1343	U	0	1312	012
Shared Lane Traffic (%)	^	0	0	84	84	441	362	1345	0	0	1312	872
Lane Group Flow (vph)	0											
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				8	8		5	2			6	
Permitted Phases						8						6
Minimum Split (s)				21.1	21.1	21.1	10.0	22.0			22.0	22.0
Total Split (s)				27.0	27.0	27.0	18.0	87.0	-		69.0	69.0
Total Split (%)				23.7%	23.7%	23.7%	15.8%	76.3%			60.5%	60.5%
Maximum Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Yellow Time (s)				4.0	4.0	4.0	5.0	5.0			5.0	5.0
All-Red Time (s)				1.0	1.0	1.0	1.0	1.0			1.0	1.0
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Lost Time (s)				5.0	5.0	5.0	6.0	6.0			6.0	6.0
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?							Yes				Yes	Yes
Walk Time (s)				5.0	5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				22.0	22.0	22.0	12.0	81.0			63.0	63.0
Actuated g/C Ratio				0.19	0.19	0.19	0.11	0.71			0.55	0.55
v/c Ratio				0.27	0.27	1.20	1.03	0.55			0.69	1.03
Control Delay				41.8	41.8	146.8	106.5	8.9			20.9	64.4
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				41.8	41.8	146.8	106.5	8.9			20.9	64.4
LOS				41.0 D	41.0 D	F	F	Α			20.5 C	04.4 E
				U	U		'					

Existing 7/7/2016 Baseline

Synchro 8 Report Page 1

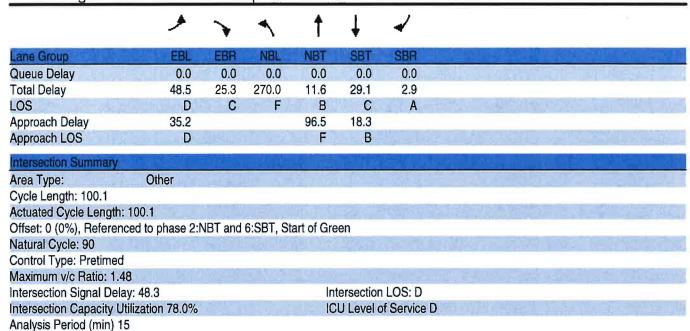
9/29/2016

3: Central Ave & I-105 WB Off-ramp - FWOP AM

	•	+	•	1	Ť	↓	4	
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR	
Lane Group Flow (vph)	84	84	441	362	1345	1312	872	
v/c Ratio	0.27	0.27	1.20	1.03	0.55	0.69	1.03	
Control Delay	41.8	41.8	146.8	106.5	8.9	20.9	64.4	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	41.8	41.8	146.8	106.5	8.9	20.9	64.4	
Queue Length 50th (ft)	66	66	~406	~176	262	418	~820	
Queue Length 95th (ft)	126	126	#651	#291	321	514	#1112	
Internal Link Dist (ft)		665			502	478		
Turn Bay Length (ft)								
Base Capacity (vph)	315	316	367	351	2442	1899	849	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.27	0.27	1.20	1.03	0.55	0.69	1.03	

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

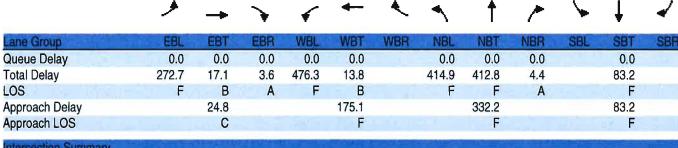
	۶	*	4	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	444	十 十	77.77
Volume (vph)	449	604	358	731	756	531
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1000	1300	0
Storage Lanes	1	1	120		100	2
	25		25	-10-00		_
Taper Length (ft)		1.00		0.01	0.05	0.00
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
Frt	0.050	0.850	0.050	100	01 01 000	0.850
Flt Protected	0.950	4500	0.950	10.10	0.400	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950	, = -	0.950			656
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		55		A STREET	(a fee	577
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070	200	- 1	942	903	
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	488	657	389	795	822	577
Shared Lane Traffic (%)		aPYV S			E3167	SESSION OF THE PERSON OF THE P
Lane Group Flow (vph)	488	657	389	795	822	577
Enter Blocked Intersection	No	No	No	No	No	No
	Left		Left	Left	Left	
Lane Alignment		Right	Leit			Right
Median Width(ft)	12	Alesie.		12	12	The same of
Link Offset(ft)	0	SIGNATI		0	0	
Crosswalk Width(ft)	16	de la constante		16	16	
Two way Left Turn Lane					-	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		45			VIII LEI	6
Minimum Split (s)	38.1		8.7	21.4	21.1	21.1
Total Split (s)	38.1	Con Ito	20.0	62.0	42.0	42.0
Total Split (%)	38.1%		20.0%	61.9%	42.0%	42.0%
Maximum Green (s)	33.0	-47/11	15.3	56.6	36.9	36.9
Yellow Time (s)	4.1	- 12 -	3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	- II U.S.	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1	34,000	4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?		- 6716			F 14	N PIG
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0	100	الخراب	11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	33.0	53.0	15.3	56.6	36.9	36.9
Actuated g/C Ratio	0.33	0.53	0.15	0.57	0.37	0.37
v/c Ratio	0.86	0.78	1.48	0.28	0.65	0.42
Control Delay	48.5	25.3	270.0	11.6	29.1	2.9
Control Boldy	70,0	20.0	2,0,0	, 1.0	20.1	2.0

Existing 7/6/2016 Baseline

3: Wilmington & I-105 EB Off-ramp - FWOP AM

Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - FWOP AM

	→	*	4	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	488	657	389	795	822	577
v/c Ratio	0.86	0.78	1.48	0.28	0.65	0.42
Control Delay	48.5	25.3	270.0	11.6	29.1	2.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	48.5	25.3	270.0	11.6	29.1	2.9
Queue Length 50th (ft)	347	355	~413	108	271	0
Queue Length 95th (ft)	#564	554	#632	137	351	44
Internal Link Dist (ft)	990			862	823	
Turn Bay Length (ft)			120			
Base Capacity (vph)	566	840	262	2793	1267	1362
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.86	0.78	1.48	0.28	0.65	0.42


Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	-	*	•	-	•	4	†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	titî	7	77	**		T	र्स	7		4	
Volume (vph)	55	1123	250	810	1499	14	591	12	150	8	37	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.997	0.850		0.999		1,000		0.850		0.916	
Flt Protected	0.950			0.950			0.950	0.954			0.997	
Satd. Flow (prot)	1719	5845	1246	3335	4935	0	1633	1640	1538	0	1653	0
Flt Permitted	0.950	19.0/00		0.950			0.950	0.954	,		0.937	
Satd. Flow (perm)	1719	5845	1246	3335	4935	0	1633	1640	1538	0	1553	0
Right Turn on Red	1, 10	0010	Yes	0000	1000	Yes	1000	1010	Yes		1000	Yes
Satd. Flow (RTOR)		6	245		2	100			245		63	100
Link Speed (mph)		30	210		30			30	210		30	
Link Distance (ft)		1132			1053			585			490	-
Travel Time (s)	10.5 2.3	25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	60	1221	272	880	1629	15	642	13	163	9	40	80
Shared Lane Traffic (%)	00	1221	10%	000	1029	13	49%	13	103	3	40	00
Lane Group Flow (vph)	60	1248	245	880	1644	0	327	328	163	0	129	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
				Left	Left		Left	Left		Left	Left	
Lane Alignment	Left	Left 24	Right	Leit	24	Right	Leit	12	Right	Len	12	Right
Median Width(ft) Link Offset(ft)		0			0			0			0	
		16			16			16			16	1000
Crosswalk Width(ft)		10	1 - 1 4		10			10			10	
Two way Left Turn Lane	1.00	4.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	1.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15 Drot	NIA	Perm	15 Drot	NA	9		NIA			NIA	9
Turn Type	Prot	NA	remi	Prot			Split	NA	Perm	Perm	NA	
Protected Phases	7	4	A	3	8		2	2	0	•	6	
Permitted Phases	0.7	04.0	4	0.7	04.0		04.0	04.0	2	6	04.0	
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	16.0	53.0		15.0	15.0	15.0	10.0	10.0	
Total Split (%)	8.2%	51.8%	51.8%	18.8%	62.4%		17.6%	17.6%	17.6%	11.8%	11.8%	
Maximum Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4	4.4	4.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Walk Time (s)		5.0	5.0		5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	
Act Effct Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4		4.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.13	0.55		0.11	0.11	0.11		0.05	
v/c Ratio	1.30	0.48	0.35	1.99	0.60		1.82	1.81	0.42		0.92	
Control Delay	272.7	17.1	3.6	476.3	13.8		414.9	412.8	4.4		83.2	

3: I-105 Off-ramp & Imperial Hwy- FWOP AM

Intersection Summary

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85

Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green

Natural Cycle: 120 Control Type: Pretimed Maximum v/c Ratio: 1.99

Intersection Signal Delay: 151.9 Intersection LOS: F Intersection Capacity Utilization 77.6% ICU Level of Service D

Analysis Period (min) 15

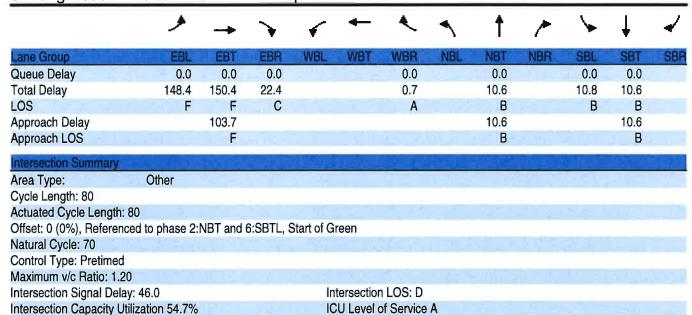
Splits and Phases: 3: I-105 Off-ramp & Imperial Hwy- FWOP AM

Existing 7/6/2016 Baseline

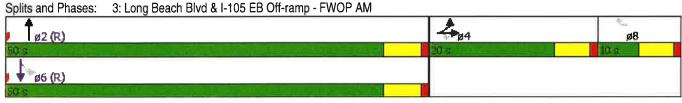
	→	-	*	•	+	4	†	1	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	60	1248	245	880	1644	327	328	163	129	
v/c Ratio	1.30	0.48	0.35	1.99	0.60	1.82	1.81	0.42	0.92	
Control Delay	272.7	17.1	3.6	476.3	13.8	414.9	412.8	4.4	83.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	272.7	17.1	3.6	476.3	13.8	414.9	412.8	4.4	83.2	
Queue Length 50th (ft)	~50	166	0	~458	239	~336	~337	0	43	
Queue Length 95th (ft)	#143	204	59	#596	293	#538	#538	15	#171	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2623	693	443	2735	180	181	387	140	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.30	0.48	0.35	1.99	0.60	1.82	1.81	0.42	0.92	

Intersection Summary

Queue shown is maximum after two cycles.


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

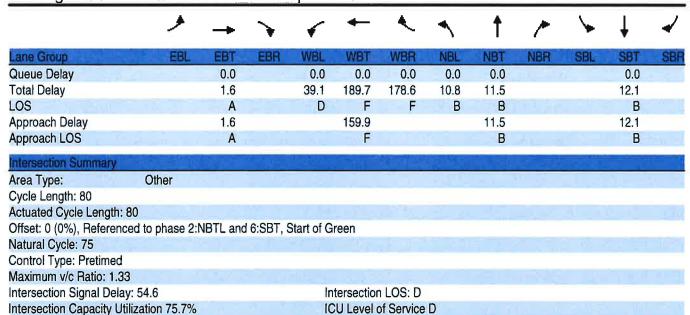

	۶	→	•	•	—	•	1	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	स	7			7		ተተ _ጉ		J.	^	
Volume (vph)	670	3	378	0	0	12	0	990	15	33	658	. 0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25	1100		25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.998				
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4930	0	1719	3438	0
Flt Permitted	0.950	0.953								0.223		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4930	0	404	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			289			102		4		11111		. 3
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	728	3	411	0	0	13	0	1076	16	36	715	0
Shared Lane Traffic (%)	50%	- 85							- 6			
Lane Group Flow (vph)	364	367	411	0	0	13	0	1092	0	36	715	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	A F		12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16		100	16			16		100	16	
Two way Left Turn Lane		,,,										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	111111111111111111111111111111111111111	9	15		9	15		9	15		9
Turn Type	Split	NA	Perm	77		Perm		NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases		-	4			8				6	vi = i	
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	20.0	20.0	20.0			10.0		50.0		50.0	50.0	
Total Split (%)	25.0%	25.0%	25.0%			12.5%		62.5%		62.5%	62.5%	
Maximum Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	100
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	2.77
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag	0.1	0.1	0.1			0.1		0.4		0.4	0.1	
Lead-Lag Optimize?												Call Pag
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effct Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Actuated g/C Ratio	0.19	0.19	0.19			0.06		0.56		0.56	0.56	
v/c Ratio	1.20	1.20	0.19			0.07		0.40		0.16	0.37	
Control Delay	148.4	150.4	22.4			0.07		10.6		10.8	10.6	
Control Delay	140.4	100.4	ZZ.4			0.7		10.0		10.0	10.0	

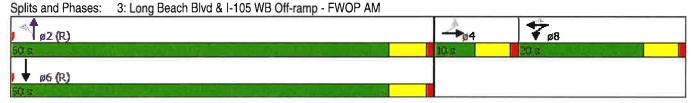
Analysis Period (min) 15

3: Long Beach Blvd & I-105 EB Off-ramp - FWOP AM

3: Long Beach Blvd & I-105 EB Off-ramp - FWOP AM

	*	→	•		†	1	Ţ	
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT	AND THE RESERVE OF THE PARTY OF
Lane Group Flow (vph)	364	367	411	13	1092	36	715	
v/c Ratio	1.20	1.20	0.79	0.07	0.40	0.16	0.37	
Control Delay	148.4	150.4	22.4	0.7	10.6	10.8	10.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	148.4	150.4	22.4	0.7	10.6	10.8	10.6	
Queue Length 50th (ft)	~283	~286	65	0	125	10	116	
Queue Length 95th (ft)	#488	#490	#239	0	159	29	159	
Internal Link Dist (ft)		737			518		475	
Turn Bay Length (ft)			110			180		
Base Capacity (vph)	304	305	521	191	2750	225	1916	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.20	1.20	0.79	0.07	0.40	0.16	0.37	


Intersection Summary


- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	→	7	•	←	•	•	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	ĵ»	7	Ť	ተተተ			ተተ _ጉ	
Volume (vph)	14	0	6	180	30	864	12	1225	0	0	1329	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.957			0.860	0.850					0.995	
Flt Protected		0.967		0.950			0.950					
Satd. Flow (prot)	0	1675	0	1719	1478	1461	1719	4940	0	0	4915	0
Flt Permitted		0.686		0.950			0.126					
Satd. Flow (perm)	0	1188	0	1719	1478	1461	228	4940	0	0	4915	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102			118	118					11	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	15	0	7	196	33	939	13	1332	0	0	1445	52
Shared Lane Traffic (%)						49%						
Lane Group Flow (vph)	0	22	0	196	493	479	13	1332	0	0	1497	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	WATER OF		12	17. 17. 12		12	A Different		12	HETT
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	8 4
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4					8	2					1
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		20.0	20.0	20.0	50.0	50.0			50.0	
Total Split (%)	12.5%	12.5%		25.0%	25.0%	25.0%	62.5%	62.5%			62.5%	
Maximum Green (s)	4.9	4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	-
Lead/Lag												
Lead-Lag Optimize?									100			
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)	1	4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Actuated g/C Ratio		0.06		0.19	0.19	0.19	0.56	0.56			0.56	
v/c Ratio		0.13		0.61	1.33	1.30	0.10	0.48			0.55	
Control Delay		1.6		39.1	189.7	178.6	10.8	11.5			12.1	

Analysis Period (min) 15

3: Long Beach Blvd & I-105 WB Off-ramp - FWOP AM

ICU Level of Service D

3: Long Beach Blvd & I-105 WB Off-ramp - FWOP AM

-	1	4-	•	1	†	. ↓	
EBT	WBL	WBT	WBR	NBL	NBT	SBT	ACCOMPANY DISTRICT
22	196	493	479	13	1332	1497	
0.13	0.61	1.33	1.30	0.10	0.48	0.55	
1.6	39.1	189.7	178.6	10.8	11.5	12.1	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1.6	39.1	189.7	178.6	10.8	11.5	12.1	
0	109	~347	~329	3	163	191	
0	190	#581	#563	15	205	238	
135		493			413	470	
			140	150			
168	320	371	368	127	2754	2744	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0.13	0.61	1.33	1.30	0.10	0.48	0.55	
	22 0.13 1.6 0.0 1.6 0 0 135	22 196 0.13 0.61 1.6 39.1 0.0 0.0 1.6 39.1 0 109 0 190 135 168 320 0 0 0 0 0 0	22 196 493 0.13 0.61 1.33 1.6 39.1 189.7 0.0 0.0 0.0 1.6 39.1 189.7 0 109 ~347 0 190 #581 135 493 168 320 371 0 0 0 0 0 0 0 0	22 196 493 479 0.13 0.61 1.33 1.30 1.6 39.1 189.7 178.6 0.0 0.0 0.0 0.0 1.6 39.1 189.7 178.6 0 109 ~347 ~329 0 190 #581 #563 135 493 140 168 320 371 368 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 196 493 479 13 0.13 0.61 1.33 1.30 0.10 1.6 39.1 189.7 178.6 10.8 0.0 0.0 0.0 0.0 0.0 1.6 39.1 189.7 178.6 10.8 0 109 ~347 ~329 3 0 190 #581 #563 15 135 493 140 150 168 320 371 368 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 196 493 479 13 1332 0.13 0.61 1.33 1.30 0.10 0.48 1.6 39.1 189.7 178.6 10.8 11.5 0.0 0.0 0.0 0.0 0.0 1.6 39.1 189.7 178.6 10.8 11.5 0 109 ~347 ~329 3 163 0 190 #581 #563 15 205 135 493 413 168 320 371 368 127 2754 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 196 493 479 13 1332 1497 0.13 0.61 1.33 1.30 0.10 0.48 0.55 1.6 39.1 189.7 178.6 10.8 11.5 12.1 0.0 0.0 0.0 0.0 0.0 0.0 1.6 39.1 189.7 178.6 10.8 11.5 12.1 0 109 ~347 ~329 3 163 191 0 190 #581 #563 15 205 238 135 493 413 470 140 150 168 320 371 368 127 2754 2744 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Intersection Summary

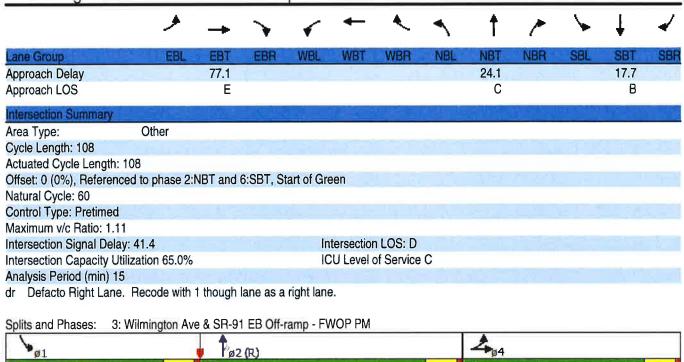
Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	•	\rightarrow	†	1	-	Ţ
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	576	1133	1165	258	191	591
v/c Ratio	1.37	1.31	1.17	0.27	0.21	0.28
Control Delay	213.9	177.7	122.0	5.2	27.5	8.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	213.9	177.7	122.0	5.2	27.5	8.9
Queue Length 50th (ft)	~624	~588	~545	4	55	96
Queue Length 95th (ft)	#895	#753	#701	42	89	130
Internal Link Dist (ft)		510	324			339
Turn Bay Length (ft)						
Base Capacity (vph)	419	866	992	953	928	2126
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.37	1.31	1.17	0.27	0.21	0.28

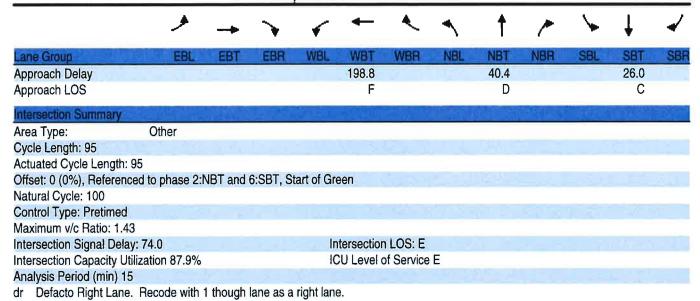
Intersection Summary

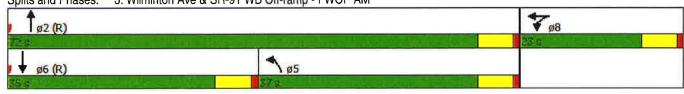

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	—	*	1	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	414						十十	77.77	77	^	
Volume (vph)	473	198	548	0	0	0	0	631	262	279	906	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.896							0.850			
Flt Protected	0.950	0.997								0.950		
Satd. Flow (prot)	1564	2942	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.997								0.950		
Satd. Flow (perm)	1564	2942	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		134							285			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	514	215	596	0	0	0	0	686	285	303	985	0
Shared Lane Traffic (%)	10%											
Lane Group Flow (vph)	463	862	0	0	0	0	0	686	285	303	985	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	3		12	3		24	3		24	- 0
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane								1000				
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		1	6	
Permitted Phases									2			
Minimum Split (s)	22.0	22.0						22.0	22.0	10.0	22.0	
Total Split (s)	35.0	35.0						42.0	42.0	31.0	73.0	
Total Split (%)	32.4%	32.4%						38.9%	38.9%	28.7%	67.6%	
Maximum Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Yellow Time (s)	5.0	5.0						5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0						6.0	6.0	6.0	6.0	
Lead/Lag	0.0	0.0						Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0	100	5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Actuated g/C Ratio	0.27	0.27						0.33	0.33	0.23	0.62	4 1 4 4
v/c Ratio	1.11	1.22dr						0.60	0.26	0.20	0.46	
Control Delay	113.6	57.6						32.6	3.7	36.9	11.8	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	113.6	57.6						32.6	3.7	36.9	11.8	
LOS	F	57.6 E						32.0 C	3.7 A	30.9 D	В	0
	Г							U	^	<i>U</i>	D	


ø6 (R)


	۶	→	*	•	—	*	4	†	~	/	ţ	-√
Lane Group	EBL	EBT	EBA	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	47>		7	44			11	
Volume (vph)	0	0	0	191	98	628	585	1358	0	0	500	526
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.874						0.923	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	2875	0	1719	3438	0	0	4560	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	2875	0	1719	3438	0	0	4560	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					64						232	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2	2773		9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	208	107	683	636	1476	0	0	543	572
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	187	811	0	636	1476	0	0	1115	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	3		12	3		12	3
Link Offset(ft)		0			0		7.1	0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	Electric II	9	15		9	15		9	15		9
Turn Type				Split	NA	_	Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				23.0	23.0		37.0	72.0			35.0	
Total Split (%)				24.2%	24.2%		38.9%	75.8%			36.8%	
Maximum Green (s)				17.0	17.0		31.0	66.0			29.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag				0.0	0.0		Lag				Lead	100
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0		103	5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				17.0	17.0		31.0	66.0			29.0	
Actuated g/C Ratio				0.18	0.18		0.33	0.69			0.31	
v/c Ratio				0.10	2.18dr		1.14	0.62			0.90dr	
Control Delay				49.6	233.2		113.0	9.2			26.0	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
The state of the s				49.6	233.2		113.0	9.2			26.0	
Total Delay				49.6 D	233.2 F		F				26.0 C	
LOS				U				А			U	

Existing 7/7/2016 Baseline

3: Wilminton Ave & SR-91 WB Off-ramp - FWOP AM

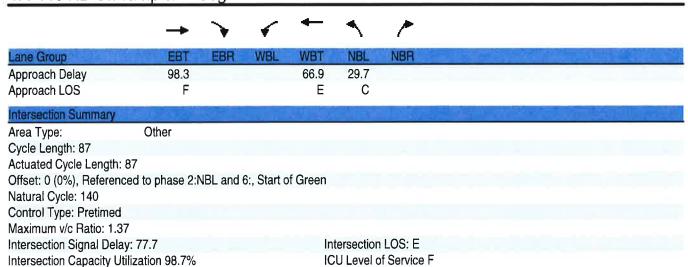
Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - FWOP AM

Synchro 8 Report Existing 7/7/2016 Baseline

Lane Group	WBL	WBT	NBL	NBT	SBT	
Lane Group Flow (vph)	187	811	636	1476	1115	
v/c Ratio	0.67	2.18dr	1.14	0.62	0.90dr	
Control Delay	49.6	233.2	113.0	9.2	26.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	49.6	233.2	113.0	9.2	26.0	
Queue Length 50th (ft)	139	~421	~540	261	208	
Queue Length 95th (ft)	#254	#573	#791	331	270	
Internal Link Dist (ft)		500		324	339	
Turn Bay Length (ft)						
Base Capacity (vph)	279	567	560	2388	1553	
Starvation Cap Reductn	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	
Reduced v/c Ratio	0.67	1.43	1.14	0.62	0.72	

Intersection Summary

- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.


Synchro 8 Report Existing 7/7/2016 Baseline

Lanes, Volumes, Timings 4: I-110 NB Off-ramp & El Segundo Blvd- FWOP PM

	-	-	•	+	1		
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR	u paulitus sureidaturi.
Lane Configurations	ተተ	7	- 1	ተተተ	AA		
Volume (vph)	1683	484	326	826	347	320	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	
ane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95	
rt	0.00	0.850	1100	0.01	0.928	0.00	
It Protected		0.000	0.950		0.975		
Satd. Flow (prot)	3471	1553	1736	4988	3207	0	
It Permitted	0471	1000	0.950	4300	0.975	U	
Satd. Flow (perm)	3471	1553	1736	4988	3207	0	
	3471	Yes	1730	4900	3207	Yes	
Right Turn on Red					0.40	res	
atd. Flow (RTOR)	00	45		00	246		
ink Speed (mph)	30			30	30		
ink Distance (ft)	568			630	393		
Travel Time (s)	12.9			14.3	8.9		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
dj. Flow (vph)	1829	526	354	898	377	348	
hared Lane Traffic (%)							
ane Group Flow (vph)	1829	526	354	898	725	0	
nter Blocked Intersection	No	No	No	No	No	No	
ane Alignment	Left	Right	Left	Left	Left	Right	
edian Width(ft)	12			12	24	_	
nk Offset(ft)	0			0	0		
rosswalk Width(ft)	16			16	16		
vo way Left Turn Lane							
eadway Factor	1.00	1.00	1.00	1.00	1.00	1.00	
rning Speed (mph)	1.00	9	15	1100	15	9	
ırn Type	NA	pm+ov	Prot	NA	Prot	Ū	
otected Phases	4	2	3	8	2		
ermitted Phases	4	4	3	O	۷		
	20.0	21.1	10.0	22.0	21.1		
finimum Split (s)	22.0	24.0	19.0		24.0		
otal Split (s)	44.0			63.0			
otal Split (%)	50.6%	27.6%	21.8%	72.4%	27.6%		
laximum Green (s)	38.0	19.0	13.0	57.0	19.0		
ellow Time (s)	5.0	4.0	5.0	5.0	4.0		
I-Red Time (s)	1.0	1.0	1.0	1.0	1.0		
st Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		
otal Lost Time (s)	6.0	5.0	6.0	6.0	5.0		
ead/Lag	Lead		Lag				
ead-Lag Optimize?	Yes		Yes				
alk Time (s)	5.0	5.0		5.0	5.0		
ash Dont Walk (s)	11.0	11.0		11.0	11.0		
edestrian Calls (#/hr)	0	0		0	0		
ct Effct Green (s)	38.0	63.0	13.0	57.0	19.0		
ctuated g/C Ratio	0.44	0.72	0.15	0.66	0.22		
c Ratio	1.21	0.46	1.37	0.27	0.81		
ontrol Delay	124.8	6.0	219.8	6.6	29.7		
ueue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	124.8	6.0	219.8	6.6	29.7		
.OS	124.0 F	Α.0	219.0 F	Α	29.7 C		
	Г	А	I ²	^	U		

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

4: I-110 NB Off-ramp & El Segundo Blvd- FWOP PM

Analysis Period (min) 15

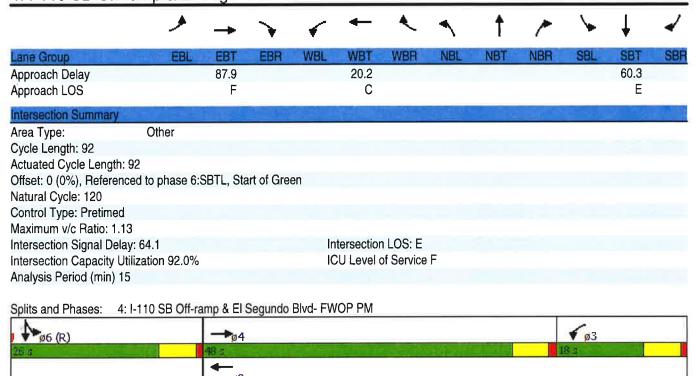
Splits and Phases: 4: I-110 NB Off-ramp & El Segundo Blvd- FWOP PM

4: I-110 NB Off-ramp & El Segundo Blvd- FWOP PM

	-	*	•	-	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1829	526	354	898	725
v/c Ratio	1.21	0.46	1.37	0.27	0.81
Control Delay	124.8	6.0	219.8	6.6	29.7
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	124.8	6.0	219.8	6.6	29.7
Queue Length 50th (ft)	~780	106	~310	80	156
Queue Length 95th (ft)	#944	171	#510	102	#246
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1516	1137	259	3268	892
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.21	0.46	1.37	0.27	0.81
A THE PART OF THE			N ASCIDE		

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Lanes, Volumes, Timings 4: I-110 SB Off-ramp & El Segundo Blvd- FWOP PM

	۶	→	*	1	←	•	4	†	~	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		444		ň	ተተተ					7	4	7
Volume (vph)	0	1678	662	193	995	0	0	0	0	520	0	463
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.958									0.933	0.850
Flt Protected				0.950						0.950	0.973	
Satd. Flow (prot)	0	4778	0	1736	4988	0	0	0	0	1649	1509	1475
Flt Permitted				0.950						0.950	0.973	
Satd. Flow (perm)	0	4778	0	1736	4988	0	0	0	0	1649	1509	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		142									107	122
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1824	720	210	1082	0	0	0	0	565	0	503
Shared Lane Traffic (%)										35%		32%
Lane Group Flow (vph)	0	2544	0	210	1082	0	0	0	0	367	359	342
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J		12	J		12			12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA		Prot	NA					Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases												6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		48.0		18.0	66.0					26.0	26.0	26.0
Total Split (%)		52.2%		19.6%	71.7%					28.3%	28.3%	28.3%
Maximum Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Actuated g/C Ratio		0.46		0.13	0.65					0.22	0.22	0.22
v/c Ratio		1.13		0.93	0.33					1.03	0.87	0.82
Control Delay		87.9		85.8	7.4					91.7	47.7	39.7
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		87.9		85.8	7.4					91.7	47.7	39.7
LOS		F		F	Α					F	D	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

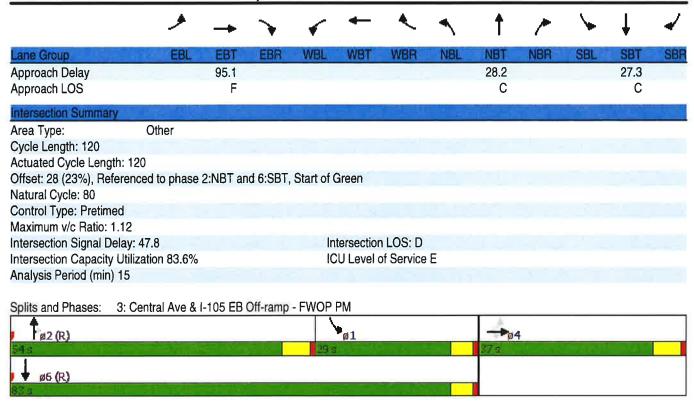
4: I-110 SB Off-ramp & EI Segundo Blvd- FWOP PM

4: I-110 SB Off-ramp & El Segundo Blvd- FWOP PM

	-	*	-	-	↓	4
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	2544	210	1082	367	359	342
v/c Ratio	1.13	0.93	0.33	1.03	0.87	0.82
Control Delay	87.9	85.8	7.4	91.7	47.7	39.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	87.9	85.8	7.4	91.7	47.7	39.7
Queue Length 50th (ft)	~742	148	109	~282	192	157
Queue Length 95th (ft)	#859	#308	136	#508	#405	#343
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	2258	226	3253	358	411	416
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.13	0.93	0.33	1.03	0.87	0.82

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

3: Central Ave & I-105 EB Off-ramp - FWOP PM

	*	\rightarrow	-	•	—	•		†	*	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7					ተተተ	7	1/4	^	
Volume (vph)	524	262	441	0	0	0	0	968	471	505	952	0
Ideal Flow (vphpI)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.978	0.850						0.850			
Flt Protected	0.950	0.988								0.950		
Satd. Flow (prot)	1633	1591	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.988								0.950		
Satd. Flow (perm)	1633	1591	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		7	133						158			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	570	285	479	0.32	0.32	0.32	0.32	1052	512	549	1035	0.32
Shared Lane Traffic (%)	20%	203	14%	U	U	U	U	1032	312	349	1000	0
Lane Group Flow (vph)	456	466	412	0	0	0	0	1052	512	549	1035	0
Enter Blocked Intersection	No		No	No	No	No	No	No	No	No	No	No
		No										
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	NI A	9	15		9	15	ALA	9	15	ALA	9
Turn Type	Perm	NA	Perm					NA	Perm	Prot	NA	
Protected Phases		4						2		1	6	
Permitted Phases	4		4					22.2	2		22.0	
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	9.0	22.0	
Total Split (s)	37.0	37.0	37.0					54.0	54.0	29.0	83.0	
Total Split (%)	30.8%	30.8%	30.8%					45.0%	45.0%	24.2%	69.2%	
Maximum Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	4.0	4.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	5.0	5.0	
Lead/Lag								Lead	Lead	Lag		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0	0					0	0		0	
Act Effct Green (s)	31.0	31.0	31.0					48.0	48.0	24.0	78.0	
Actuated g/C Ratio	0.26	0.26	0.26					0.40	0.40	0.20	0.65	
v/c Ratio	1.08	1.12	0.87					0.53	0.72	0.82	0.46	
Control Delay	110.4	121.8	47.9					28.7	27.2	57.4	11.3	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	110.4	121.8	47.9					28.7	27.2	57.4	11.3	
LOS	F	F	D					С	С	E	В	

3: Central Ave & I-105 EB Off-ramp - FWOP PM

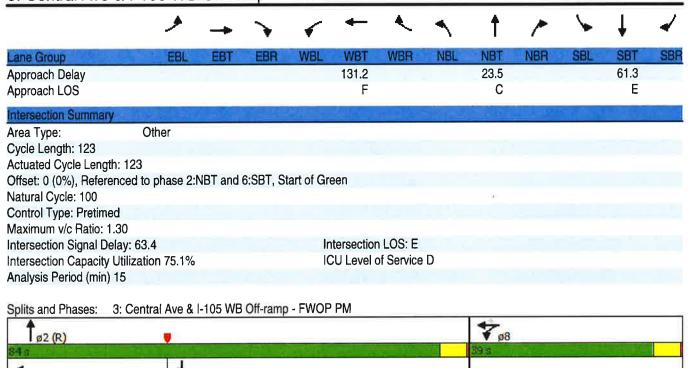
3: Central Ave & I-105 EB Off-ramp - FWOP PM

	<i>•</i>	-	-	†	-	-	. ↓
Comp Comp	COL	COT	COD	NOT	NDD	eni	COT
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	456	466	412	1052	512	549	1035
v/c Ratio	1.08	1.12	0.87	0.53	0.72	0.82	0.46
Control Delay	110.4	121.8	47.9	28.7	27.2	57.4	11.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	110.4	121.8	47.9	28.7	27.2	57.4	11.3
Queue Length 50th (ft)	~498	~543	273	269	280	254	233
Queue Length 95th (ft)	#757	#820	#505	323	446	#349	288
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	421	416	476	1976	710	667	2234
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.08	1.12	0.87	0.53	0.72	0.82	0.46

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	۶	→	*	•	—	•	1	†	~	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	र्स	7	14.54	ተተ			44	7
Volume (vph)	0	0	0	330	0	585	386	1075	0	0	1137	611
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Flt Protected				0.950	0.950		0.950					
Satd. Flow (prot)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.950		0.950					
Satd. Flow (perm)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)						96						
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	359	0	636	420	1168	0	0	1236	664
Shared Lane Traffic (%)				50%					-			
Lane Group Flow (vph)	0	0	0	179	180	636	420	1168	0	0	1236	664
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Len	12	riigrit	Len	12	riigiit	Len	24	rugitt	Lon	24	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	15	1.00	9	15	1.00	9	1.00	1.00	9
Turn Type	13		3	Split	NA	Perm	Prot	NA	3	10	NA	Perm
Protected Phases				8	8	1 Cilli	5	2			6	T GIIII
Permitted Phases				O	U	8					U	6
				21.5	21.5	21.5	9.5	21.5			21.5	21.5
Minimum Split (s)				39.0	39.0	39.0	29.0	84.0			55.0	55.0
Total Split (s)				31.7%	31.7%	31.7%	23.6%	68.3%			44.7%	44.7%
Total Split (%)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Maximum Green (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
Yellow Time (s)						0.5	0.5	0.5			0.5	0.5
All-Red Time (s)				0.5	0.5	0.0	0.0	0.0			0.0	0.0
Lost Time Adjust (s)				0.0	0.0 5.5	5.5	5.5	5.5			5.5	
Total Lost Time (s)				5.5	5.5	5.5		5.5				5.5
Lead/Lag							Lead				Lag	Lag
Lead-Lag Optimize?				F.0	5 0		Yes	5 0			Yes	Yes
Walk Time (s)				5.0	5.0	5.0		5.0			5.0	5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0		0			0	0
Act Effct Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Actuated g/C Ratio				0.27	0.27	0.27	0.19	0.64			0.40	0.40
v/c Ratio				0.40	0.41	1.30	0.66	0.53			0.89	1.07
Control Delay				39.9	39.9	182.7	51.7	13.3			43.9	93.7
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				39.9	39.9	182.7	51.7	13.3			43.9	93.7
LOS				D	D	F	D	В			D	F

Existing 7/7/2016 Baseline

Synchro 8 Report Page 1

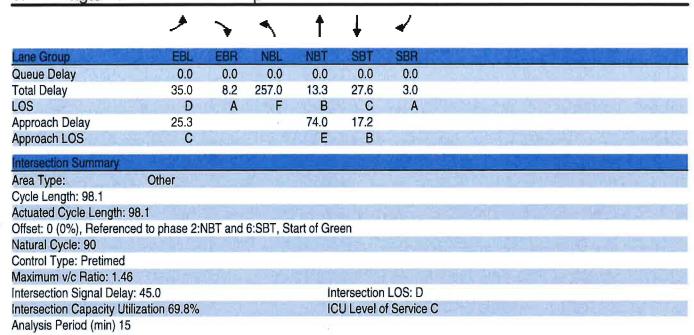
3: Central Ave & I-105 WB Off-ramp - FWOP PM

ø6 (R)

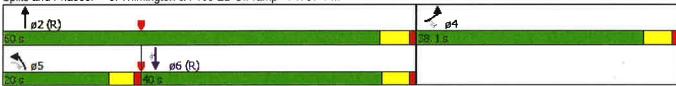
3: Central Ave & I-105 WB Off-ramp - FWOP PM

	1	-	•	1	†	↓	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	179	180	636	420	1168	1236	664
v/c Ratio	0.40	0.41	1.30	0.66	0.53	0.89	1.07
Control Delay	39.9	39.9	182.7	51.7	13.3	43.9	93.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.9	39.9	182.7	51.7	13.3	43.9	93.7
Queue Length 50th (ft)	147	148	~710	192	298	571	~703
Queue Length 95th (ft)	234	235	#989	259	364	#703	#981
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	444	444	488	637	2194	1383	618
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.40	0.41	1.30	0.66	0.53	0.89	1.07

Intersection Summary


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

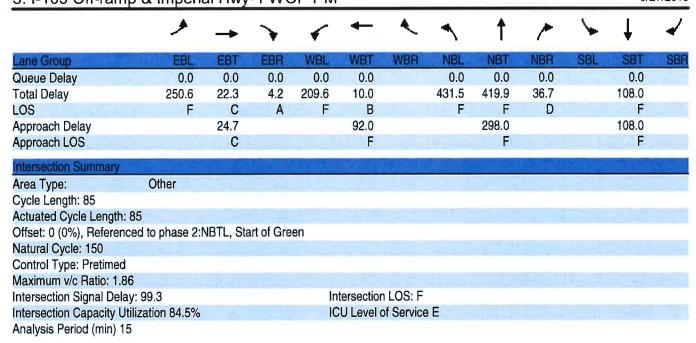
^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	۶	•	1	†	↓	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ሻ	7	ħ	ተተተ	个 个	77
Volume (vph)	361	207	359	1081	633	469
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120			0
Storage Lanes	1	1	1			2
Taper Length (ft)	25	Contract to	25	NE TOTAL	THE REAL PROPERTY.	
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
Frt	1.00	0.850			1,000	0.850
Flt Protected	0.950	0.000	0.950			2,000
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950	1000	0.950	1010	0100	Lioi
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
	1/19	Yes	1/19	7340	0400	Yes
Right Turn on Red						510
Satd. Flow (RTOR)	00	83	O DESCRIPTION	00	00	510
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070			942	903	T VA
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	392	225	390	1175	688	510
Shared Lane Traffic (%)			TO THE			T O
Lane Group Flow (vph)	392	225	390	1175	688	510
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	12	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16		P. W. W.	16	16	111
Two way Left Turn Lane	10					
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	7.00	1.00	9
	Prot	Perm	Prot	NA	NA	Perm
Turn Type		reilli	Prot 5		6	reilli
Protected Phases	4	4.5	5	2	р	0
Permitted Phases		45		01.1	01.1	6
Minimum Split (s)	38.1		8.7	21.4	21.1	21.1
Total Split (s)	38.1		20.0	60.0	40.0	40.0
Total Split (%)	38.8%		20.4%	61.2%	40.8%	40.8%
Maximum Green (s)	33.0		15.3	54.6	34.9	34.9
Yellow Time (s)	4.1		3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	1 500	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1	185.0	4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?	THE REST	100	1	/ 4 - 1	-~9	9
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	20.0			0	0	0
		E2 0	15.0			34.9
Act Effet Green (s)	33.0	53.0	15.3	54.6	34.9	
Actuated g/C Ratio	0.34	0.54	0.16	0.56	0.36	0.36
v/c Ratio	0.68	0.26	1.46	0.43	0.56	0.40
Control Delay	35.0	8.2	257.0	13.3	27.6	3.0

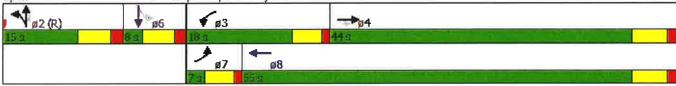
Existing 7/6/2016 Baseline

3: Wilmington & I-105 EB Off-ramp - FWOP PM

Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - FWOP PM


	•	*	1	†	1	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	392	225	390	1175	688	510
v/c Ratio	0.68	0.26	1.46	0.43	0.56	0.40
Control Delay	35.0	8.2	257.0	13.3	27.6	3.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.0	8.2	257.0	13.3	27.6	3.0
Queue Length 50th (ft)	250	51	~402	176	215	0
Queue Length 95th (ft)	378	101	#618	216	284	43
Internal Link Dist (ft)	990			862	823	Ym. Lit
Turn Bay Length (ft)			120			
Base Capacity (vph)	578	869	268	2749	1223	1291
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.68	0.26	1.46	0.43	0.56	0.40

Intersection Summary


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	-	•	•	←	•	4	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	111 1	7	44	ተተጉ		7	सी	7		4	
Volume (vph)	52	1824	399	657	941	1	603	9	299	10	24	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.997	0.850						0.850		0.940	
Flt Protected	0.950			0.950			0.950	0.954			0.992	
Satd. Flow (prot)	1719	5845	1246	3335	4940	0	1633	1640	1538	0	1687	0
Flt Permitted	0.950			0.950			0.950	0.954			0.970	
Satd. Flow (perm)	1719	5845	1246	3335	4940	0	1633	1640	1538	0	1650	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6	391						230		30	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	57	1983	434	714	1023	1	655	10	325	11	26	30
Shared Lane Traffic (%)	7 1		10%		x in	10.00	49%	مأنات		area ide		
Lane Group Flow (vph)	57	2026	391	714	1024	0	334	331	325	0	67	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24	, iigiii	T X	24	g	1	12	ragin	2010	12	rugin
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1100	9	15	1.00	9	15	1.00	9	15	1.00	9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		2	2			6	
Permitted Phases		183	4	-8					2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	18.0	55.0		15.0	15.0	15.0	8.0	8.0	
Total Split (%)	8.2%	51.8%	51.8%	21.2%	64.7%		17.6%	17.6%	17.6%	9.4%	9.4%	
Maximum Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	2.4	2.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lag	Lag	Lead	Lag		5.0	5.0	5.0		5.0	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
	169	5.0	5.0	169	5.0		5.0	5.0	5.0	5.0	5.0	NA.
Walk Time (s)												
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)	0.0	0	0	10.0	0		0 4	0 4	0 4	0	0	
Act Effet Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4		2.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.16	0.58		0.11	0.11	0.11		0.03	
v/c Ratio	1.24	0.77	0.51	1.37	0.36		1.86	1.83	0.87		0.89	
Control Delay	250.6	22.3	4.2	209.6	10.0		431.5	419.9	36.7		108.0	

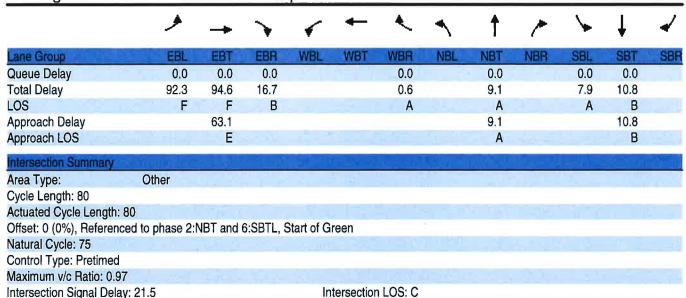
Splits and Phases: 3: I-105 Off-ramp & Imperial Hwy- FWOP PM

	*	→	•	•	-	4	†	~	↓
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT
Lane Group Flow (vph)	57	2026	391	714	1024	334	331	325	67
v/c Ratio	1.24	0.77	0.51	1.37	0.36	1.86	1.83	0.87	0.89
Control Delay	250.6	22.3	4.2	209.6	10.0	431.5	419.9	36.7	108.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	250.6	22.3	4.2	209.6	10.0	431.5	419.9	36.7	108.0
Queue Length 50th (ft)	~46	325	0	~315	117	~346	~342	59	24
Queue Length 95th (ft)	#136	386	72	#444	149	#549	#543	#235	#119
Internal Link Dist (ft)		1052			973		505		410
Turn Bay Length (ft)	100			340					
Base Capacity (vph)	46	2623	774	521	2853	180	181	374	75
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	1.24	0.77	0.51	1.37	0.36	1.86	1.83	0.87	0.89

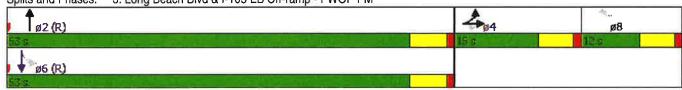
Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.


A	۶	→	*	•	—	•	1	†	<i>></i>	/	↓	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	र्स	7			74		ተተጉ		ď	44	
Volume (vph)	358	1	235	0	0	15	0	1081	4	15	1004	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.999			37 4.1	
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4935	0	1719	3438	0
Flt Permitted	0.950	0.953								0.204		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4935	0	369	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			222			102		1				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	389	1	255	0	0	16	0	1175	4	16	1091	0
Shared Lane Traffic (%)	50%	-					ale of	ALIO DE		- 81 - 3		
Lane Group Flow (vph)	194	196	255	0	0	16	0	1179	0	16	1091	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	1		12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	1,50	9	15		9	15		9
Turn Type	Split	NA	Perm		100	Perm	-	NA		Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases	. =0 1. 1.	100	4			8				6		
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	15.0	15.0	15.0			12.0		53.0		53.0	53.0	
Total Split (%)	18.8%	18.8%	18.8%			15.0%		66.3%		66.3%	66.3%	
Maximum Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	-
Lead/Lag	0.1	0.1	0.1			0.1		0.1		0.1	0.1	
Lead-Lag Optimize?												12 47
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effet Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
Actuated g/C Ratio	0.12	0.12	0.12			0.09		0.60		0.60	0.60	
v/c Ratio	0.12	0.12	0.12			0.09		0.40		0.07	0.53	
Control Delay	92.3	94.6	16.7			0.07		9.1		7.9	10.8	
Control Delay	32.3	34.0	10.7			0.0		J. I		1.9	10.0	

Synchro 8 Report Page 1 Existing 7/6/2016 Baseline


Intersection Capacity Utilization 51.1%

Analysis Period (min) 15

3: Long Beach Blvd & I-105 EB Off-ramp - FWOP PM

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - FWOP PM

ICU Level of Service A

Synchro 8 Report Existing 7/6/2016 Baseline

	1	-	*	•	†	-		
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT	H.
Lane Group Flow (vph)	194	196	255	16	1179	16	1091	
v/c Ratio	0.96	0.97	0.66	0.07	0.40	0.07	0.53	
Control Delay	92.3	94.6	16.7	0.6	9.1	7.9	10.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	92.3	94.6	16.7	0.6	9.1	7.9	10.8	
Queue Length 50th (ft)	124	125	18	0	124	4	185	
Queue Length 95th (ft)	#283	#285	#107	0	157	14	245	
Internal Link Dist (ft)		737			518		475	
Turn Bay Length (ft)			110			180		
Base Capacity (vph)	202	202	384	228	2936	219	2045	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.96	0.97	0.66	0.07	0.40	0.07	0.53	
Intersection Summary	0.96	0.97	0.00	0.07	0.40	0.07	0.53	

^{# 95}th percentile volume exceeds capacity, queue may be longer.

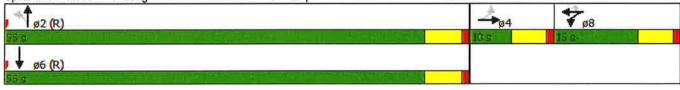
Queue shown is maximum after two cycles.

	۶	-	•	•	4	*	4	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	4	7	7	ተተተ			ተተ _ጉ	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)		0%			0%			0%			0%	
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	= 11		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Ped Bike Factor												
Frt		0.965			0.853	0.850					0.998	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1683	0	1719	1466	1461	1719	4940	0	0	4930	0
Flt Permitted		0.712		0.950			0.141					
Satd. Flow (perm)	0	1243	0	1719	1466	1461	255	4940	0	0	4930	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102			116	116					6	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	11.
Travel Time (s)		4.9			13.0			11.2			12.5	
Intersection Summary	100		die i					a line all	4/4.			X41 X

Area Type:

Other

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

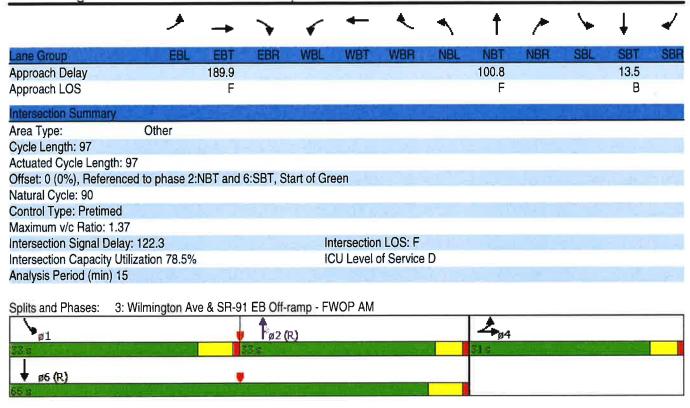

	*	-	*	•	←	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		7	₽	7	7	ተተተ			ተተጉ	
Volume (vph)	29	0	10	311	10	1077	17	1160	0	0	1332	22
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.965		110	0.853	0.850					0.998	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1683	0	1719	1466	1461	1719	4940	0	0	4930	0
Flt Permitted		0.712		0.950			0.141					
Satd. Flow (perm)	0	1243	0	1719	1466	1461	255	4940	0	0	4930	0
Right Turn on Red		1240	Yes	1710	1 100	Yes	200	10 10	Yes		1000	Yes
Satd. Flow (RTOR)		102	100		116	116			100		6	100
Link Speed (mph)		30			30	110		30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
						1171						
Adj. Flow (vph)	32	0	11	338	11		18	1261	0	0	1448	24
Shared Lane Traffic (%)		40	_	000	507	50%	40	4004	^		4.470	
Lane Group Flow (vph)	0	43	0	338	597	585	18	1261	0	0	1472	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	
Protected Phases		4		8	8			2			6	
Permitted Phases	4					8	2					
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		15.0	15.0	15.0	55.0	55.0			55.0	100
Total Split (%)	12.5%	12.5%		18.8%	18.8%	18.8%	68.8%	68.8%			68.8%	
Maximum Green (s)	4.9	4.9		9.9	9.9	9.9	49.6	49.6			49.6	45,
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)	1 7 11	4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Actuated g/C Ratio		0.06		0.12	0.12	0.12	0.62	0.62			0.62	
v/c Ratio		0.25		1.59	2.11	2.07	0.11	0.41			0.48	
Control Delay		3.5		316.6	530.7	515.3	8.4	8.3			8.8	
- John Sidy		0.0		510.0	555.7	3 10.0	J. 1	0.0			0.0	

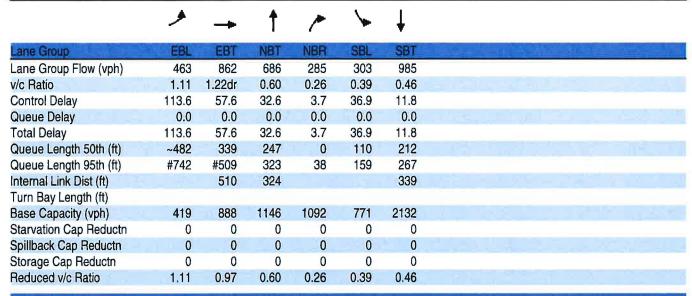
Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

3: Long Beach Blvd & I-105 WB Off-ramp- FWOP PM

	٠	→	*	•	←	*	4	†	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Delay		3.5		316.6	530.7	515.3	8.4	8.3			8.8	
LOS		Α		F	F	F	Α	A			Α	
Approach Delay		3.5			477.2			8.3			8.8	
Approach LOS		Α			F.			Α			Α	
Intersection Summary		377	W. J.	7 1		82.I	9 H/P	15.15.2	- P			25
Area Type: Oth	er											10.11
Cycle Length: 80												
Actuated Cycle Length: 80												
Offset: 0 (0%), Referenced to pl	hase 2:N	NBTL and	6:SBT,	Start of G	reen							
Natural Cycle: 80												
Control Type: Pretimed												
Maximum v/c Ratio: 2.11												
Intersection Signal Delay: 173.6	3			In	tersection	LOS: F						
Intersection Capacity Utilization	83.2%			IC	U Level	of Service	E					
Analysis Period (min) 15												

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp- FWOP PM

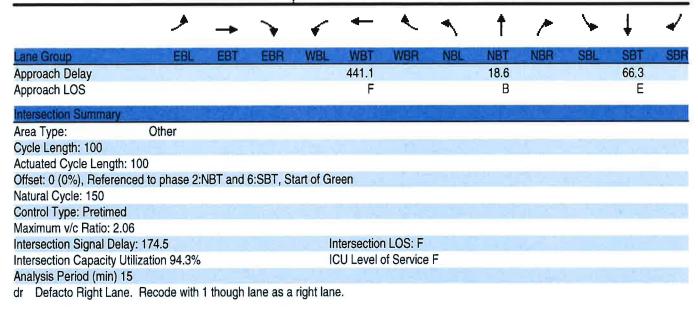

	-	•	+	*	1	†	↓
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	43	338	597	585	18	1261	1472
v/c Ratio	0.25	1.59	2.11	2.07	0.11	0.41	0.48
Control Delay	3.5	316.6	530.7	515.3	8.4	8.3	8.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	3.5	316.6	530.7	515.3	8.4	8.3	8.8
Queue Length 50th (ft)	0	~294	~547	~531	4	126	155
Queue Length 95th (ft)	1	#483	#797	#780	16	158	193
Internal Link Dist (ft)	135		493			413	470
Turn Bay Length (ft)				140	150		
Base Capacity (vph)	171	212	283	282	158	3062	3058
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.25	1.59	2.11	2.07	0.11	0.41	0.48


~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

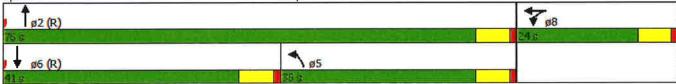
Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	-	•	•	-	•		†	1	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4 P			-			个个	77.77	1/1/	44	
Volume (vph)	841	486	246	0	0	0	0	1072	237	176	544	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.965							0.850			
Flt Protected	0.950	0.985								0.950		
Satd. Flow (prot)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.985								0.950		
Satd. Flow (perm)	1564	3130	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		38							242			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	914	528	267	0	0	0	0	1165	258	191	591	0
Shared Lane Traffic (%)	37%											
Lane Group Flow (vph)	576	1133	0	0	0	0	0	1165	258	191	591	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			24			24	_
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	
Protected Phases	4	4						2		1	6	100
Permitted Phases									2			
Minimum Split (s)	21.1	21.1						21.4	21.4	10.0	26.5	
Total Split (s)	31.0	31.0						33.0	33.0	33.0	66.0	
Total Split (%)	32.0%	32.0%						34.0%	34.0%	34.0%	68.0%	
Maximum Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Yellow Time (s)	4.0	4.0						4.0	4.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	
Total Lost Time (s)	5.0	5.0						5.0	5.0	6.0	6.0	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	26.0	26.0						28.0	28.0	27.0	60.0	
Actuated g/C Ratio	0.27	0.27						0.29	0.29	0.28	0.62	
v/c Ratio	1.37	1.31						1.17	0.27	0.21	0.28	
Control Delay	213.9	177.7						122.0	5.2	27.5	8.9	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	213.9	177.7						122.0	5.2	27.5	8.9	
LOS	F	F						F	A	C	A	



- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer.


 Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

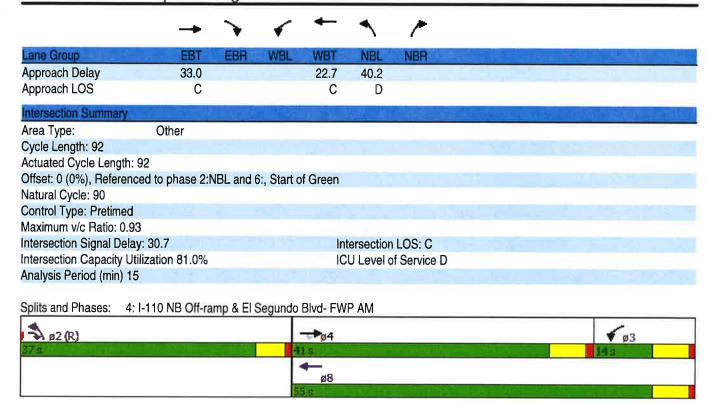
× 	۶	→	*	•	←	•	•	†	~	>	↓	√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	414		7	十十			11	
Volume (vph)	0	0	0	215	910	193	355	765	0	0	932	703
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.974						0.936	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	3204	0	1719	3438	0	0	4624	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	3204	0	1719	3438	0	0	4624	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					20						118	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	234	989	210	386	832	0	0	1013	764
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	211	1222	0	386	832	0	0	1777	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	3		12	3		12	-
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				24.0	24.0		35.0	76.0			41.0	
Total Split (%)				24.0%	24.0%		35.0%	76.0%			41.0%	- 0
Maximum Green (s)				18.0	18.0		29.0	70.0			35.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)		- 7		0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag				0.0	0.0		Lag	0.0			Lead	THE ST
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0		100	5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				18.0	18.0		29.0	70.0			35.0	
Actuated g/C Ratio				0.18	0.18		0.29	0.70			0.35	
v/c Ratio				0.75	2.06		0.23	0.70			1.22dr	
Control Delay				56.9	507.5		44.7	6.4			66.3	
Queue Delay				0.0	0.0		0.0	0.4			0.0	
The second secon				56.9	507.5		44.7	6.4			66.3	
Total Delay				50.9 E							00.5 E	
LOS				E	F		D	Α				

3: Wilminton Ave & SR-91 WB Off-ramp - FWOP PM

Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - FWOP PM

	✓	-	4	†	. ↓
Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	211	1222	386	832	1777
v/c Ratio	0.75	2.06	0.78	0.35	1.22dr
Control Delay	56.9	507.5	44.7	6.4	66.3
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	56.9	507.5	44.7	6.4	66.3
Queue Length 50th (ft)	170	~818	270	115	~522
Queue Length 95th (ft)	#313	#986	#437	149	#640
Internal Link Dist (ft)		500		324	339
Turn Bay Length (ft)					
Base Capacity (vph)	281	593	498	2406	1695
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.75	2.06	0.78	0.35	1.05

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.


Freeway Off-Ramp Analysis

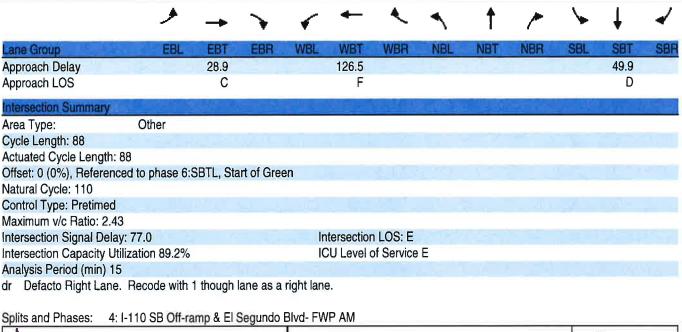
Future With Project Conditions

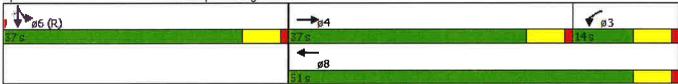
	-	-	•	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	44	79	T	†	AAA	, tolt
Volume (vph)	1122	263	128	1410	766	219
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95
Frt	3.00	0.850	7.00	3.01	0.967	3.00
Flt Protected			0.950		0.963	
Satd. Flow (prot)	3471	1553	1736	4988	3300	0
Flt Permitted		.000	0.950	1000	0.963	
Satd. Flow (perm)	3471	1553	1736	4988	3300	0
Right Turn on Red	U-TI	Yes	.,,,,,,	1000	5500	Yes
Satd. Flow (RTOR)		131			45	100
Link Speed (mph)	30	101		30	30	
Link Distance (ft)	568			630	393	
Travel Time (s)	12.9			14.3	8.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
				1533	833	
Adj. Flow (vph)	1220	286	139	1533	833	238
Shared Lane Traffic (%)	4000	000	400	4500	4074	0
Lane Group Flow (vph)	1220	286	139	1533	1071	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	.0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane		1.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	4.7.	9	15		15	9
Turn Type	NA	pm+ov	Prot	NA	Prot	
Protected Phases	4	2	3	8	2	
Permitted Phases		4				
Minimum Split (s)	22.0	22.0	10.0	22.0	22.0	
Total Split (s)	41.0	37.0	14.0	55.0	37.0	
Total Split (%)	44.6%	40.2%	15.2%	59.8%	40.2%	
Maximum Green (s)	35.0	32.0	8.0	49.0	32.0	
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	35.0	73.0	8.0	49.0	32.0	
Actuated g/C Ratio	0.38	0.79	0.09	0.53	0.35	
v/c Ratio	0.92	0.23	0.93	0.58	0.91	
Control Delay	40.3	1.7	100.6	15.6	40.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	40.3	1.7	100.6	15.6	40.2	
LOS	40.5 D	Α	100.0	13.0 B	40.2 D	
£00	U	^		D	U	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

4: I-110 NB Off-ramp & El Segundo Blvd- FWP AM

	-	-	•	•	1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1220	286	139	1533	1071
v/c Ratio	0.92	0.23	0.93	0.58	0.91
Control Delay	40.3	1.7	100.6	15.6	40.2
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	40.3	1.7	100.6	15.6	40.2
Queue Length 50th (ft)	421	19	98	250	351
Queue Length 95th (ft)	#587	38	#233	302	#503
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1320	1259	150	2656	1177
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.92	0.23	0.93	0.58	0.91
Intercaction Commons	tation is		-		

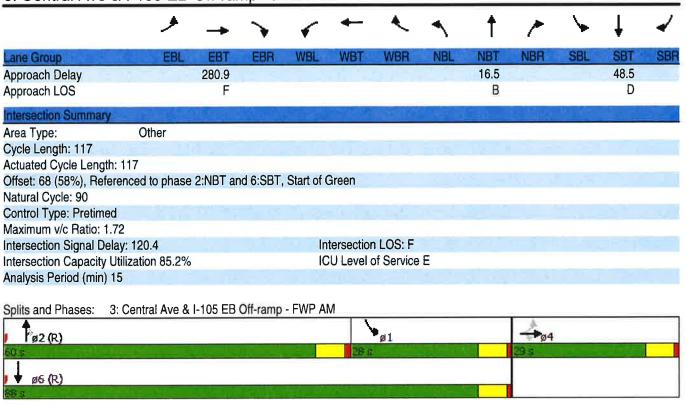

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Queue shown is maximum after two cycles.

Existing 7/7/2016 Baseline

	•	-	>	•	←	•	•	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተ _ጉ		7	ተተተ					Ť	4	7
Volume (vph)	0	836	591	351	1852	0	0	0	0	580	0	916
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.938									0.868	0.850
Flt Protected				0.950						0.950	0.994	
Satd. Flow (prot)	0	4678	0	1736	4988	0	0	0	0	1649	1434	1475
Flt Permitted				0.950						0.950	0.994	
Satd. Flow (perm)	0	4678	0	1736	4988	0	0	0	0	1649	1434	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		224									112	112
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	909	642	382	2013	0	0	0	0	630	0	996
Shared Lane Traffic (%)										10%		47%
Lane Group Flow (vph)	0	1551	0	382	2013	0	0	0	0	567	531	528
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA		Prot	NA					Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases												6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		37.0		14.0	51.0					37.0	37.0	37.0
Total Split (%)		42.0%		15.9%	58.0%					42.0%	42.0%	42.0%
Maximum Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		31.0		8.0	45.0					31.0	31.0	31.0
Actuated g/C Ratio		0.35		0.09	0.51					0.35	0.35	0.35
v/c Ratio		0.92dr		2.43	0.79					0.98	0.92	0.89
Control Delay		28.9		685.1	20.5					62.4	45.5	41.0
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		28.9		685.1	20.5					62.4	45.5	41.0
LOS		С		F	С					Е	D	D

4: I-110 SB Off-ramp & El Segundo Blvd- FWP AM


Synchro 8 Report Existing 7/7/2016 Baseline Page 2

	-		←	-	Ţ	4
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	1551	382	2013	567	531	528
v/c Ratio	0.92dr	2.43	0.79	0.98	0.92	0.89
Control Delay	28.9	685.1	20.5	62.4	45.5	41.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	28.9	685.1	20.5	62.4	45.5	41.0
Queue Length 50th (ft)	302	~425	381	386	301	281
Queue Length 95th (ft)	380	#631	458	#656	#572	#532
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	1793	157	2550	580	577	592
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.87	2.43	0.79	0.98	0.92	0.89

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

	۶	→	-	•	←	*	1	†	~	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	4	7					ተተተ	7	77	ተተ	
Volume (vph)	783	14	676	0	0	0	0	911	381	618	806	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	0.91	0.95	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.95	1.00
Frt		0.937	0.850						0.850			
Flt Protected	0.950	0.973								0.950		
Satd. Flow (prot)	1633	1501	1461	0	0	0	0	4940	1538	3335	3438	0
Flt Permitted	0.950	0.973								0.950		
Satd. Flow (perm)	1633	1501	1461	0	0	0	0	4940	1538	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		28	213						414			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	851	15	735	0	0	0	0	990	414	672	876	0
Shared Lane Traffic (%)	35%		31%	_								
Lane Group Flow (vph)	553	541	507	0	0	0	0	990	414	672	876	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	rugiic	Lon	12	riigiit	Loit	24	riigitt	Lon	24	rugiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1.00	9	15	1.00	9	15	1100	9	15	1100	9
Turn Type	Perm	NA	Perm	- 10			.0	NA	Perm	Prot	NA	J
Protected Phases	1 01111	4	1 01111					2		1	6	
Permitted Phases	4		4						2		•	
Minimum Split (s)	22.0	22.0	22.0					22.0	22.0	10.0	22.0	
Total Split (s)	29.0	29.0	29.0					60.0	60.0	28.0	88.0	
Total Split (%)	24.8%	24.8%	24.8%					51.3%	51.3%	23.9%	75.2%	
Maximum Green (s)	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
Yellow Time (s)	5.0	5.0	5.0					5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0	1.0					1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0	6.0					6.0	6.0	6.0	6.0	
Lead/Lag	0.0	0.0	0.0					Lead	Lead	Lag	0.0	
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0	5.0					5.0	5.0	163	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0					11.0	11.0		11.0	
Pedestrian Calls (#/hr)								0	0		- 0	
	23.0	23.0	23.0					54.0	54.0	22.0	82.0	
Act Effct Green (s)								0.46			0.70	
Actuated g/C Ratio	0.20	0.20	0.20						0.46	0.19		
v/c Ratio	1.72	1.71	1.11					0.43	0.44	1.07	0.36	
Control Delay	368.5	360.4	100.5					22.0	3.4	102.0	7.5	
Queue Delay	0.0	0.0	0.0					0.0	0.0	0.0	0.0	
Total Delay	368.5	360.4	100.5					22.0	3.4	102.0	7.5	
LOS	F	F	F					С	Α	F	Α	

3: Central Ave & I-105 EB Off-ramp - FWP AM

3: Central Ave & I-105 EB Off-ramp - FWP AM

	→	→	-	†	~	-	1
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	553	541	507	990	414	672	876
v/c Ratio	1.72	1.71	1.11	0.43	0.44	1.07	0.36
Control Delay	368.5	360.4	100.5	22.0	3.4	102.0	7.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	368.5	360.4	100.5	22.0	3.4	102.0	7.5
Queue Length 50th (ft)	~778	~775	~376	215	0	~347	149
Queue Length 95th (ft)	#1052	#1063	#647	260	65	#490	187
Internal Link Dist (ft)		575		502			478
Turn Bay Length (ft)							
Base Capacity (vph)	321	317	458	2280	932	627	2409
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.72	1.71	1.11	0.43	0.44	1.07	0.36

ntersection Summary

Existing 7/7/2016 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Ť Lane Group EBL EBR WBL WBT WBR NBL **NBT** NBR SBL SBT SBR Lane Configurations ኘ 4 7 ሻሻ 44 44 Volume (vph) 0 0 0 151 5 406 363 1320 0 0 1237 828 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Util. Factor 1.00 1.00 1.00 0.95 0.97 0.95 0.95 1.00 1.00 1.00 0.95 1.00 Frt 0.850 0.850 Flt Protected 0.950 0.955 0.950 Satd. Flow (prot) 0 0 0 1633 1538 3335 1642 3438 0 0 3438 1538 Flt Permitted 0.950 0.955 0.950 Satd. Flow (perm) 0 0 0 1633 1642 1538 3335 3438 0 3438 0 1538 Right Turn on Red Yes Yes Yes No Satd. Flow (RTOR) 86 Link Speed (mph) 30 30 30 30 Link Distance (ft) 655 745 582 558 Travel Time (s) 14.9 16.9 13.2 12.7 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 0 0 0 164 5 441 395 1435 0 0 1345 900 Shared Lane Traffic (%) 49% Lane Group Flow (vph) 0 395 0 0 84 85 441 1435 1345 900 0 0 Enter Blocked Intersection No No No No No No No No No No No No Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Median Width(ft) 12 12 24 24 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Turning Speed (mph) 9 15 15 9 15 9 15 9 Turn Type Split NA Prot Perm NA NA Perm **Protected Phases** 8 8 5 2 6 Permitted Phases 8 6 Minimum Split (s) 21.1 21.1 21.1 10.0 22.0 22.0 22.0 Total Split (s) 27.0 27.0 27.0 18.0 87.0 69.0 69.0 Total Split (%) 23.7% 23.7% 23.7% 15.8% 76.3% 60.5% 60.5% Maximum Green (s) 22.0 22.0 22.0 12.0 81.0 63.0 63.0 Yellow Time (s) 4.0 4.0 4.0 5.0 5.0 5.0 5.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 6.0 6.0 6.0 6.0 Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 11.0 Pedestrian Calls (#/hr) 0 0 0 0 0 0 Act Effct Green (s) 22.0 22.0 22.0 12.0 81.0 63.0 63.0 Actuated g/C Ratio 0.19 0.19 0.19 0.11 0.71 0.55 0.55 v/c Ratio 0.27 0.27 0.59 1.20 1.13 0.71 1.06 Control Delay 41.8 41.9 148.2 132.9 9.4 21.3 74.5

0.0

41.8

D

0.0

41.9

D

0.0

F

148.2

0.0

F

132.9

0.0

9.4

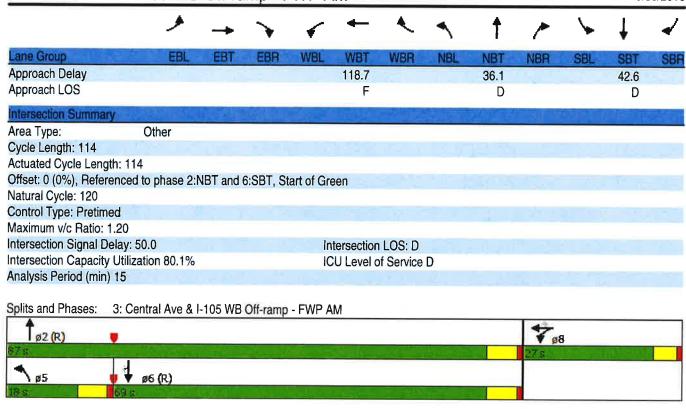
Α

Queue Delay

Total Delay

LOS

0.0


21.3

C

0.0

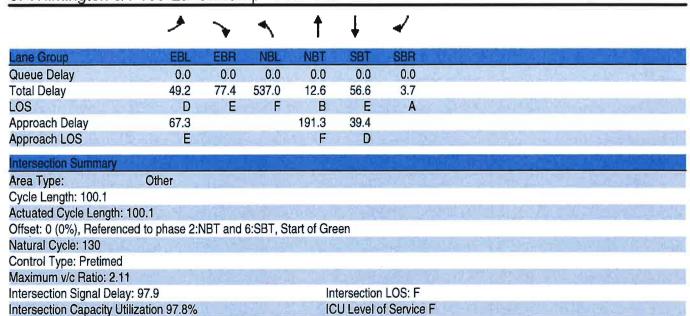
74.5

E

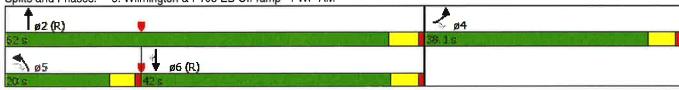
	✓	-	•	•	†	↓	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	84	85	441	395	1435	1345	900
v/c Ratio	0.27	0.27	1.20	1.13	0.59	0.71	1.06
Control Delay	41.8	41.9	148.2	132.9	9.4	21.3	74.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	41.8	41.9	148.2	132.9	9.4	21.3	74.5
Queue Length 50th (ft)	66	67	~410	~207	292	436	~871
Queue Length 95th (ft)	126	127	#654	#326	357	535	#1163
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	315	316	366	351	2442	1899	849
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.27	0.27	1.20	1.13	0.59	0.71	1.06

Existing 7/7/2016 Baseline

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	<i>•</i>	>		†	ļ	4
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	*	7	ሻ	^	44	77
Volume (vph)	453	808	509	984	1160	558
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1900	1900	0
	1	1	1			2
Storage Lanes			25	NAME OF TAXABLE PARTY.		_
Taper Length (ft)	25	4.00		0.01	0.05	0.00
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
Frt	0.050	0.850	0.050	-27		0.850
Flt Protected	0.950	1800	0.950	10.10	0.100	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		10				573
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070		177	942	903	
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	492	878	553	1070	1261	607
Shared Lane Traffic (%)	702	070		1070	1201	007
Lane Group Flow (vph)	492	878	553	1070	1261	607
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12		N MI	12	12	NIE W
Link Offset(ft)	0			0	0	-
Crosswalk Width(ft)	16	10 15		16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases	min book	45	- 1			6
Minimum Split (s)	38.1		8.7	21.4	21.1	21.1
Total Split (s)	38.1		20.0	62.0	42.0	42.0
Total Split (%)	38.1%		20.0%	61.9%	42.0%	42.0%
Maximum Green (s)	33.0	17 19	15.3	56.6	36.9	36.9
Yellow Time (s)	4.1	-	3.7	4.4	4.1	4.1
						and the same of th
All-Red Time (s)	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1		4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?		LILA.			Occy	THE STATE OF
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	33.0	53.0	15.3	56.6	36.9	36.9
Actuated g/C Ratio	0.33	0.53	0.15	0.57	0.37	0.37
v/c Ratio	0.87	1.07	2.11	0.38	1.00	0.45
Control Delay	49.2	77.4	537.0	12.6	56.6	3.7
Control Delay	43.2	11.4	0.7.0	12.0	50.0	3.7


Existing 7/6/2016 Baseline

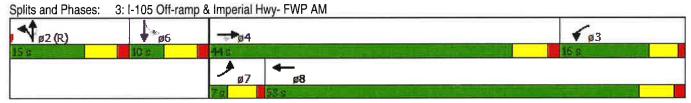
Analysis Period (min) 15

3: Wilmington & I-105 EB Off-ramp - FWP AM

Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - FWP AM

	▶	•	•	†	1	1
Pure Armes	COL	EDE	N/OF	NIEST.	ODT	ODD
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	492	878	553	1070	1261	607
v/c Ratio	0.87	1.07	2.11	0.38	1.00	0.45
Control Delay	49.2	77.4	537.0	12.6	56.6	3.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	49.2	77.4	537.0	12.6	56.6	3.7
Queue Length 50th (ft)	351	~749	~676	156	500	9
Queue Length 95th (ft)	#572	#1035	#922	192	#688	56
Internal Link Dist (ft)	990	100		862	823	
Turn Bay Length (ft)			120			
Base Capacity (vph)	566	819	262	2793	1267	1359
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.87	1.07	2.11	0.38	1.00	0.45

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.


	۶	→	•	•	←	*	•	†	/	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	111 1≯	7	44	个个		7	सी	7		4	
Volume (vph)	62	1212	389	812	1641	18	885	21	162	8	37	74
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.988	0.850		0.998				0.850		0.916	
Flt Protected	0.950			0.950			0.950	0.954			0.997	
Satd. Flow (prot)	1719	5793	1246	3335	4930	0	1633	1640	1538	0	1653	0
Flt Permitted	0.950			0.950			0.950	0.954			0.914	
Satd. Flow (perm)	1719	5793	1246	3335	4930	0	1633	1640	1538	- 0	1515	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		27	309		3				245		58	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	67	1317	423	883	1784	20	962	23	176	9	40	80
Shared Lane Traffic (%)		1017	27%	000	1701		49%		1.0			
Lane Group Flow (vph)	67	1431	309	883	1804	0	491	494	176	0	129	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Lon	24	rugiit	Lon	24	Tilgini	LOIL	12	rugin	Lon	12	rugite
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	15	1.00	9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4	/ Cilli	3	8		2	2	Cilli	1 Cilii	6	
Permitted Phases			4	-	-		_		2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
	7.0	44.0	44.0	16.0	53.0		15.0	15.0	15.0	10.0	10.0	
Total Split (s)	8.2%	51.8%	51.8%	18.8%	62.4%		17.6%	17.6%	17.6%	11.8%	11.8%	
Total Split (%)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4	4.4	4.4	
Maximum Green (s)				3.7			4.1	4.1	4.1	4.1	4.1	
Yellow Time (s)	3.7	4.4	4.4		4.4 1.5		1.5	1.5	1.5	1.5	1.5	
All-Red Time (s)	1.0	1.5	1.5	1.0			0.0	0.0	0.0	1.5	0.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0							
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lead	Lead	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes			F 0	F 0	F 0	F 0	
Walk Time (s)		5.0	5.0		5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0	0	410	0		0	0	0	0	0	
Act Effct Green (s)	2.3	38.1	38.1	11.3	47.1		9.4	9.4	9.4		4.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.13	0.55		0.11	0.11	0.11		0.05	
v/c Ratio	1.46	0.55	0.42	1.99	0.66		2.73	2.73	0.45		0.97	
Control Delay	327.4	17.8	3.8	479.2	14.8		812.0	812.6	5.5		97.8	

Intersection Capacity Utilization 88.1%

Analysis Period (min) 15

3: I-105 Off-ramp & Imperial Hwy- FWP AM

	۶	→	•	•	4-	4	1	†	<i>></i>	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay	327.4	17.8	3.8	479.2	14.8		812.0	812.6	5.5		97.8	
LOS	F	В	Α	F	В		F	F	Α		F	
Approach Delay		26.9			167.4			690.0			97.8	
Approach LOS		С			F			F			F	
Intersection Summary		100		2014	No.		-1907	- 1	A-2- A		P	
Area Type:	Other											
Cycle Length: 85												
Actuated Cycle Length: 8	35											
Offset: 0 (0%), Reference	ed to phase 2:I	NBTL, Sta	art of Gre	en								
Natural Cycle: 150												
Control Type: Pretimed												
Maximum v/c Ratio: 2.73												
Intersection Signal Delay	: 226.8			In	tersection	LOS: F						

ICU Level of Service E

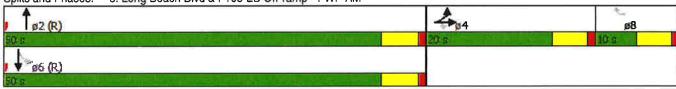
	۶	-	*	•	←	4	†	1	↓	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	No.
Lane Group Flow (vph)	67	1431	309	883	1804	491	494	176	129	
/c Ratio	1.46	0.55	0.42	1.99	0.66	2.73	2.73	0.45	0.97	
ontrol Delay	327.4	17.8	3.8	479.2	14.8	812.0	812.6	5.5	97.8	
lueue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
otal Delay	327.4	17.8	3.8	479.2	14.8	812.0	812.6	5.5	97.8	
lueue Length 50th (ft)	~59	195	0	~460	276	~569	~573	0	46	
ueue Length 95th (ft)	#158	238	65	#598	336	#803	#808	24	#179	
ternal Link Dist (ft)		1052			973		505		410	
ırn Bay Length (ft)	100			340						
ase Capacity (vph)	46	2611	728	443	2733	180	181	387	133	
arvation Cap Reductn	0	0	0	0	0	0	0	0	0	
pillback Cap Reductn	0	0	0	0	0	0	0	0	0	
orage Cap Reductn	0	0	0	0	0	0	0	0	0	
educed v/c Ratio	1.46	0.55	0.42	1.99	0.66	2.73	2.73	0.45	0.97	

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Existing 7/6/2016 Baseline

Lanes, Volumes, Timings 3: Long Beach Blvd & I-105 EB Off-ramp - FWP AM

	۶	→	*	•	•	4	1	†	~	1	 	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	F	र्स	7			7		ተተኈ		7	十 个	-
Volume (vph)	670	3	378	0	0	12	0	990	15	33	658	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.998				-1
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4930	0	1719	3438	0
Flt Permitted	0.950	0.953								0.223		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4930	0	404	3438	0
Right Turn on Red			Yes			Yes	_		Yes		0.00	Yes
Satd. Flow (RTOR)			289			102		4				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	728	3	411	0	0	13	0	1076	16	36	715	0.02
Shared Lane Traffic (%)	50%	25 5		SUD!				10.0		00	710	Barri Mari
Lane Group Flow (vph)	364	367	411	0	0	13	0	1092	0	36	715	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	- ngin	20.0	12	rugin	Loit	12	riigiit
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					,,,			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15	,,,,,	9	15	1.00	9	15	1.00	9
Turn Type	Split	NA	Perm			Perm		NA		Perm	NA	
Protected Phases	4	4						2		1 01111	6	
Permitted Phases			4			8				6		
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	20.0	20.0	20.0			10.0		50.0		50.0	50.0	
Total Split (%)	25.0%	25.0%	25.0%			12.5%		62.5%		62.5%	62.5%	
Maximum Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	44.6	
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag	0.1	0.1	0.1			0.1		5.4		J. 4	J. 4	
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0				
Pedestrian Calls (#/hr)	0	0	0			0		0		11.0	11.0	
Act Effct Green (s)	14.9	14.9	14.9			4.9		44.6		44.6	0 44.6	
Actuated g/C Ratio	0.19	0.19	0.19			0.06		0.56				
v/c Ratio	1.20	1.20	0.19			0.06				0.56	0.56	
Control Delay	148.4	150.4	22.4					0.40		0.16	0.37	
Control Delay	140.4	100.4	22.4			0.7		10.6		10.8	10.6	


3: Long Beach Blvd & I-105 EB Off-ramp - FWP AM

۶	→	*	•	4-	4	1	1	~	-	 	4
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
0.0	0.0	0.0			0.0		0.0		0.0	0.0	
148.4	150.4	22.4			0.7		10.6		10.8	10.6	
F	F	C			Α		В		В	В	
	103.7						10.6			10.6	
	F						В			В	41,23
						S. 11		N. C		CAN'T	
Other		170		3				M. P. M.			
d to phase 2:	NBT and	6:SBTL, S	Start of G	reen							
	0.0 148.4 F	0.0 0.0 148.4 150.4 F F 103.7 F	0.0 0.0 0.0 148.4 150.4 22.4 F F C 103.7 F	0.0 0.0 0.0 148.4 150.4 22.4 F F C 103.7 F	0.0 0.0 0.0 148.4 150.4 22.4 F F C 103.7 F	0.0 0.0 0.0 0.0 148.4 150.4 22.4 0.7 F F C A 103.7 F	0.0 0.0 0.0 0.0 148.4 150.4 22.4 0.7 F F C A 103.7 F	0.0 0.0 0.0 0.0 0.0 148.4 150.4 22.4 0.7 10.6 F F C A B 103.7 10.6 F B	0.0 0.0 0.0 0.0 0.0 148.4 150.4 22.4 0.7 10.6 F F C A B 103.7 10.6 F B	0.0 0.0 0.0 0.0 0.0 0.0 0.0 148.4 150.4 22.4 0.7 10.6 10.8 F F C A B B 103.7 10.6 F B	0.0 0

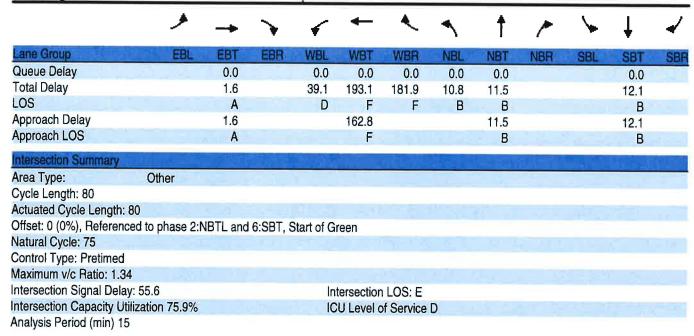
Intersection Capacity Utilization 54.7% Analysis Period (min) 15

Intersection Signal Delay: 46.0

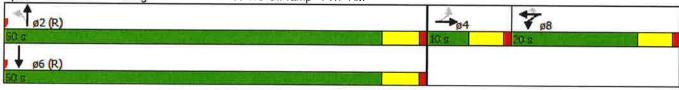
Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - FWP AM

Intersection LOS: D

ICU Level of Service A


	•	→	*	*	†	-	ļ
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	364	367	411	13	1092	36	715
v/c Ratio	1.20	1.20	0.79	0.07	0.40	0.16	0.37
Control Delay	148.4	150.4	22.4	0.7	10.6	10.8	10.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	148.4	150.4	22.4	0.7	10.6	10.8	10.6
Queue Length 50th (ft)	~283	~286	65	0	125	10	116
Queue Length 95th (ft)	#488	#490	#239	0	159	29	159
Internal Link Dist (ft)		737			518		475
Turn Bay Length (ft)			110			180	
Base Capacity (vph)	304	305	521	191	2750	225	1916
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	1.20	1.20	0.79	0.07	0.40	0.16	0.37

Synchro 8 Report Existing 7/6/2016 Baseline Page 3


Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

	۶	-	•	•	•	*	1	†	<i>></i>	-	ļ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		ሻ	Þ	7	7	ተተተ			ተተጉ	
Volume (vph)	14	0	6	180	30	869	12	1225	0	0	1329	48
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		- 4
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.957			0.860	0.850					0.995	14.1
Flt Protected		0.967		0.950			0.950					
Satd. Flow (prot)	0	1675	0	1719	1478	1461	1719	4940	0	0	4915	0
Flt Permitted		0.686		0.950			0.126					
Satd. Flow (perm)	0	1188	0	1719	1478	1461	228	4940	0	0	4915	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102			118	118					11	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	15	0	7	196	33	945	13	1332	0	0	1445	52
Shared Lane Traffic (%)						49%						
Lane Group Flow (vph)	0	22	0	196	496	482	13	1332	0	0	1497	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12	3		12	, ng.it
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Perm	NA		Split	NA	Perm	Perm	NA			NA	15-31
Protected Phases		4		8	8			2			6	
Permitted Phases	4					8	2				1571	
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
Total Split (s)	10.0	10.0		20.0	20.0	20.0	50.0	50.0			50.0	
Total Split (%)	12.5%	12.5%		25.0%	25.0%	25.0%	62.5%	62.5%			62.5%	
Maximum Green (s)	4.9	4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Yellow Time (s)	4.1	4.1		4.1	4.1	4.1	4.4	4.4			4.4	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0	1.0			1.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0			0.0	
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag											0.1	
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)		4.9		14.9	14.9	14.9	44.6	44.6			44.6	
Actuated g/C Ratio		0.06		0.19	0.19	0.19	0.56	0.56			0.56	
v/c Ratio		0.13		0.61	1.34	1.31	0.10	0.48			0.55	
Control Delay		1.6		39.1	193.1	181.9	10.8	11.5			12.1	

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp - FWP AM

	-	•	←	•		†	↓
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT
Lane Group Flow (vph)	22	196	496	482	13	1332	1497
v/c Ratio	0.13	0.61	1.34	1.31	0.10	0.48	0.55
Control Delay	1.6	39.1	193.1	181.9	10.8	11.5	12.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	1.6	39.1	193.1	181.9	10.8	11.5	12.1
Queue Length 50th (ft)	0	109	~351	~333	3	163	191
Queue Length 95th (ft)	0	190	#586	#566	15	205	238
Internal Link Dist (ft)	135		493			413	470
Turn Bay Length (ft)				140	150		
Base Capacity (vph)	168	320	371	368	127	2754	2744
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.13	0.61	1.34	1.31	0.10	0.48	0.55

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Total Delay

LOS

219.8

F

186.5

F

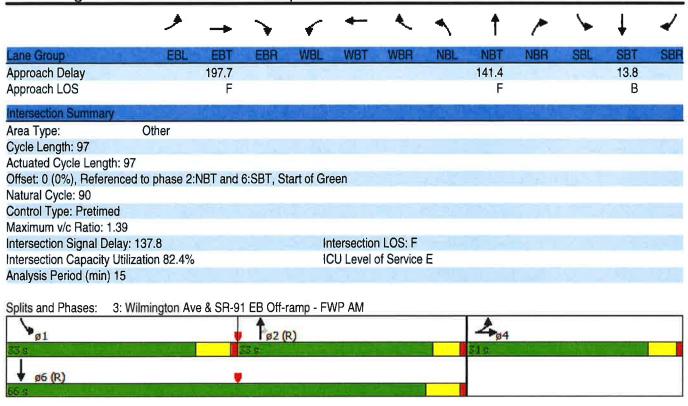
t -*>* EBL **EBT EBR** WBL WBT WBR NBL **NBT** NBR SBL SBT SBR Lane Group Lane Configurations ሻ 47 44 77 FF 朴朴 863 0 Volume (vph) 486 246 0 0 0 1176 237 199 613 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Util. Factor 0.91 0.91 0.95 1.00 1.00 1.00 1.00 0.95 0.88 0.97 0.95 1.00 Frt 0.965 0.850 Flt Protected 0.950 0.950 0.985 0 0 0 0 3438 2707 3335 Satd. Flow (prot) 1564 0 3438 0 3130 0.950 FIt Permitted 0.950 0.985 Satd. Flow (perm) 1564 3130 0 0 0 0 0 3438 2707 3335 3438 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 37 220 Link Speed (mph) 30 30 30 30 Link Distance (ft) 590 580 404 419 Travel Time (s) 13.4 13.2 9.2 9.5 0.92 0.92 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 938 528 Adj. Flow (vph) 267 0 0 0 0 1278 258 216 666 0 Shared Lane Traffic (%) 38% Lane Group Flow (vph) 582 1151 0 0 0 0 0 1278 258 216 666 0 Enter Blocked Intersection No No No No No No No No No No No No Lane Alignment Left Left Right Left Left Left Right Left Right Left Left Right Median Width(ft) 24 12 12 24 Link Offset(ft) 0 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00 1.00 1.00 1.00 1.00 1.00 Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 9 9 Turning Speed (mph) 15 15 15 9 15 9 Turn Type Split NA NA Perm Prot NA **Protected Phases** 4 2 6 4 1 2 Permitted Phases 21.1 21.1 21.4 21.4 10.0 26.5 Minimum Split (s) Total Split (s) 31.0 31.0 33.0 33.0 33.0 66.0 68.0% Total Split (%) 32.0% 32.0% 34.0% 34.0% 34.0% Maximum Green (s) 26.0 26.0 28.0 28.0 27.0 60.0 Yellow Time (s) 4.0 4.0 4.0 5.0 5.0 4.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 5.0 5.0 5.0 6.0 5.0 6.0 Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 5.0 5.0 5.0 5.0 5.0 Flash Dont Walk (s) 11.0 11.0 11.0 11.0 11.0 0 0 0 0 0 Pedestrian Calls (#/hr) Act Effct Green (s) 26.0 26.0 28.0 28.0 27.0 60.0 Actuated g/C Ratio 0.29 0.27 0.27 0.29 0.28 0.62 v/c Ratio 1.39 1.33 1.29 0.28 0.23 0.31 Control Delay 219.8 186.5 168.6 6.5 27.8 9.2 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0

Existing 7/7/2016 Baseline Synchro 8 Report
Page 1

168.6

F

6.5


Α

27.8

C

9.2

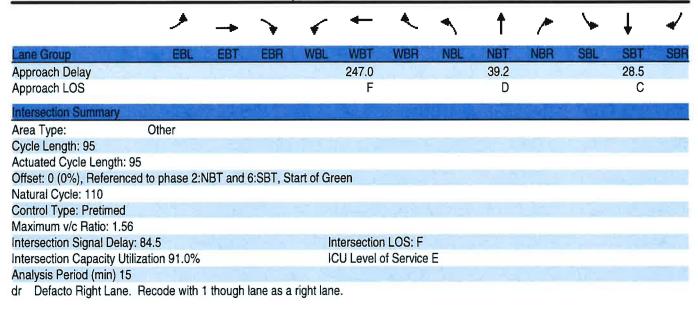
Α

Synchro 8 Report Existing 7/7/2016 Baseline

	•	-	†	/	-	↓	
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT	E V
Lane Group Flow (vph)	582	1151	1278	258	216	666	
v/c Ratio	1.39	1.33	1.29	0.28	0.23	0.31	
Control Delay	219.8	186.5	168.6	6.5	27.8	9.2	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	219.8	186.5	168.6	6.5	27.8	9.2	
Queue Length 50th (ft)	~635	~604	~637	. 11	63	112	
Queue Length 95th (ft)	#907	#770	#796	49	100	149	
Internal Link Dist (ft)		510	324			339	
Turn Bay Length (ft)							
Base Capacity (vph)	419	866	992	937	928	2126	
Starvation Cap Reductn	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	
Reduced v/c Ratio	1,39	1.33	1.29	0.28	0.23	0.31	

Queue shown is maximum after two cycles.

Synchro 8 Report Existing 7/7/2016 Baseline


Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

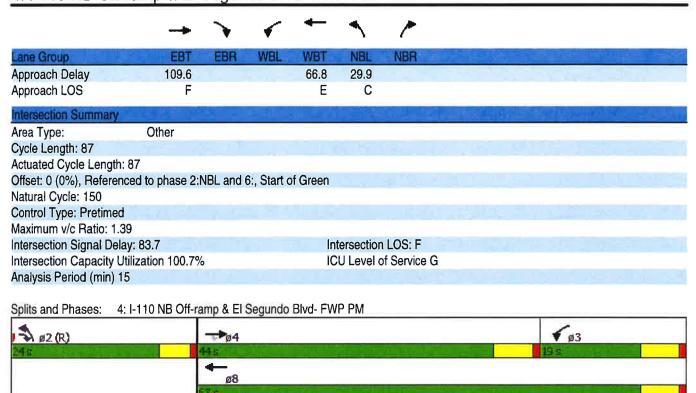
^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	*	•	—	•	4	†	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				Ť	4 1₽		M	个个			ተተጉ	
Volume (vph)	0	- 0	0	191	98	675	585	1483	0	0	592	538
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.872						0.929	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	2869	0	1719	3438	0	0	4589	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	2869	0	1719	3438	0	0	4589	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					48						232	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	208	107	734	636	1612	0	0	643	585
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	187	862	0	636	1612	0	0	1228	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12	3		12	9		12	-
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		V s T										
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				23.0	23.0		37.0	72.0			35.0	
Total Split (%)				24.2%	24.2%		38.9%	75.8%			36.8%	
Maximum Green (s)				17.0	17.0		31.0	66.0			29.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag							Lag				Lead	11
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0			5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				17.0	17.0		31.0	66.0			29.0	
Actuated g/C Ratio				0.18	0.18		0.33	0.69			0.31	
v/c Ratio				0.67	2.45dr		1.14	0.68			0.92dr	
Control Delay				49.6	289.9		113.0	10.1			28.5	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
Total Delay				49.6	289.9		113.0	10.1			28.5	
LOS				D	F		F	В			C	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

3: Wilminton Ave & SR-91 WB Off-ramp - FWP AM

Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - FWP AM



Lane Group	WBL	WBT	NBL	NBT	SBT
Lane Group Flow (vph)	187	862	636	1612	1228
v/c Ratio	0.67	2.45dr	1.14	0.68	0.92dr
Control Delay	49.6	289.9	113.0	10.1	28.5
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	49.6	289.9	113.0	10.1	28.5
Queue Length 50th (ft)	139	~476	~540	307	243
Queue Length 95th (ft)	#254	#630	#791	390	310
Internal Link Dist (ft)		500		324	339
Turn Bay Length (ft)					
Base Capacity (vph)	279	552	560	2388	1562
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.67	1.56	1.14	0.68	0.79

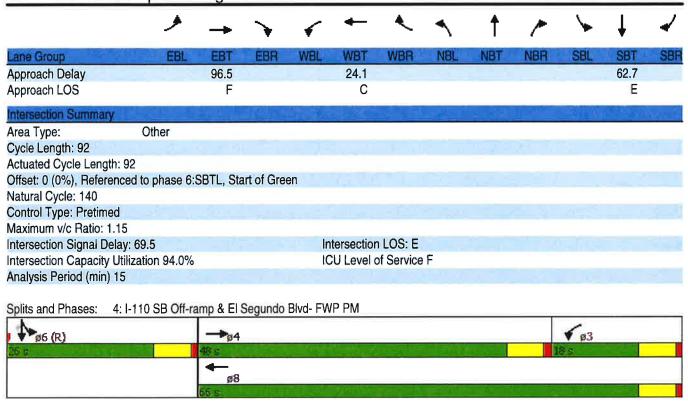
- ~ Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.

	-	-	•	←	1	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	十 个	7	T	ተተተ	AN	TO SHOE STATE OF THE SHOE STAT
Volume (vph)	1728	484	332	906	347	331
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.95	1.00	1.00	0.91	0.97	0.95
Frt	0.50	0.850	1.00	0.31	0.927	0.30
Flt Protected		0.030	0.950		0.975	
	3471	1553	1736	4988	3203	0
Satd. Flow (prot) Flt Permitted	3471	1333	0.950	4900	0.975	U
	2471	1553	1736	4988	3203	0
Satd. Flow (perm)	3471		1730	4900	3203	
Right Turn on Red		Yes			054	Yes
Satd. Flow (RTOR)	00	42		00	254	
Link Speed (mph)	30			30	30	
Link Distance (ft)	568			630	393	
Travel Time (s)	12.9			14.3	8.9	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	1878	526	361	985	377	360
Shared Lane Traffic (%)						
Lane Group Flow (vph)	1878	526	361	985	737	0
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12			12	24	
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane	- 10			-	ELECTION OF	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	9	1.00	1.00	1.00	9
	NA		Prot	NA	Prot	9
Turn Type		pm+ov				
Protected Phases	4	2	3	8	2	
Permitted Phases	00.0	4	400	00.0	04.1	
Minimum Split (s)	22.0	21.1	10.0	22.0	21.1	
Total Split (s)	44.0	24.0	19.0	63.0	24.0	
Total Split (%)	50.6%	27.6%	21.8%	72.4%	27.6%	
Maximum Green (s)	38.0	19.0	13.0	57.0	19.0	
Yellow Time (s)	5.0	4.0	5.0	5.0	4.0	
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	5.0	6.0	6.0	5.0	
Lead/Lag	Lead		Lag			
Lead-Lag Optimize?	Yes		Yes			
Walk Time (s)	5.0	5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0	
Act Effct Green (s)	38.0	63.0	13.0	57.0	19.0	
		0.72	0.15	0.66	0.22	
Actuated g/C Ratio	0.44					
v/c Ratio	1.24	0.46	1.39	0.30	0.82	
Control Delay	138.6	6.1	230.7	6.7	29.9	
Queue Delay	0.0	0.0	0.0	0.0	0.0	
Total Delay	138.6	6.1	230.7	6.7	29.9	
LOS	F	Α	F	Α	С	

4: I-110 NB Off-ramp & EI Segundo Blvd- FWP PM

	-	*	1		1
Lane Group	EBT	EBR	WBL	WBT	NBL
Lane Group Flow (vph)	1878	526	361	985	737
v/c Ratio	1.24	0.46	1.39	0.30	0.82
Control Delay	138.6	6.1	230.7	6.7	29.9
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	138.6	6.1	230.7	6.7	29.9
Queue Length 50th (ft)	~815	107	~320	90	158
Queue Length 95th (ft)	#980	172	#521	114	#263
Internal Link Dist (ft)	488			550	313
Turn Bay Length (ft)					
Base Capacity (vph)	1516	1136	259	3268	898
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	1.24	0.46	1.39	0.30	0.82

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

4: I-110 SB Off-ramp & El Segundo Blvd- FWP PM

	۶	-	*	•	←	*	4	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		ተተኈ		T	ተተተ					7	4	7
Volume (vph)	0	1719	662	212	1055	0	0	0	0	524	0	463
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	0.91	0.91	1.00	0.91	1.00	1.00	1.00	1.00	0.95	0.91	0.95
Frt		0.958									0.933	0.850
Flt Protected				0.950						0.950	0.973	
Satd. Flow (prot)	0	4778	0	1736	4988	0	0	0	0	1649	1509	1475
Flt Permitted				0.950						0.950	0.973	
Satd. Flow (perm)	0	4778	0	1736	4988	0	0	0	0	1649	1509	1475
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		139									107	107
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		802			783			340			320	
Travel Time (s)		18.2			17.8			7.7			7.3	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	1868	720	230	1147	0	0	0	0	570	0	503
Shared Lane Traffic (%)		,								35%		32%
Lane Group Flow (vph)	0	2588	0	230	1147	0	0	0	0	370	361	342
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	3		12	3		12			12	0
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type		NA	-	Prot	NA					Split	NA	Perm
Protected Phases		4		3	8					6	6	
Permitted Phases				_								6
Minimum Split (s)		22.0		10.0	22.0					22.0	22.0	22.0
Total Split (s)		48.0		18.0	66.0					26.0	26.0	26.0
Total Split (%)		52.2%		19.6%	71.7%		-			28.3%	28.3%	28.3%
Maximum Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Yellow Time (s)		5.0		5.0	5.0					5.0	5.0	5.0
All-Red Time (s)		1.0		1.0	1.0					1.0	1.0	1.0
Lost Time Adjust (s)		0.0		0.0	0.0					0.0	0.0	0.0
Total Lost Time (s)		6.0		6.0	6.0					6.0	6.0	6.0
Lead/Lag		Lead		Lag								
Lead-Lag Optimize?		Yes		Yes								
Walk Time (s)		5.0			5.0					5.0	5.0	5.0
Flash Dont Walk (s)		11.0			11.0					11.0	11.0	11.0
Pedestrian Calls (#/hr)		0			0					0	0	0
Act Effct Green (s)		42.0		12.0	60.0					20.0	20.0	20.0
Actuated g/C Ratio		0.46		0.13	0.65					0.22	0.22	0.22
v/c Ratio		1.15		1.02	0.35					1.03	0.88	0.85
Control Delay		96.5		106.5	7.6					93.8	48.4	44.2
Queue Delay		0.0		0.0	0.0					0.0	0.0	0.0
Total Delay		96.5		106.5	7.6					93.8	48.4	44.2
LOS		50.5 F		F	Α.					50.0 F	D	D

4: I-110 SB Off-ramp & El Segundo Blvd- FWP PM

	-		-	1	Ţ	4
Lane Group	EBT	WBL	WBT	SBL	SBT	SBR
Lane Group Flow (vph)	2588	230	1147	370	361	342
v/c Ratio	1.15	1.02	0.35	1.03	0.88	0.85
Control Delay	96.5	106.5	7.6	93.8	48.4	44.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	96.5	106.5	7.6	93.8	48.4	44.2
Queue Length 50th (ft)	~767	~167	118	~294	194	169
Queue Length 95th (ft)	#883	#343	146	#512	#408	#362
Internal Link Dist (ft)	722		703		240	
Turn Bay Length (ft)						
Base Capacity (vph)	2256	226	3253	358	411	404
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.15	1.02	0.35	1.03	0.88	0.85
Vancous Control of the Control of th						

Queue shown is maximum after two cycles.

[~] Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Flash Dont Walk (s)

Act Effct Green (s)

Actuated g/C Ratio

v/c Ratio

Control Delay

Queue Delay

Total Delay

LOS

Pedestrian Calls (#/hr)

11.0

31.0

0.26

1.16

134.6

134.6

0.0

F

0

11.0

31.0

0.26

1.20

148.8

148.8

0.0

F

0

11.0

31.0

0.26

0.93

59.3

0.0

59.3

Ę

0

9/30/2016 3: Central Ave & I-105 EB Off-ramp - FWP PM t **** ٠ / EBL **EBT** EBR WBL WBR NBL **NBT NBR** SBL SBT SBR Lane Group WBT Lane Configurations ٦ ተተተ 7 ሻሻ 44 4 560 485 Volume (vph) 262 0 0 0 0 1098 471 505 984 0 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Lane Util. Factor 0.95 0.91 0.95 1.00 1.00 1.00 1.00 0.91 1.00 0.97 0.95 1.00 Frt 0.973 0.850 0.850 0.950 0.950 Flt Protected 0.988 3335 Satd. Flow (prot) 1633 1461 0 0 0 0 4940 1538 3438 0 1583 Flt Permitted 0.950 0.988 0.950 Satd. Flow (perm) 1633 1583 1461 0 0 0 0 4940 1538 3335 3438 0 Right Turn on Red Yes Yes Yes Yes Satd. Flow (RTOR) 9 124 157 Link Speed (mph) 30 30 30 30 Link Distance (ft) 655 745 582 558 Travel Time (s) 14.9 16.9 13.2 12.7 0.92 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Adj. Flow (vph) 609 285 527 0 0 0 0 1193 512 549 1070 0 Shared Lane Traffic (%) 20% 17% Lane Group Flow (vph) 487 497 437 0 0 0 0 1193 512 549 1070 0 Enter Blocked Intersection No No No No No No No No No No No No Lane Alignment Left Left Right Left Left Right Left Left Right Left Left Right Median Width(ft) 24 24 12 12 0 Link Offset(ft) 0 0 0 Crosswalk Width(ft) 16 16 16 16 Two way Left Turn Lane 1.00 1.00 Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 9 15 9 15 15 9 15 Turning Speed (mph) 9 Turn Type Perm NA Perm NA Perm Prot NA **Protected Phases** 2 6 4 1 Permitted Phases 4 4 2 22.0 22.0 22.0 22.0 22.0 9.0 22.0 Minimum Split (s) 37.0 37.0 54.0 54.0 29.0 83.0 Total Split (s) 37.0 Total Split (%) 30.8% 30.8% 30.8% 45.0% 45.0% 24.2% 69.2% Maximum Green (s) 31.0 31.0 48.0 48.0 24.0 78.0 31.0 Yellow Time (s) 5.0 5.0 5.0 5.0 4.0 4.0 5.0 All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Lost Time (s) 6.0 6.0 6.0 6.0 6.0 5.0 5.0 Lead/Lag Lead Lead Lag Lead-Lag Optimize? Yes Yes Yes Walk Time (s) 5.0 5.0 5.0 5.0 5.0 5.0

Existing 7/7/2016 Baseline Synchro 8 Report Page 1

11.0

48.0

0.40

0.60

30.1

30.1

0.0

C

0

11.0

48.0

0.40

0.72

27.3

0.0

27.3

C

0

24.0

0.20

0.82

57.4

0.0

57.4

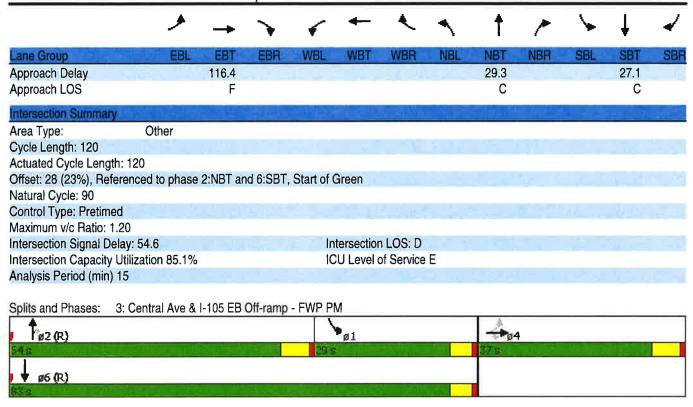
Ε

11.0

78.0

0.65

0.48


11.5

0.0

11.5

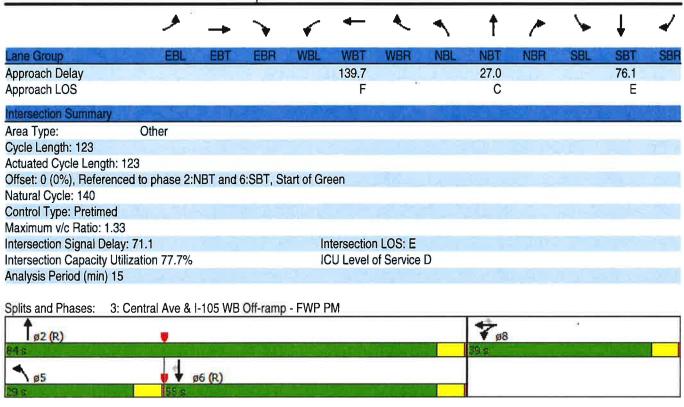
В

0

Synchro 8 Report Existing 7/7/2016 Baseline

3: Central Ave & I-105 EB Off-ramp - FWP PM

	→	-	•	†	1	-	. ↓	
Lane Group	EBL	EBT	EBR	NBT	NBR	SBL	SBT	100
Lane Group Flow (vph)	487	497	437	1193	512	549	1070	
v/c Ratio	1.16	1.20	0.93	0.60	0.72	0.82	0.48	
Control Delay	134.6	148.8	59.3	30.1	27.3	57.4	11.5	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	134.6	148.8	59.3	30.1	27.3	57.4	11.5	
Queue Length 50th (ft)	~562	~609	315	316	281	254	245	
Queue Length 95th (ft)	#826	#893	#574	375	448	#349	302	
Internal Link Dist (ft)		575		502			478	
Turn Bay Length (ft)								
Base Capacity (vph)	421	415	469	1976	709	667	2234	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.16	1.20	0.93	0.60	0.72	0.82	0.48	


Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

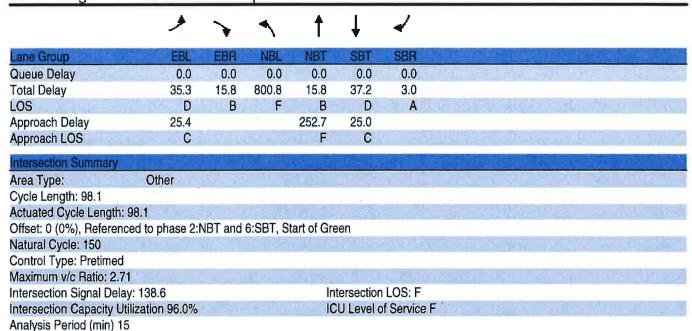
	۶	→	•	1	+	*	1	†	*	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	र्स	74	44	个个			44	7"
Volume (vph)	0	0	0	330	0	585	474	1153	0	0	1169	666
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	0.95	1.00	0.97	0.95	1.00	1.00	0.95	1.00
Frt						0.850						0.850
Flt Protected				0.950	0.950		0.950					
Satd. Flow (prot)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Flt Permitted				0.950	0.950		0.950					1 7
Satd. Flow (perm)	0	0	0	1633	1633	1538	3335	3438	0	0	3438	1538
Right Turn on Red			Yes			Yes			Yes			No
Satd. Flow (RTOR)						80						
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		655			745			582			558	
Travel Time (s)		14.9			16.9			13.2			12.7	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	359	0	636	515	1253	0	0	1271	724
Shared Lane Traffic (%)				50%		000	0.0		•			
Lane Group Flow (vph)	0	0	0	179	180	636	515	1253	0	0	1271	724
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Loit	12	rugiit	Lon	12	rugin	Loit	24	riigire	Loit	24	rugitt
Link Offset(ft)		0			0			0			0	1.00
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane					10							
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	15	1.00	9	1.00	1.00	9
Turn Type	10		J	Split	NA	Perm	Prot	NA	J	10	NA	Perm
Protected Phases				8	8	T GITTI	5	2			6	1 01111
Permitted Phases					0	8	0	_			v	6
Minimum Split (s)				21.5	21.5	21.5	9.5	21.5			21.5	21.5
Total Split (s)				39.0	39.0	39.0	29.0	84.0			55.0	55.0
Total Split (%)				31.7%	31.7%	31.7%	23.6%	68.3%			44.7%	44.7%
Maximum Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Yellow Time (s)				5.0	5.0	5.0	5.0	5.0			5.0	5.0
All-Red Time (s)				0.5	0.5	0.5	0.5	0.5			0.5	0.5
Lost Time Adjust (s)				0.0	0.0	0.0	0.0	0.0			0.0	0.0
				5.5	5.5	5.5	5.5	5.5			5.5	5.5
Total Lost Time (s)				5.5	5.5	5.5		5.5				
Lead/Lag							Lead Yes				Lag Yes	Lag
Lead-Lag Optimize?				ΕΛ	5.0	5.0	165	5.0			5.0	Yes
Walk Time (s)				5.0								5.0
Flash Dont Walk (s)				11.0	11.0	11.0		11.0			11.0	11.0
Pedestrian Calls (#/hr)				0	0	0	00.5	70.5			40.5	40.5
Act Effet Green (s)				33.5	33.5	33.5	23.5	78.5			49.5	49.5
Actuated g/C Ratio				0.27	0.27	0.27	0.19	0.64			0.40	0.40
v/c Ratio				0.40	0.41	1.33	0.81	0.57			0.92	1.17
Control Delay				39.9	39.9	196.0	58.6	14.0			46.6	127.9
Queue Delay				0.0	0.0	0.0	0.0	0.0			0.0	0.0
Total Delay				39.9	39.9	196.0	58.6	14.0			46.6	127.9
LOS				D	D	F	E	В			D	F

3: Central Ave & I-105 WB Off-ramp - FWP PM

	•	-			†	. ↓	4
Lane Group	WBL	WBT	WBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	179	180	636	515	1253	1271	724
v/c Ratio	0.40	0.41	1.33	0.81	0.57	0.92	1.17
Control Delay	39.9	39.9	196.0	58.6	14.0	46.6	127.9
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	39.9	39.9	196.0	58.6	14.0	46.6	127.9
Queue Length 50th (ft)	147	148	~734	244	333	597	~823
Queue Length 95th (ft)	234	235	#1013	#326	404	#770	#1106
Internal Link Dist (ft)		665			502	478	
Turn Bay Length (ft)							
Base Capacity (vph)	444	444	477	637	2194	1383	618
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.40	0.41	1.33	0.81	0.57	0.92	1.17

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	*	-	•	†	↓	1
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	ħ	7	*	^	44	77
Volume (vph)	364	380	669	1547	955	529
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	0	120	1000	1000	0
Storage Lanes	1	1	1			2
Taper Length (ft)	25	CO TO SOL	25	Variables.	COLUMN TWO	THE PERMIT
Lane Util. Factor	1.00	1.00	1.00	0.91	0.95	0.88
Frt	1.00		1.00	0.91	0.95	0.850
	0.050	0.850	0.050		2	0.650
Flt Protected	0.950	4500	0.950	40.40	0.400	0707
Satd. Flow (prot)	1719	1538	1719	4940	3438	2707
Flt Permitted	0.950		0.950			
Satd. Flow (perm)	1719	1538	1719	4940	3438	2707
Right Turn on Red		Yes				Yes
Satd. Flow (RTOR)		21				575
Link Speed (mph)	30			30	30	
Link Distance (ft)	1070			942	903	
Travel Time (s)	24.3			21.4	20.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	396	413	727	1682	1038	575
Shared Lane Traffic (%)	080	410	121	1002	1030	3/3
	396	413	727	1682	1038	575
Lane Group Flow (vph)						
Enter Blocked Intersection	No	No	No	No	No	No
Lane Alignment	Left	Right	Left	Left	Left	Right
Median Width(ft)	12		100	12	12	he had
Link Offset(ft)	0			0	0	
Crosswalk Width(ft)	16			16	16	
Two way Left Turn Lane						
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	9	15			9
Turn Type	Prot	Perm	Prot	NA	NA	Perm
Protected Phases	4		5	2	6	
Permitted Phases		45	E/III SIII			6
Minimum Split (s)	38.1	7.0	8.7	21.4	21.1	21.1
	38.1		20.0	60.0	40.0	40.0
Total Split (s)						
Total Split (%)	38.8%		20.4%	61.2%	40.8%	40.8%
Maximum Green (s)	33.0	- 7	15.3	54.6	34.9	34.9
Yellow Time (s)	4.1		3.7	4.4	4.1	4.1
All-Red Time (s)	1.0	المتناب	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	0.0		0.0	0.0	0.0	0.0
Total Lost Time (s)	5.1		4.7	5.4	5.1	5.1
Lead/Lag			Lead		Lag	Lag
Lead-Lag Optimize?					THE PARTY	
Walk Time (s)	7.0			5.0	5.0	5.0
Flash Dont Walk (s)	26.0			11.0	11.0	11.0
Pedestrian Calls (#/hr)	0			0	0	0
Act Effct Green (s)	33.0	53.0	15.3	54.6	34.9	34.9
Actuated g/C Ratio	0.34	0.54	0.16	0.56	0.36	0.36
v/c Ratio	0.69	0.49	2.71	0.61	0.85	0.43
Control Delay	35.3	15.8	8.008	15.8	37.2	3.0

Existing 7/6/2016 Baseline

3: Wilmington & I-105 EB Off-ramp - FWP PM

Splits and Phases: 3: Wilmington & I-105 EB Off-ramp - FWP PM

	<i>•</i>	~	4	†	Ţ	1
		T	1	-	•	
Lane Group	EBL	EBR	NBL	NBT	SBT	SBR
Lane Group Flow (vph)	396	413	727	1682	1038	575
v/c Platio	0.69	0.49	2.71	0.61	0.85	0.43
Control Delay	35.3	15.8	8.008	15.8	37.2	3.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	35.3	15.8	8.008	15.8	37.2	3.0
Queue Length 50th (ft)	253	173	~930	291	373	0
Queue Length 95th (ft)	383	270	#1196	348	476	45
Internal Link Dist (ft)	990	100		862	823	
Turn Bay Length (ft)			120			
Base Capacity (vph)	578	840	268	2749	1223	1333
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.69	0.49	2.71	0.61	0.85	0.43

Queue shown is maximum after two cycles.

Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	*	€	←	•	1	†	~	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	tttp-	7	77	11		75	सी	7		4	
Volume (vph)	70	2010	652	659	1044	4	820	16	309	10	24	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	340		0	0		0	0		0
Storage Lanes	1		1	2		0	1		1	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	0.81	0.81	0.97	0.91	0.91	0.95	0.95	1.00	1.00	1.00	1.00
Frt		0.987	0.850		0.999				0.850		0.940	
Flt Protected	0.950			0.950			0.950	0.954			0.992	
Satd. Flow (prot)	1719	5787	1246	3335	4935	0	1633	1640	1538	0	1687	0
Flt Permitted	0.950			0.950			0.950	0.954			0.970	
Satd. Flow (perm)	1719	5787	1246	3335	4935	0	1633	1640	1538	0	1650	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		28	510	777	1				230		30	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		1132			1053			585			490	
Travel Time (s)		25.7			23.9			13.3			11.1	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	76	2185	709	716	1135	4	891	17	336	11	26	30
Shared Lane Traffic (%)	do alli	Ti de la constantia della constantia della constantia della constantia della constantia della constantia del	28%				49%	7				
Lane Group Flow (vph)	76	2384	510	716	1139	0	454	454	336	0	67	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		24			24		5	12			12	3
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane											i i i i i i	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15	1100	9	15		9	15		9	15		9
Turn Type	Prot	NA	Perm	Prot	NA		Split	NA	Perm	Perm	NA	
Protected Phases	7	4		3	8		2	2			6	
Permitted Phases			4				-	7.1	2	6		
Minimum Split (s)	8.7	21.9	21.9	8.7	21.9		21.6	21.6	21.6	21.6	21.6	
Total Split (s)	7.0	44.0	44.0	18.0	55.0		15.0	15.0	15.0	8.0	8.0	
Total Split (%)	8.2%	51.8%	51.8%	21.2%	64.7%		17.6%	17.6%	17.6%	9.4%	9.4%	
Maximum Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4	2.4	2.4	
Yellow Time (s)	3.7	4.4	4.4	3.7	4.4		4.1	4.1	4.1	4.1	4.1	
All-Red Time (s)	1.0	1.5	1.5	1.0	1.5		1.5	1.5	1.5	1.5	1.5	
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	1.0	0.0	
Total Lost Time (s)	4.7	5.9	5.9	4.7	5.9		5.6	5.6	5.6		5.6	
Lead/Lag	Lead	Lag	Lag	Lead	Lag		0.0	0.0	0.0		0.0	
Lead-Lag Optimize?	Yes	Yes	Yes	Yes	Yes							
Walk Time (s)	100	5.0	5.0	100	5.0		5.0	5.0	5.0	5.0	5.0	
Flash Dont Walk (s)		11.0	11.0		11.0		11.0	11.0	11.0	11.0	11.0	
Pedestrian Calls (#/hr)		0	0		0		0	0	0	0	0	
Act Effet Green (s)	2.3	38.1	38.1	13.3	49.1		9.4	9.4	9.4		2.4	
Actuated g/C Ratio	0.03	0.45	0.45	0.16	0.58		0.11	0.11	0.11		0.03	
v/c Ratio	1.65	0.45	0.45	1.37	0.40		2.52	2.51	0.11		0.89	
							721.5	715.3			108.0	
Control Delay	402.5	28.5	5.0	211.2	10.4		121.5	7 10.3	41.5		100.0	

Synchro 8 Report Page 1 Existing 7/6/2016 Baseline

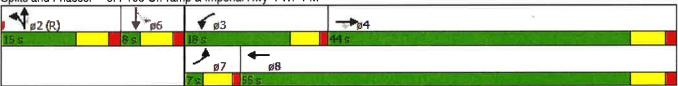
3: I-105 Off-ramp & Imperial Hwy- FWP PM

	*	-	•	•	—	•	4	†	/	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Delay	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0		0.0	
Total Delay	402.5	28.5	5.0	211.2	10.4		721.5	715.3	41.5		108.0	
LOS	2 - F	C	Α	F	В		F	F	D		F	
Approach Delay		34.0			87.9			535.5			108.0	
Approach LOS		C			F			F			F	
Intersection Summary		Alter.	Med De				31128		A August	357		

Area Type: Other

Cycle Length: 85

Actuated Cycle Length: 85


Offset: 0 (0%), Referenced to phase 2:NBTL, Start of Green

Natural Cycle: 150 Control Type: Pretimed Maximum v/c Ratio: 2.52

Intersection Signal Delay: 152.8 Intersection Capacity Utilization 94.9% Intersection LOS: F
ICU Level of Service F

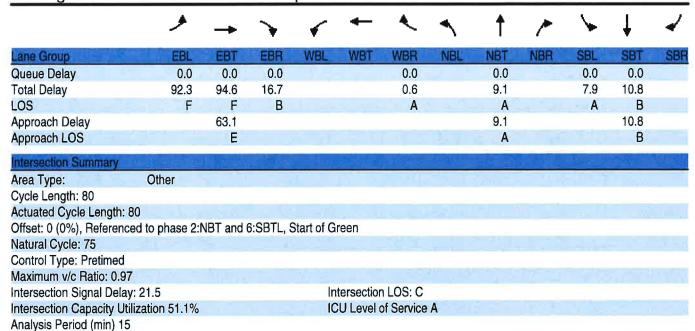
Analysis Period (min) 15

Splits and Phases: 3: I-105 Off-ramp & Imperial Hwy- FWP PM

	•	→	7	1	•	1	†	~	ţ	
Lane Group	EBL	EBT	EBR	WBL	WBT	NBL	NBT	NBR	SBT	
Lane Group Flow (vph)	76	2384	510	716	1139	454	454	336	67	
v/c Ratio	1.65	0.91	0.61	1.37	0.40	2.52	2.51	0.90	0.89	
Control Delay	402.5	28.5	5.0	211.2	10.4	721.5	715.3	41.5	108.0	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	402.5	28.5	5.0	211.2	10.4	721.5	715.3	41.5	108.0	
Queue Length 50th (ft)	~71	421	0	~317	135	~516	~516	66	24	
Queue Length 95th (ft)	#174	#499	86	#446	169	#744	#744	#253	#119	
Internal Link Dist (ft)		1052			973		505		410	
Turn Bay Length (ft)	100			340						
Base Capacity (vph)	46	2609	839	521	2851	180	181	374	75	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	1.65	0.91	0.61	1.37	0.40	2.52	2.51	0.90	0.89	

Synchro 8 Report Existing 7/6/2016 Baseline

Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.


^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	+	4	1	†	<i>></i>	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	4	7			7		444		7	^	
Volume (vph)	358	1	235	0	0	15	0	1081	4	15	1004	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		110	0		0	0		0	180		0
Storage Lanes	1		1	0		1	0		0	1		0
Taper Length (ft)	25	TAL N		25			25			25		
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00	1.00	1.00	0.91	0.91	1.00	0.95	1.00
Frt			0.850			0.865		0.999				
Flt Protected	0.950	0.953								0.950		
Satd. Flow (prot)	1633	1638	1538	0	0	1565	0	4935	0	1719	3438	0
Flt Permitted	0.950	0.953								0.204		
Satd. Flow (perm)	1633	1638	1538	0	0	1565	0	4935	0	369	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)			222			102		1				
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		817			156			598			555	
Travel Time (s)		18.6			3.5			13.6			12.6	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	389	1	255	0	0	16	0	1175	4	16	1091	0
Shared Lane Traffic (%)	50%											
Lane Group Flow (vph)	194	196	255	0	0	16	0	1179	0	16	1091	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12			12			12			12	
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA	Perm			Perm		NA	876	Perm	NA	
Protected Phases	4	4						2			6	
Permitted Phases			4			8				6	100	
Minimum Split (s)	21.1	21.1	21.1			21.1		21.4		21.4	21.4	
Total Split (s)	15.0	15.0	15.0			12.0		53.0		53.0	53.0	
Total Split (%)	18.8%	18.8%	18.8%			15.0%		66.3%		66.3%	66.3%	
Maximum Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	1.0
Yellow Time (s)	4.1	4.1	4.1			4.1		4.4		4.4	4.4	
All-Red Time (s)	1.0	1.0	1.0			1.0		1.0		1.0	1.0	
Lost Time Adjust (s)	0.0	0.0	0.0			0.0		0.0		0.0	0.0	
Total Lost Time (s)	5.1	5.1	5.1			5.1		5.4		5.4	5.4	
Lead/Lag	0.1	0.1	0.1			0.1		0.1		0.1	0.1	
Lead-Lag Optimize?												
Walk Time (s)	5.0	5.0	5.0			5.0		5.0		5.0	5.0	
Flash Dont Walk (s)	11.0	11.0	11.0			11.0		11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0	0			0		0		0	0	
Act Effet Green (s)	9.9	9.9	9.9			6.9		47.6		47.6	47.6	
	0.12	0.12	0.12			0.09		0.60		0.60	0.60	
Actuated g/C Ratio v/c Ratio	0.12	0.12	0.12			0.09		0.40		0.00	0.53	
			16.7			0.07		9.1		7.9	10.8	
Control Delay	92.3	94.6	10.7			0.0		9.1		1.9	10.0	

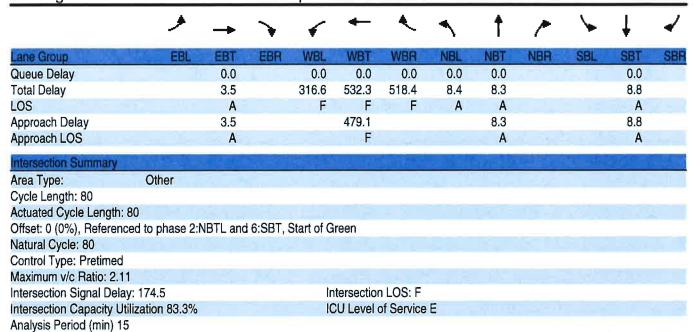
Existing 7/6/2016 Baseline

3: Long Beach Blvd & I-105 EB Off-ramp - FWP PM

Splits and Phases: 3: Long Beach Blvd & I-105 EB Off-ramp - FWP PM

<u> </u>	۶	→	*	*	†	-	↓
Lane Group	EBL	EBT	EBR	WBR	NBT	SBL	SBT
Lane Group Flow (vph)	194	196	255	16	1179	16	1091
v/c Ratio	0.96	0.97	0.66	0.07	0.40	0.07	0.53
Control Delay	92.3	94.6	16.7	0.6	9.1	7.9	10.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	92.3	94.6	16.7	0.6	9.1	7.9	10.8
Queue Length 50th (ft)	124	125	18	0	124	4	185
Queue Length 95th (ft)	#283	#285	#107	0	157	14	245
Internal Link Dist (ft)		737			518		475
Turn Bay Length (ft)			110			180	
Base Capacity (vph)	202	202	384	228	2936	219	2045
Starvation Cap Reductn	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0
Reduced v/c Ratio	0.96	0.97	0.66	0.07	0.40	0.07	0.53
Intersection Summary		2 V V	1		12,11		

^{# 95}th percentile volume exceeds capacity, queue may be longer.


Synchro 8 Report Existing 7/6/2016 Baseline

Queue shown is maximum after two cycles.

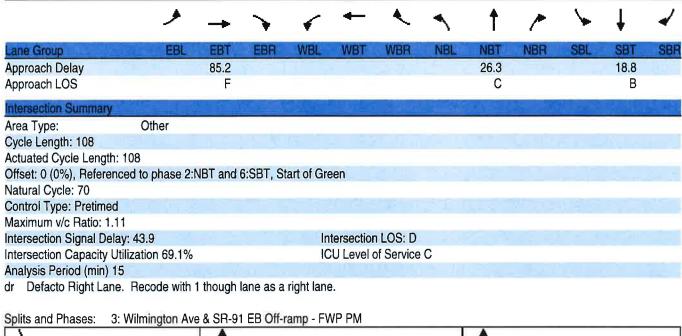
	*	-	*	•	•	*	4	†	/	-	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4		Ť	ĵ.	7	T	ተተተ			ተተኈ	
Volume (vph)	29	0	10	311	10	1080	17	1160	0	0	1332	22
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		0	0		140	150		0	0		0
Storage Lanes	0		0	1		1	1		0	0		0
Taper Length (ft)	25			25			25			25		
Lane Util. Factor	1.00	1.00	1.00	1.00	0.95	0.95	1.00	0.91	1.00	1.00	0.91	0.91
Frt		0.965			0.853	0.850					0.998	
Flt Protected		0.964		0.950			0.950					
Satd. Flow (prot)	0	1683	0	1719	1466	1461	1719	4940	0	0	4930	0
Flt Permitted		0.712		0.950			0.141					
Satd. Flow (perm)	0	1243	0	1719	1466	1461	255	4940	0	0	4930	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102	7.7		116	116					6	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		215			573			493			550	
Travel Time (s)		4.9			13.0			11.2			12.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	32	0.02	11	338	11	1174	18	1261	0	0	1448	24
Shared Lane Traffic (%)	02			000	خنست	50%		1201			1110	
Lane Group Flow (vph)	0	43	0	338	598	587	18	1261	0	0	1472	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)	Leit	12	riigiii	LOIL	12	rugite	Lon	12	rugin	Lon	12	riigitt
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane		10			10			10			10	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	1.00	1.00	9	1.00	1.00	9	1.00	1.00	9	1.50	1.00	9
Turn Type	Perm	NA	3	Split	NA	Perm	Perm	NA		13	NA	
Protected Phases	I CIIII	4		8	8	Cilli	I Gilli	2			6	
Permitted Phases	4				-	8	2	_			- 0	
Minimum Split (s)	21.1	21.1		21.1	21.1	21.1	31.4	31.4			21.4	
	10.0	10.0		15.0	15.0	15.0	55.0	55.0			55.0	
Total Split (s)	12.5%	12.5%		18.8%	18.8%	18.8%	68.8%	68.8%			68.8%	
Total Split (%)	4.9	4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Maximum Green (s)			-1		4.1	4.1	49.0	49.0			4.4	
Yellow Time (s)	4.1	4.1		4.1				1.0			1.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	1.0	1.0				0.0	
Lost Time Adjust (s)		0.0		0.0	0.0	0.0	0.0	0.0				
Total Lost Time (s)		5.1		5.1	5.1	5.1	5.4	5.4			5.4	
Lead/Lag												
Lead-Lag Optimize?	5 0	- 0		F 0	F 0	г о	F 0	F 0			5 0	
Walk Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0			5.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0	11.0	11.0	11.0			11.0	
Pedestrian Calls (#/hr)	0	0		0	0	0	0	0			0	
Act Effct Green (s)		4.9		9.9	9.9	9.9	49.6	49.6			49.6	
Actuated g/C Ratio		0.06		0.12	0.12	0.12	0.62	0.62			0.62	
v/c Ratio		0.25		1.59	2.11	2.08	0.11	0.41			0.48	
Control Delay		3.5		316.6	532.3	518.4	8.4	8.3			8.8	

Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

3: Long Beach Blvd & I-105 WB Off-ramp- FWP PM

Splits and Phases: 3: Long Beach Blvd & I-105 WB Off-ramp- FWP PM

	-	1	-	*		†	↓	
Lane Group	EBT	WBL	WBT	WBR	NBL	NBT	SBT	
Lane Group Flow (vph)	43	338	598	587	18	1261	1472	
v/c Ratio	0.25	1.59	2.11	2.08	0.11	0.41	0.48	
Control Delay	3.5	316.6	532.3	518.4	8.4	8.3	8.8	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	3.5	316.6	532.3	518.4	8.4	8.3	8.8	
Queue Length 50th (ft)	0	~294	~548	~533	4	126	155	
Queue Length 95th (ft)	1	#483	#798	#783	16	158	193	
Internal Link Dist (ft)	135		493			413	470	
Turn Bay Length (ft)				140	150			
Base Capacity (vph)	171	212	283	282	158	3062	3058	
Starvation Cap Reductn	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.25	1.59	2.11	2.08	0.11	0.41	0.48	


Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.

^{# 95}th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

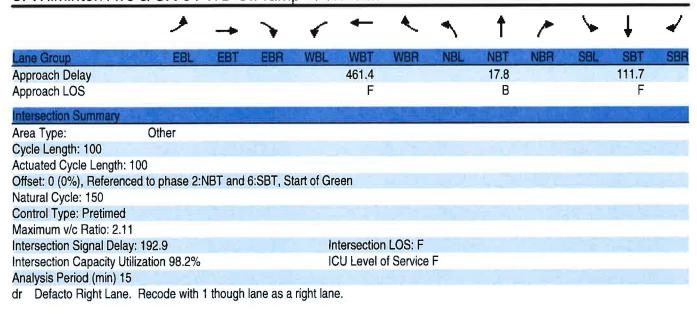
Lanes, Volumes, Timings 3: Wilmington Ave & SR-91 EB Off-ramp - FWP PM

-	۶	-	*	•	+	•	4	†	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	413						^	77	14.54	^	
Volume (vph)	488	198	548	0	0	0	0	716	262	330	1021	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	0.91	0.91	0.95	1.00	1.00	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt		0.898							0.850			
Flt Protected	0.950	0.996								0.950		
Satd. Flow (prot)	1564	2946	0	0	0	0	0	3438	2707	3335	3438	0
Flt Permitted	0.950	0.996								0.950		
Satd. Flow (perm)	1564	2946	0	0	0	0	0	3438	2707	3335	3438	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		102							285			
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	530	215	596	0	0	0	0	778	285	359	1110	0
Shared Lane Traffic (%)	12%											
Lane Group Flow (vph)	466	875	0	0	0	0	0	778	285	359	1110	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	-		12	-		24			24	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type	Split	NA						NA	Perm	Prot	NA	,
Protected Phases	4	4						2		1	6	
Permitted Phases									2			
Minimum Split (s)	22.0	22.0						22.0	22.0	10.0	22.0	
Total Split (s)	35.0	35.0						42.0	42.0	31.0	73.0	
Total Split (%)	32.4%	32.4%						38.9%	38.9%	28.7%	67.6%	
Maximum Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Yellow Time (s)	5.0	5.0						5.0	5.0	5.0	5.0	
All-Red Time (s)	1.0	1.0						1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	0.0	0.0						0.0	0.0	0.0	0.0	
Total Lost Time (s)	6.0	6.0			(9)			6.0	6.0	6.0	6.0	
Lead/Lag								Lag	Lag	Lead		
Lead-Lag Optimize?								Yes	Yes	Yes		
Walk Time (s)	5.0	5.0						5.0	5.0		5.0	
Flash Dont Walk (s)	11.0	11.0						11.0	11.0		11.0	
Pedestrian Calls (#/hr)	0	0						0	0		0	
Act Effct Green (s)	29.0	29.0						36.0	36.0	25.0	67.0	
Actuated g/C Ratio	0.27	0.27						0.33	0.33	0.23	0.62	
v/c Ratio	1.11	1.28dr						0.68	0.26	0.47	0.52	
Control Delay	115.9	68.9						34.6	3.7	38.1	12.6	
Queue Delay	0.0	0.0						0.0	0.0	0.0	0.0	
Total Delay	115.9	68.9						34.6	3.7	38.1	12.6	
LOS	F	00.9 E						C	Α	D	12.0 B	
									^	U	U	

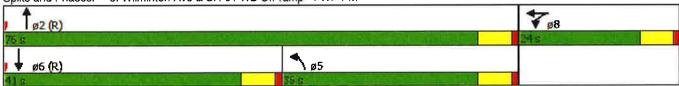
Synchro 8 Report Page 1 Existing 7/7/2016 Baseline

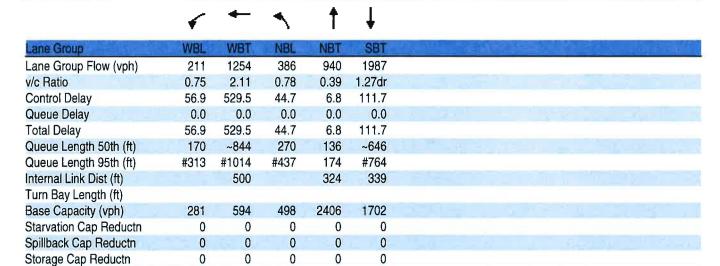
Lane Group	EBL	EBT	NBT	NBR	SBL	SBT
Lane Group Flow (vph)	466	875	778	285	359	1110
v/c Ratio	1.11	1.28dr	0.68	0.26	0.47	0.52
Control Delay	115.9	68.9	34.6	3.7	38.1	12.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	115.9	68.9	34.6	3.7	38.1	12.6
Queue Length 50th (ft)	~487	~370	291	0	132	252
Queue Length 95th (ft)	#750	#545	374	38	187	314
Internal Link Dist (ft)		510	324			339
Turn Bay Length (ft)						
Base Capacity (vph)	419	865	1146	1092	771	2132
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	1.11	1.01	0.68	0.26	0.47	0.52

- Volume exceeds capacity, queue is theoretically infinite. Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.
- dr Defacto Right Lane. Recode with 1 though lane as a right lane.


Synchro 8 Report Existing 7/7/2016 Baseline

Lanes, Volumes, Timings 3: Wilminton Ave & SR-91 WB Off-ramp - FWP PM


	۶	→	7	•	—	*	1	†	-	-	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	414		7	^			ተተኈ	
Volume (vph)	0	0	0	215	910	223	355	865	0	0	1100	728
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.91	0.91	0.95	1.00	0.95	1.00	1.00	0.91	0.91
Frt					0.971						0.940	
Flt Protected				0.950	0.999		0.950					
Satd. Flow (prot)	0	0	0	1564	3195	0	1719	3438	0	0	4644	0
Flt Permitted				0.950	0.999		0.950					
Satd. Flow (perm)	0	0	0	1564	3195	0	1719	3438	0	0	4644	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)					24						118	
Link Speed (mph)		30			30			30			30	
Link Distance (ft)		590			580			404			419	
Travel Time (s)		13.4			13.2			9.2			9.5	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	0	0	0	234	989	242	386	940	0	0	1196	791
Shared Lane Traffic (%)				10%								
Lane Group Flow (vph)	0	0	0	211	1254	0	386	940	0	0	1987	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(ft)		12	J		12	J		12	J		12	J
Link Offset(ft)		0			0			0			0	
Crosswalk Width(ft)		16			16			16			16	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (mph)	15		9	15		9	15		9	15		9
Turn Type				Split	NA		Prot	NA			NA	
Protected Phases				8	8		5	2			6	
Permitted Phases												
Minimum Split (s)				22.0	22.0		10.0	22.0			22.0	
Total Split (s)				24.0	24.0		35.0	76.0			41.0	
Total Split (%)				24.0%	24.0%		35.0%	76.0%			41.0%	
Maximum Green (s)				18.0	18.0		29.0	70.0			35.0	
Yellow Time (s)				5.0	5.0		5.0	5.0			5.0	
All-Red Time (s)				1.0	1.0		1.0	1.0			1.0	
Lost Time Adjust (s)				0.0	0.0		0.0	0.0			0.0	
Total Lost Time (s)				6.0	6.0		6.0	6.0			6.0	
Lead/Lag							Lag				Lead	
Lead-Lag Optimize?							Yes				Yes	
Walk Time (s)				5.0	5.0			5.0			5.0	
Flash Dont Walk (s)				11.0	11.0			11.0			11.0	
Pedestrian Calls (#/hr)				0	0			0			0	
Act Effct Green (s)				18.0	18.0		29.0	70.0			35.0	
Actuated g/C Ratio				0.18	0.18		0.29	0.70			0.35	
v/c Ratio				0.75	2.11		0.78	0.39			1.27dr	
Control Delay				56.9	529.5		44.7	6.8			111.7	
Queue Delay				0.0	0.0		0.0	0.0			0.0	
Total Delay				56.9	529.5		44.7	6.8			111.7	
LOS				Е	F		D	Α			F	
LOS				Е	F		D	Α			F	


Synchro 8 Report Existing 7/7/2016 Baseline Page 1

3: Wilminton Ave & SR-91 WB Off-ramp - FWP PM

Splits and Phases: 3: Wilminton Ave & SR-91 WB Off-ramp - FWP PM

1.17

Intersection Summary

Reduced v/c Ratio

- Volume exceeds capacity, queue is theoretically infinite.
 Queue shown is maximum after two cycles.
- # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

0.75

2.11

0.78

0.39

dr Defacto Right Lane. Recode with 1 though lane as a right lane.